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Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-concept studies in 

wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions, isospectrality, and hyperbolic 

lattices. Laughlin’s topological pump, which elucidates quantum Hall states in cylindrical geometry with a radial magnetic 

field and a time-varying axial magnetic flux, is a prime example of these efforts. Here we propose a two-dimensional 

dynamical photonic system for the topological pumping of pseudospin modes by exploiting synthetic frequency 

dimensions. The system provides the independent control of pseudomagnetic fields and electromotive forces achieved by 

the interplay between mode-dependent and mode-independent gauge fields. To address the axial open boundaries and 

azimuthal periodicity of the system, we define the adjusted local Chern marker with rotating azimuthal coordinates, 

proving the nontrivial topology of the system. We demonstrate the adiabatic pumping for crosstalk-free frequency 

conversion with wavefront molding. Our approach allows for reproducing Laughlin’s thought experiment at room 

temperature with a scalable setup. 

DOI:                                  

The quantum Hall effects represent one of the most 

important effects in topological physics, with potential 

applications for achieving backscattering-suppressed wave 

transport through disorder [1-4]. Laughlin’s argument [5,6], 

which is based on gauge transformation and describes 

quantized conductance [7,8] through the adiabatic pumping of 

wavefunctions, represents an important milestone in the 

understanding of quantum Hall effects. Laughlin’s model is 

composed of a cylinder subjected to a radial magnetic field Bρ 

and an adiabatically varying axial magnetic flux Φz(t) that 

induces an electromotive force (EMF). Given its theoretical 

importance, it is certainly of interest to directly implement this 

model. However, the intrinsic geometry of the cylinder 

necessitates a three-dimensional (3D) platform, complicating 

its experimental realization. One of the intriguing approaches 

to address such a geometrical challenge is the implementation 

of 3D or even higher-dimensional systems and Hamiltonians 

in physical systems with lower geometrical dimensions [9-11], 

as shown in the realization of topological phenomena in non-

Euclidean geometry [12] and quasicrystals [13]. Using this 

approach, demonstrating Laughlin’s pump by emulating the 

axial transport on a cylindrical surface with a radial transport 

on a disk was achieved in [14,15]. 

The concept of synthetic frequency dimensions [16] has 

provided new design freedom in addressing the geometrical 

challenge of Laughlin’s pump [5]. By introducing intermodal 

coupling via spatiotemporal modulation, a synthetic frequency 

dimension can be realized through the coupling of modes with 

different frequencies, resulting in dynamics along a frequency 

axis. In this way, higher-dimensional physics can be 

reproduced with experimentally accessible lower-dimensional 

platforms. Synthetic dimensions have been used in the study 

of topological phenomena [17-22], quantum computing 

[23,24], and matrix-vector multiplications [25]. In a cold-atom 

system, Laughlin’s pump in synthetic dimensions was 

implemented recently with very few spin states for the 

azimuthal axis [26]. However, it remains a challenge to 

achieve pumping operations at room temperature with 

geometrical scalability beyond the limited number of spin 

states. Given the demonstrated potential of synthetic 

dimensions in photonics—evidenced by the experimental 

realization of tunable pseudomagnetic fields in ladders using 

a single resonator [27]—suitable photonic systems could 

tackle the geometrical complexities of Laughlin’s pump while 

ensuring a room-temperature and scalable configuration. 

Here we propose a photonic realization of Laughlin’s pump. 

In our realization, the axial dimension of the cylindrical 

geometry in Laughlin’s pump is implemented in the synthetic 

dimension. Our realization enables the creation of 

pseudomagnetic fluxes of Bρ and Φz(t) as well as their 

independent control, which is essential for Laughlin’s pump. 

We demonstrate adiabatic pumping in the synthetic dimension 

with designed light injections, which allows for crosstalk-free 

frequency conversion of light as well as the molding of spatial 

profiles. To examine the nontrivial topological nature of the 

cylinder, we introduce the adjusted local Chern marker, which 

clarifies the origin of the adiabatic pumping rate of the system. 

Our implementation is the first study of bulk topological 

dynamics on Laughlin cylinder using integrated photonic 

platforms, achieving scalable geometry. 

