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The classical Richtmyer-Meshkov instability is a hydrodynamic instability characterizing the evo-
lution of an interface following shock loading. In contrast to other hydrodynamic instabilities such
as Rayleigh-Taylor, it is known for being unconditionally unstable: regardless of the direction of
shock passage, any deviations from a flat interface will be amplified. In this article, we show that for
negative Atwood numbers, there exist special sequences of shocks which result in a nearly perfectly
suppressed instability growth. We demonstrate this principle computationally and experimentally
with stepped fliers and phase transition materials. A fascinating immediate corollary is that in
specific instances a phase transitioning material may self-suppress RMI.

The classical Richtmyer-Meshkov instability (RMI) is
a hydrodynamic instability characterizing the evolution
of an interface following shock loading. In the case of a
shock passing from a heavy material to a light material,
the evolution of the interface follows a standard behav-
ior, valleys evolve into peaks or jets and the initial peaks
evolve into valleys. RMI occurs in many scientific areas
[1-5] including laser driven inertial confinement fusion
(ICF) [6, 7] such as is pursued at the National Ignition
Facility (NIF). RMI is a critical limiting physical mech-
anism controlling the onset of mix which ultimately may
degrade ICF performance [7, 8|; thus, development of
methodologies to suppress growth of RMI can be viewed
as one of the key bottlenecks to development of abun-
dant clean energy via fusion. A productive description of
RMI in terms of the vorticity field (cf. [9]) was introduced
in [10-13]. In this conception of the instability physics,
the passage of the shock through the interface deposits
vorticity at the interface via the baroclinic mechanism.
The variation in the sign of the vorticity arising from the
non-planarity of the interface gives rise to the instability.

In this article, we advance the following conjecture: for
a heavy-light interface loaded by two shocks in sequence,
owing to the fact that the interface shape inverts (i.e. val-
leys become peaks and peaks become valleys), there will
be a special time delay between the shocks such that the
vorticity deposited by the second shock will be nearly
equal and opposite the vorticity deposited by the first
shock; thereby canceling (potentially to zero) and leav-
ing the interface stable. The proposed RMI suppression
principle which we refer to as double shock is illustrated
in Fig. 1. Of course, virtually no interface in applica-
tion is a perfect sinusoid [14, 15]; we derive a formula for
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FIG. 1. The proposed mechanism of suppresses RMI via shock
timing. A double shock wave propagates depositing vorticity
at the interface with a specific timing wherein the second
vorticity deposition cancels the first due to the inversion of
the wave profile.

optimal shock timing corresponding to arbitrary groove
shapes. This principle is extremely effective in suppress-
ing RMI from differently shaped grooves.

The classical paper by Richtmyer [16] modified ear-
lier work due to Taylor [17] to derive, for a single si-
nusoidal surface perturbation of wavenumber k, the ve-
locity of amplitude growth ¥ = kAuATag , where Au
is the jump in particle velocity arising from the shock,
AJF = (pdownstream - pupstream)/(pdownstream + pupstream)
is the Atwood number, and ag is the initial amplitude.

We now suppose that the effects of two shocks in se-
quence may be superposed linearly giving the perturba-
tion amplitude velocity

v(k) = v1(k) + v2(k) (1)



where
v; (k) = kAu; A% a; 0(k) , (2)

where the index i = 1, 2 denotes the first or second shock.
Note the dependence on wavenumber k. We observe that
under a constant velocity following the first shock, the
initial amplitude for the second shock will be

agﬁo(k) = Ul(k)t + alvo(k) . (3)

Now, we investigate whether there is a pair of shocks
for which the amplitude growth is minimized. Minimiz-
ing Y, |v(k)|?, and solving equations (1),(2), and (3) we
obtain an expression for the delay time between the two
shocks as a function of the jumps in velocity
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where ¢, is a geometric prefactor accounting for the ef-
fects of multiple wavenumbers
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Equation (4) has the simple interpretation of the har-
monic average of the particle velocity jumps with a pref-
actor coming solely from the Atwood number and the
spectral content of the interface via c,. Evidently, for
AT < 0, this equations yields ¢ > 0. We mention that,
in the special case of a single wavenumber, ¢, = 1/k and
the velocity arrests completely; this phenomena was first
pointed out by [18], labeled ‘freeze-out’, and a formula
which is a special case of (4) was presented.