Hardware implementation. Laughlin’s pump is implemented 

with a radial magnetic field and an EMF from an axial 

magnetic flux [28] [Fig. 1(a)]. It is well known that the 

necessary field and EMF can be achieved by employing the 

gauge field A(z,t) = [–Bρz + Φz(t)/2πρ]φ [29], as (  A)·ρ = 

Bρ and ∂t∮A∙dl = ∂tΦz(t), where dl denotes the φ-axis 

infinitesimal length. In an ultracold atom system [26], the 

gauge field was realized with the momentum exchange in two-
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photon transitions and the relative phase difference of laser 

fields involved in ±φ hopping. 

We emulate Laughlin’s pump by achieving the necessary 

time-reversal symmetry breaking for topological phenomena 

effectively with one of the pseudospin modes: clockwise 

travelling-wave resonances. The magnetic fluxes of the pump 

are implemented through the pseudogauge field A, extending 

two-dimensional (2D) topological photonics [30,31] to the 

cylindrical geometry defined with the synthetic dimension. 

Figure 1 illustrates the resonator-based implementation of 

Laughlin’s pump. Each point of the space-mode (φ-z) 

cylindrical coordinate corresponds to an individual resonance. 

The arrows connecting points represent the spatial (φ-axis) and 

intermodal (z-axis) coupling. We utilize non-resonant 

waveguide loops as the spatial couplers between resonators, 

which have been employed in realizing gauge fields [30,32]. 

The couplers are assumed to have a length Lw, obtaining the 

phase evolution of [4(m+m0)+1]π per circulation for the mth 

resonance mode, where m0 is a sufficiently large integer for 

the offset. As demonstrated in 2D planar structures [30,32], 

the couplers allow for space-mode hopping with the desired 

gauge field A, while maintaining destructive interferences 

within the couplers. 

In the proposed platform, we achieve Φz(t), the synthetic z-

axis, and Bρ as follows. First, employing the method of 

realizing magnetic fluxes across a 2D plane [30,33], we derive 

the EMF ∂tΦz(t) from the dynamic gauge AD(t) = Φz(t)/2πρ by 

applying the time-varying modulation of the coupling phase 

[red regions in Fig. 1(b)]. While applying the opposite 

perturbations in the upper and lower arms to maintain the non-

resonant condition, we utilize time-varying phase shifters 

[34,35], which are set to assign η(t) phase evolutions to the 

modes of interest. The phase evolutions derive AD(t) = η(t), 

which is mode-independent around the mode number m within 

the linear dispersion regime (Note S1 in [36]). 

Second, we implement the synthetic z-axis following the 

method in previous studies [37,38]: employing 

spatiotemporally-varying modulations within resonators 

[yellow regions in Fig. 1(b)] to achieve intermodal coupling. 

Hopping amplitudes along the φ and z axes are set to be equal, 

and there is no additional phase shift along the z-axis. 

Finally, the static gauge field AS(z) = –Bρz corresponds to 

the coupling phases linear to mode numbers. To achieve AS(z), 

we introduce the structural imbalance in the upper and lower 

arms by introducing the dislocation ΔL/2 [blue regions in Fig. 

1(b)]. Each mode experiences different path lengths for the 

imbalance and the following gauges, which leads to m-

dependent hopping phase difference ±[4(m+m0)+1]πΔL/Lw 

and the consequent magnetic field Bρ = –4πΔL/Lw. Such a Bρ 

field has been experimentally demonstrated in [27] with two 

pseudospin modes. To realize the cylindrical geometry of 

Laughlin’s pump, we extend the prior work to implement the 

Bρ field for a larger number of resonators. Although 

introducing the structural imbalance for AS(z) is similar to AD(t) 

in terms of achieving gauge fields, the critical difference is that 

AD(t) is designed to be m-independent. 

Our construction allows independent control of a 

pseudomagnetic field and flux through structural and temporal 

modulations, completing the implementation of Laughlin’s 

pump for pseudospin modes in the synthetic dimension. The 

Hamiltonian of the system is given by (Note S1 in [36]): 
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where J is the hopping amplitude between nearest neighbors 

(NNs) in the φ-z coordinate, az,φ (or a†
z,φ) is the annihilation (or 

creation) operator at the site (z,φ), Λz (or Λφ) is a set of NN 

pairs along the z- (or φ-) axis, and H.c. is the Hermitian 

conjugate. Assuming the adiabatic change of AD(t), the 

instantaneous band Ωm(kφ) can be obtained, where m ∊ [1,M] 

and kφ is the discretized quasimomentum from φ-periodicity. 