Evidently, ¢, depends on the spectral content of the ini-
tial interface via a1 o(k). We suppose that aq o(k) oc k=€
for k < kewy and a19(k) o< k77 for k > key. Taking o
to be a small integer and 8 to be large provides a simple
prototype for many realistic interfaces wherein the small
scale features are much smoother below some lengthscale;
see [19] for some examples of real ICF capsules with
power-law dependence in the spectrum of the capsule
surface profile. Also, RMI effects of large wavenumbers
may be regularized out by effects like strength, viscos-
ity, or non-linearity. In Fig. 2(A), the geometric factor
cg decreases with and the instability growth velocity in-
creases with kcut/ko for a = 2,3,4. The case of a = 2
is a prototype for an interface with sharp features such
as a v-groove; the case of a > 4 would correspond to a
highly smooth interface where the spectral content de-
cays rapidly with increasing wavenumber. Evidently, the
jetting suppression is substantial particularly for k.,; not
too large or for a > 2. In light of the case of kcyt/ko = 1,
we observe that c,kg can be interpreted as the fractional
reduction in delay time between the two shock waves rel-
ative to the optimal delay time for an interface with a
single wave number.

To understand the shock structure, we consider a
stepped flier plate shown in Fig. 2 (B). The stepped
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flier consisting of heavy (navy) and light (gray) materials
strikes the target (light gray). In addition to the launch-
ing a shockwave into the target, a shockwave propagates
through the stepped flier; this reflects from the heavy
material launching the second shock into the target. We
remark that this 1D x-t diagram is quite a bit simpler
than the 2D RMI picture we have thus far introduced
however we can obtain a surprising amount of insight re-
garding the shock strengths and timing. The classical
jump condition from the balance of momentum (neglect-
ing dissipative effects) is [|p|] — ¢s[|pu|] = 0 , where p is
the pressure, p is the density, and u is the particle ve-
locity. For simplicity, we suppose that at the particle
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FIG. 2. (A) We show cgko and the velocity (normalized by by
unmitigated jet velocity, ve) of the suppressed jet as a func-
tion of properties of the spectral content of the original inter-
face. Spectral character of our experimental samples obtained
via surface profilometry is shown in red. (B) We sketch a no-
tional x-t diagram for an experimental design using stepped
fliers. This shows the propagation of shockwaves through the
stepped flyer. We denote the particle velocities in space-time
regions A and B respectively.

velocities experienced by the target and first flier, the
shock speed c; is nearly constant. Further, we assume
that the changes in density are not too large. With these
assumptions, it is easy to develop explicit expressions for
the particle velocity following the arrival of the first and
second shock. The particle velocity of the first us and
second shock up, respectively, are given by

2
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(7)
where p; and cg; are the density and shock speed of the
ith material indexed from left to right in Fig. 2. If the
constant shock speed or small density change assumption
is omitted, this still may be (analytically) solvable in cer-
tain cases, however the expressions become significantly
more complex. An additional complexity here is that the
topology of the intersecting shock waves in Fig. 2 may
change depending on thicknesses and shock speeds; thus,
the specific expression may actually change. Importantly
though, the behavior of the stepped release velocity is
somewhat robust with respect to these kinds of changes.

We estimate the time delay between the first and sec-
ond shocks as 7 = 2l3/cs2 where Iy is the thickness of
the first-shock flier. Equating this time delay and (4),
we obtain an expression for the thickness lo which will
best suppress the RMI.