 
FIG. 1. Photonic hardware for topological spin pumps. (a) 

Schematic of the pump. Each site for a resonance mode is labelled 

by the indices m ∊ [1,M] and n ∊ [1,N], where M and N are the 

numbers of the modes and resonators, respectively. Colored 

arrows indicate the coupling. (b) Coupled-resonator platform for 

realizing (a). Black circles and grey curved squares denote 

resonators and waveguide loops, respectively. The red and yellow 

regions are tunable phase shifters for the loops and resonators, 

respectively. Purple arrows show wave circulations. Blue regions 

indicate structural imbalance. (c) Layers of coupled resonators 

along the synthetic axis. ωm is the mth-mode resonance frequency. 

Pseudomagnetic fields and EMFs. Before exploring the 

interplay of Bρ and ∂tΦz(t), we examine their separate impacts. 

First, we consider the scenario where AD(t) = 0 and Bρ is static: 

only the mode-dependent gauge (AS(z) = –Bρz) exists. This 

system corresponds to the modified Hofstadter model with a 

finite and rotationally-symmetric structure [39]. Figure 2(a) 

illustrates the band diagram of the system obtained from Eq. 

(1). We set a pseudomagnetic flux per plaquette by Bρ to be 

π/8, which ideally leads to the Chern number of 1 to each 

magnetic Bloch band at the 7 lowest eigenenergies [40] in the 

thermodynamic limit. The magnetic Bloch bands comprising 
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Landau levels support the eigenfunctions with the z-centers of 

kφlB
2 [B and C in Fig. 2(a,b)], where lB is the magnetic length 

(1/Bρ)1/2 [28]. The finite length of the cylinder along the 

synthetic z-axis results in topologically protected edge states 

crossing the gaps [4,20]. In the synthetic frequency dimension, 

the existence of edge states corresponds to the maintenance of 

either the lowest or highest resonance frequencies despite 

intermodal coupling [A and D in Fig. 2(a,b)]. 

Second, we consider the system where Bρ = 0; only the 

mode-independent gauge field AD(t) exists. The system with 

Bρ = 0 is topologically trivial, and thus, the Bloch band 

becomes sinusoidal with respect to kφ [Fig. 2(c)]. Due to gauge 

transformation [29], AD(t) applied to this topologically trivial 

system leads to the band shift along the kφ-axis, which 

corresponds to the intraband transition when the band diagram 

remains fixed. The constant EMF ∂tΦz(t) with linearly varying 

AD(t), which corresponds to the electric field along the 

azimuthal axis, results in Bloch oscillations [Fig. 2d]. As 

widely studied [41,42], the angular frequency |∂tAD(t)| and 

amplitude 2J/|∂tAD(t)| of the oscillation are determined by the 

slope of AD(t) [(d2-d4) in Fig. 2(d)], while the z-centers 

remains constant [(d1) in Fig. 2(d)]. 

 
FIG. 2. Band properties of pseudospin pumps with either Bρ or 

∂tΦz(t). (a) Pump spectrum with AD(t) = 0 for Bρ = π/8, M = 32, 

and N = 16. (b) Eigenfunction intensities along the frequency (m-) 

axis. (c) Pump spectrum with Bρ = 0 for AD(t) = 0. (d) Temporal 

evolution of the beam profiles on the cylinder according to 

linearly-varying AD(t). An initial wavepacket is a superposition of 

two adjacent eigenfunctions in the lowest band [red dots in (c)]. 

Tc = 8/J is the characteristic time. 

Local Chern marker. Because the modes participating in the 

synthetic dimension are constrained by the natural boundary 

originating from the group velocity dispersion (GVD) [43,44], 

the proposed pump geometry is inherently finite. Such finite 

systems impede the direct use of the Chern number defined 

under the periodic boundary condition. Therefore, we employ 

an alternative measure: local Chern marker [45]. This marker, 

approaching the Chern number through the integration across 

the infinite crystalline structure, serves as a useful local 

measure that captures the topological features of the bulk, even 

in finite-size samples. Therefore, comparing the local Chern 

marker in the bulk with the ideal Chern number allows for 

examining the validity of the synthetic axis length for the 

analogy of Laughlin’s pump. In discussing topological 

properties, we assume sharp boundaries along the synthetic 

dimension achievable with abrupt changes in the GVD [43] or 

the coupling with auxiliary rings [25,46]. 

The local Chern marker CL(rmn) is defined as [45] 

 L π , ,( ) 2mn mn mnC i PmP PnPr r r      (2) 

where |rmn〉 = (m,n) is the discretized position state on the z-φ 

cylinder surface of Fig. 1(a), and P is the Fermi projection 

operator to the valence band [47]. The projected operators 

PmP and PnP originate from remedying ill-defined position 

operators in the real-space representation of Chern number and 

the modern theory of polarization. 

Although CL(rmn) is defined for a 2D plane, our synthetic-

dimensional system has cylindrical geometry with axial open 

boundaries and azimuthal periodicity. Therefore, we redefine 

the index set of n in calculating CL(rmn), as {n} = {…, –2, –1, 

0, +1, +2, …}, where we set an index n for the pth element to 

zero [a subset of Fig. 3(a,b)]. This rotating coordinate 

guarantees the local continuity of the azimuthal position near 

rmp, which is necessary for reflecting the periodicity of the 

cylinder. Although such a configuration breaks the trivial 

condition of global topology for open-boundary systems, the 

nontrivial feature at each local position is preserved because 

the position discontinuity does not affect the nearsighted 

operator P in evaluating CL(rmp) [45,48]. 

Figures 3(a) and 3(b) show the distribution of CL(rmn) for 

the lowest band with different values of M. While the ideal 

Chern number with M→∞ is 1 with Bρ = π/8, the local Chern 

marker within the bulk has a near unity value, demonstrating 

the validity of the local Chern marker. Due to broken 

translational symmetry, the value of CL(rmn) decreases near the 

boundary [Fig. 3(a-d)]. Figure 3(c) demonstrates that CL(rmn) 

serves as a well-defined local quantity to examine the valid 

range of our model (M ≥ 16) as an approximation of the ideal 

Laughlin’s pump. CL(rmn) is robust to diagonal disorder, 

demonstrating the noise immunity of the pump [Fig. 3(d)]. 

 
FIG. 3. Real-space topological measures. (a,b) Coordinate-

indexing scheme and the lowest-band CL(rmn) for (a) M = 32 and 

(b) M = 16. (c) CL(rmn) as a function of m/M for different M. (d) 

The averages and standard deviations of CL(rmn) for 100 random 

realizations for each W, where W denotes the degree of diagonal 

disorder uniformly distributed over [−W,+W]. The error bars are 

10 times the standard deviations for clarity. 
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Adiabatic pumping. Based on Fig. 3, we investigate adiabatic 

pumping of topological edge states. We employ an external 

waveguide coupled to one of the resonators to excite the edge 

state. The incident frequency is the reference frequency along 

the synthetic axis detuned with the eigenfrequency of the 

target edge state. 

Figure 4 shows examples of adiabatic pumping with slowly 

varying Φz(t) for the temporally-bounded wave excitations. 

The origin of this phenomenon is the adiabatic change of kφ 

induced by ∂tΦz(t), which results in the adiabatic intraband 

transition of edge states to bulk states [red and blue arrows in 

Fig. 4(a)]. Because the states are localized along the z-axis 

around their kφ-dependent centers kφlB
2 [Fig. 2(b)], the 

intraband transition leads to the transport along the z-axis [Fig. 

4(c,d)]. After the transition to the bulk modes, the azimuthal 

group velocity ∂Ωm/∂kφ becomes zero, maintaining the spatial 

profile inside the coupled resonator platform. The phenomena 

can be interpreted as the E × B drift in crystalline structures 

from the viewpoint of classical electrodynamics [40,49]. 

Due to the synthetic-dimensional configuration, the 

adiabatic pumping in our example corresponds to frequency 

conversion along the synthetic dimension. The separation of 

the wave excitation and EMF pumping in Fig. 4(a,c,d) 

corresponds to the one-shot excitation of a topological band 

and its sequential pumping. Such an implementation leads to 

the localization in the reciprocal space [black circles in Fig. 

4(a)], resulting in the spatial broadening of the pumped mode. 

To achieve the spatial engineering of frequency-conversion 

functionality, we devise the configuration of filling the 

topological band by simultaneously applying the wave 

incidence and pumping [dashed and solid arrows in Fig. 4(e)]. 

This pumping technique enables the broadening in kφ-axis [Fig. 