We now consider scenarios in which shock-induced
phase transitions can suppress RMI. In such a case, the
material has multiple wave-speeds; the resulting behav-
ior can be complex and difficult to treat analytically.
To make progress, we suppose that there is a single
wavespeed in both the parent and daughter materials.
This is a coarse assumption as in a real material the be-
havior will depend on compression and dissipative effects;
however, it is conceptually powerful and facilitates under-
standing of the suppression mechanism. To have a stable
multi-wave structure, we must have the condition that
the lower pressure phase has a faster wave speed than
the higher pressure phase: ¢§ > ¢3 [20]. If this condition
does not hold, the materials is overdriven and the high
pressure phase shock speed will overtake the low pres-
sure shock. Given a certain sample size [, it is easy to
see that the time delay between the arrival of the first
and second waves is 7 = l(cl_1 — 62_1) . Equating this
with (4), we have a relationship between the length of
the phase transition material and the wavenumber of the
interface. Similar to the preceding stepped flier discus-
sion, we give simple estimates of the release velocity in
the supplemental material. Even in the presence of com-
plicating factors, the qualitative behavior outlined here
will hold suggesting that a combination of experimental
geometry and properties of the phase transition will lead
to the self-suppression of RMI of a specific wavelength.

We now present computational and experimental re-
sults which support the proposed RMI suppression
strategies. For our simulations, we use the high order
production multiphysics code MARBL [21-24]. For tar-
gets simulated here, we have used the equation of state
LEOS 5060 for the PMMA target and SESAME-2140 for
the iron target. For the iron target, we used an elastic-
linearly-plastic model with yield strength of 65 MPa and
with a linear hardening coefficient of 10 GPa; we remark
that this is an exceptionally simple model and discrep-
ancies between the simulation and the experiment are

likely attributable to real complexities in the hardening
behavior. The first simulation in Fig. 3 (A) is driven by
a double shock well matched by our theory to the groove
size and the second is a control case with a single shock
selected to drive a free flat surface to the same particle
velocity as the double shock case. Evidently, the suppres-
sion is very strong with the jet length arresting following
passage of the second shock in contrast to a standard
shock loading where the jet continues to grow linearly.
In the case driven by a double shock, the vorticity just
upstream of the forming jet undergoes a precipitous drop
as the second wave passes directly preceding the arrest
of the jetting behavior.

In Fig. 3 (B), jetting varies with groove size for a shock
wave passing through an iron target; iron undergoes a
phase transition from « (BCC) phase to ¢ (HCP) phase at
a pressure of about 13.8 GPa which exhibits a large vol-
ume change yielding the double shock-wave structure in
this case. The analysis of instability suppression is com-
plicated by the fact that the strength of iron is substan-
tial; the yield strength itself will cause the jet to arrest.
We must seek metrics which control for the sensitivity of
arrest length to yield strength and demonstrate the sensi-
tivity to double shock. As shown in [25], in the absence of
a phase transition, one expects the product of asymptotic
jet length times wave-number to exhibit this property;
specifically, it scales like p&2/Y where & is the initial
perturbation velocity and is consequently independent of
scale. In our case, the asymptotic limit of jet length per
wave length shows variation which would not occur in
the absence of a phase transition. We further extend our
analytic approach to include strength following [25] by
adding a constant deceleration leading to a contribution
to the instability growth rate of v, = CkY't/p where C
is a constant of order unity, Y is the flow strength, ¢
is the time since the perturbation reached max velocity,
and p is the density. This is plotted in cyan and, given
the extreme simplicity of the model, agrees quite closely.
We mention that the strain rate will affect the behav-
ior of the jetting as measured by this metric; however,
given the variation in groove sizes considered here, there
is unlikely to be a substantial effect. The arrest length
to wave length ratio decreases substantially as the wave-
length is brought into alignment with the drive-timing
provided by the experimental design. This demonstrates
that the double shock principle, in the context of phase
transitions, suppresses jetting.