4(b)], leading to spatial localization [Fig. 4(e)] while 

preserving frequency conversion functionality. Therefore, 

engineering incident waves allows for the designed excitation 

in the kφ-axis and the following spatial profiles in frequency 

conversion. 

Importantly, the pumping example demonstrates the 

validity of local Chern markers in Fig. 3. The ratio of the 

normalized frequency drift Δ〈m⟩/(2πlB
2/N) measured inside 

the bulk to the normalized magnetic flux change ΔΦz/2π is 

close to unity in Fig. 4, which is theoretically identical to the 

Chern number [28]. This result is consistent with the local 

Chern marker CL(rmn) ~ 1 in Fig. 3. 

 

 

 
FIG. 4. Adiabatic pumping. Pumping dynamics in (a,b) band 

diagrams and (c-e) the corresponding temporal monitoring of 

beam profiles: (c,d) for (a) and (e) for (b). In (a,c,d), initial states 

(black circles) undergo adiabatic intraband transition due to Φz(t) 

and arrive at the final states (black triangles). In (b), black dots 

denote each excitation at the time t. The colored numbers of the 

lower (‘1,2’) and higher (‘1-4’) bands in (a) denote the sequences 

of the pumping in (c) and (d), respectively. In the left figures of 

(c-e), solid and dashed arrows represent Φz(t) and the temporal 

range of wave excitations, respectively. (b) shows the lowest band 

occupation after the simultaneous excitation of the incidence and 

pumping, which leads to spatial (n-) localization in (e). The 

displacement along the frequency (m-) axis [center figures in (c-

e)] is proportional to ΔΦz. Nodeless single rails in (c,e) and double 

rails with a node in (d) originate from the ground and first excited 

state excitations in (a,b). 

To explore the experimental feasibility, we perform 

numerical simulations in Note S2 in [36], using standard 

parameters in integrated photonics of 1550 nm wavelength 

operations. By employing finite-difference time-domain 

simulations with Tidy3d [50,51], we show that the pump can 

be designed with acceptable system parameters [46,52-54]: a 

space-mode hopping near J = 1.25 GHz and 4π-range phase 

shifters, by applying a 100 nm coupling gap and <1% 

refractive index change. In light of the temporal ranges applied 

in Fig. 2,4, the obtained parameters align well with resonator 

quality factors of ~106; a feasible requirement for all-

waveguide resonators [55] or fiber-ring systems [27] with 

electro-optic modulations [56]. Designing larger J alleviates 

the constraints on quality factors. 

We also examine the valid range of crosstalk-free pump 

operations, by analyzing broken adiabaticity (Note S3 in [36]), 

and the emergences of diagonal, spin-mixing (Note S4 in [36]), 

and synthetic-dimensional disorder (Note S5 in [36]). The 

results demonstrate topological natures of the spin pump; more 

robust pumping to diagonal disorder than spin-mixing disorder, 

in a similar context to the quantum spin Hall effect [30]. 

However, using both pseudospin modes may enable more 

multifaceted phenomena, such as Rashba interactions [57].   

We have demonstrated the scalable photonic realization of 

a topological spin pump analogous to Laughlin’s 

configuration by harnessing the synthetic dimension and time-

varying gauge fields. By engineering dynamical gauges and 

resonances that were recently employed in programmable 

photonics [58], we develop the design strategy for Bρ, Φz(t), 
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and the synthetic z-axis to realize the topological spin pump: 

the mode-dependent structural imbalance, mode-independent 

gauge fields, and spatiotemporal modulation of resonances. 

The platform allows for controlling the magnetic field and 

EMF independently in spatial and modal axes. By employing 

the local Chern marker, we proved that the suggested structure 

provides nontrivial topological features within finite spaces. 

The pumping examples illustrate substantial design freedom 

for frequency conversion, including the designed conversion 

trajectory with wavefront engineering. Our proposal provides 

enhanced scalability because the spatial footprint relies solely 

on azimuthally arranged resonators. This synthetic-

dimensional configuration using classical optic elements is 

more extendable than 2D topological platforms where the 

spatial footprint is determined by the discretization of the 

entire geometry [9,10,14], or a cold-atom Laughlin’s pump 

with an azimuthal axis composed of limited spin states [26]. 

We also envisage that band filling through the sequential edge 

mode incidence and adiabatic pumping allows for classical 

realizations of quantized conductance and magnetic Bloch 

bands by imaging energy flows. 
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