We now report the results of two gas-gun experiments
supporting the efficacy of the double shock principle.
These experiments were conducted at Special Technolo-
gies Laboratory on their single-stage gas gun. The ba-
sic fact that we wish to exploit is that for a given two
shock structure the amplitude growth rate should de-
pend, according to our simple theory, on the wave num-
ber. Thus, we specifically design dynamic experiments
with two grooves, one matching the drive and one signif-
icantly different where the jetting structure is preserved.

Experiment 1 used a 39 mm diameter stepped flier



(4mm thick tantalum back plate and 2.6 mm thick
PMMA front) launched at 2.3 mm/us at a 2mm thick
PMMA target with a 0.6 mm deep 90 degree groove
and a 2.4 mm deep 90 degree groove. Experiment 2
used a 38 mm diameter 8mm thick aluminum flier at
= 1.315 mm/ps striking a 6 mm iron target with 0.6 and
2.4 mm deep 90 degree grooves. In both cases, the ex-
periments are designed so that jetting from the smaller
groove should be suppressed and jetting from the larger
groove will not be well suppressed.

In Fig. 4, we show radiographs (left) of the static and
dynamic radiographs of the two experiments as well as
the velocimetry data (right) for the two experiments. In
the upper left of Fig. 4, the double shock experiment
shows that the smaller groove (the groove well-matched
to be suppressed) exhibits a strongly suppressed jet while
the larger groove exhibits a standard jet. We remark that
the smaller groove exhibits small secondary jets on the
sides of the original grooves; we have observed that this
occurs when the second shock arrives a little bit after
optimal timing. Experiment 2 in the lower left of Fig. 4
shows that the jetting from the smaller groove is com-
pletely suppressed whereas the larger groove still exhibits
some jetting.
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FIG. 3. Simulations are shown for (A) a stepped flyer and
(B) an iron target driven by shock loading through the phase
transition. In (A), the solid lines are from the double shock
and the dashed lines are from the control case with a single
shock selected to drive the target to an equivalent particle
velocity. The asymptotic velocity of the planar free surface is
virtually identical while in the double shock case, the devia-
tion from planarity due to interface evolution is dramatically
reduced. In (B), the groove size in an iron target is varied
and the small groove is well-matched to the resulting double
shock; evidently, the jet is minimized in this case. The theory
is plotted in cyan and agrees well.

The simulations agree well with the experimental ve-
locimetry with very simple models and no tuning of mate-
rial specific parameters. In particular, we point out that
the late time velocities for the small groove and the flat
surface are nearly identical while the large groove veloc-
ity remains much higher. This demonstrates suppression
of jetting from the smaller groove as, in the absence of a
well-tuned double shock drive, the velocities of the two
groove measurements should be nearly identical.
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FIG. 4. Experimental radiographs for an experiment exam-
ining experiment 1 (top left), a stepped flyer, and for experi-
ment 2 (bottom left), a phase transition in iron. We compare
simulated velocity traces (solid lines) directly to experimen-
tal velocimetry data (dashed lines) and theoretical asymptotic
velocity (dash-dot lines) for experiment 1 (top right) and ex-
periment 2 (bottom right). X-ray images are taken 5 us fol-
lowing impact. The experimental velocimetry measurements
are shown in dashed lines and the simulated velocity histories
are shown in solid lines. The jet suppression is substantial for
grooves which are well matched to the double shock.

The results presented in this letter suggest that the
double shock jetting suppression principle can be suc-
cessfully applied in practice. In future studies, we sug-
gest that full-field radio-graphic measurements should be
made to examine in detail complex, non-sinusoidal inter-
faces. We suspect that a generalization to large numbers
of shocks is possible, that the concept will carry over
readily to curved interfaces though some of the details of
the derivation will change, and that this approach could
be applied to jetting suppression in ICF.
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