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Current laser-interferometric gravitational wave detectors suffer from a fundamental limit to their
precision due to the displacement noise of optical elements contributed by various sources. Several
schemes for Displacement-Noise Free Interferometers (DFI) have been proposed to mitigate their
effects. The idea behind these schemes is similar to decoherence-free subspaces in quantum sensing
i.e. certain modes contain information about the gravitational waves but are insensitive to the
mirror motion (displacement noise). In this paper, we derive quantum precision limits for general
DFI schemes, including optimal measurement basis and optimal squeezing schemes. We introduce a
triangular cavity DFI scheme and apply our general bounds to it. Precision analysis of this scheme
with different noise models shows that the DFI property leads to interesting sensitivity profiles and
improved precision due to noise mitigation and larger gain from squeezing.

Introduction— Quantum metrology studies funda-
mental precision limits in physical measurements im-
posed by quantum physics. Recent progresses in this field
have led to formulation of precision limits for a variety of
sensing devices: gravitational wave (GW) detectors [1–8],
magnetometers [9, 10], atomic clocks [11–14], nano-NMR
[15–19], etc.

We focus here on optomechanical sensors and laser in-
terferometers. These platforms have emerged as the pri-
mary instruments for the detection of GWs, with suc-
cessful observations conducted by several of these de-
tectors [20–24]. They are, however, severely limited by
noise sources that displace the mirror positions in the
interferometer: thermal noise, Radiation Pressure Noise
(RPN), seismic noise, and Newtonian gravity noise [25–
29]. These noises are in particular dominant in the low-
frequency regime (< 10 Hz), thus limiting the sensitivity
at this range and preventing detection of various signals
such as intermediate-mass black holes, young Neutron
Stars, extreme mass ratio in-spirals, etc. Circumventing
displacement noise is thus an outstanding challenge for
GW detection and optomechanical sensors in general.

Interestingly, the coupling of light fields to GW signals
is different from their coupling to mirror displacement,
i.e. GW information is accumulated along the optical
path, unlike displacement noise which is only introduced
at the mirrors. This observation has led to proposals of
interferometers wherein displacement noise can be can-
celed while not losing the GW signal [30]. This approach
is referred to as Displacement-noise Free Interferometry
(DFI).

DFI for laser interferometry was originally pro-
posed using a simplified system and later expanded to
more complex systems such as speed meters and 3D-
interferometers [31–36]. A similar approach for laser
phase noise cancellation has also been proposed for LISA
using Time Delay Interferometry [37–39]. However, DFI
systems with requisite sensitivities remain elusive. Fur-

thermore, a rigorous study of the quantum precision lim-
its of these interferometers has not been conducted.

In this paper, we use quantum metrology techniques
to derive general precision limits, optimal measurements,
and optimal squeezing quadratures for DFI schemes. We
develop a triangular cavity DFI scheme, which combines
resonance power amplification and DFI, and apply our re-
sults to analyze it. In addition to the improved sensitivity
at low frequencies, we observe interesting effects that mo-
tivate the use of DFI and multichannel interferometers.
We identify pseudo displacement-free subspaces, i.e. sub-
spaces that are displacement-free for a limited range of
frequencies. These subspaces lead to unexpected sensi-
tivity profiles and further noise suppression. Lastly, we
study the effect of squeezing and show that DFI increases
the sensitivity gain from squeezing in the high displace-
ment noise regime.

Formalism and Model— Previous DFI schemes
used several Mach-Zender interferometers [31, 32]. How-
ever, these interferometers did not incorporate cavity res-
onance to amplify the power and sensitivity. Here, we
propose a scheme that combines DFI with cavity reso-
nance gain: an equilateral triangular cavity with three
mirrors, six input local-oscillator fields and six outputs.
The six fields circulate inside the cavity - split between
the clockwise and anti-clockwise directions. The scheme
and suggested parameters are described in fig. 1. This tri-
angular cavity yields power amplification: given identical
mirrors transmissivities (T ), the ratio between the intra-
cavity power and the total input power is: T

3(1−
√
1−T)

2 .

We will show that this scheme is indeed a DFI. The in-
tuition for this is simple: the displacement noise is gener-
ated by the three mirrors and induced on the six output
fields. Since the number of mirrors is smaller than the
number of output fields, we have modes that are decou-
pled from this noise and enable the DFI. This approach
is formulated below.
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FIG. 1. Sketch of the DFI scheme: a symmetric triangular
cavity is formed by three mirrors and six input laser fields.
Six detectors are placed in the opposite direction of the input
fields. The configuration leads to both a clockwise and an
anti-clockwise circulating field within the cavity. We used the
following parameters: Arm length: L = 4 km, Laser wave-
length: 1064 nm (same as advanced LIGO [40]). Mirrors
mass: 5 kg, Intracavity Power: 3.5 MW (to enhance RPN for
illustrations). Power transmissivity of the mirrors: T = 0.1.

We use a general formulation that holds for any system
with n mirrors and k fields, such that k > n. The system
is described using the input-output formalism [41, 42]
and we denote the quadrature operators of the input and

output fields as Q̂in =

(
â1
â2

)
, Q̂out =

(
b̂1

b̂2

)
respec-

tively. â1, b̂1 are the k-dimensional vectors of amplitude
quadratures, and â2, b̂2 are the k-dimensional vectors of
phase quadratures. These quadratures satisfy the stan-

dard commutation relations:
[(

Q̂out

)
l
,
(
Q̂out

)
k

]
= Jl,k

with J = i

(
0 1k

−1k 0

)
(same for Q̂in). The noisy dis-

placement of the mirrors is denoted as {∆xi}ni=1 , and
the amplitude of the GW polarization vector is given by

h = (h+, h×)
T
. The input-output relations in the fre-

quency domain are then:

Q̂out (Ω) = M (Ω) Q̂in (Ω)+V (Ω)h (Ω)+A (Ω)∆x (Ω) .
(1)

Ω = 2πf is the angular frequency, hereafter this notation
will be suppressed, M, A, V are the transfer matrices of
the input modes, displacement noise, and the GW vector
respectively. Accordingly, these are 2k × 2k, 2k × n,
and 2k× 2 dimensional matrices, that take the following
general form (assuming carrier frequency is resonant with
the arm length):

M =

(
Mint 0
M21 Mint

)
, A =

(
0

Aph

)
,

V =

(
0

Vph

)
=

(
0 0

V+,ph V×,ph

)
.

(2)

Mint is a k × k unitary interferometer transfer matrix
and M21 is a k × k coupling matrix between the ampli-
tude and phase quadratures due to Radiation Pressure
Noise (RPN). A,V act only on the phase quadratures,

with their support being Aph(k × n dimensional), Vph

(k× 2 dimensional). Vph consists of two column vectors:
V+,ph,V×,ph, these are k-dimensional transfer vectors of
h+, h× respectively. A detailed description of how to
calculate these transfer matrices can be found in refs.
[42, 43].
We are now poised to define the Displacement Free

Subspace (DFS): this is the space of phase quadratures of

the form: u·b̂2 with u ∈ ker
(
A†

ph

)
. Since u†Aph∆x = 0,

these quadratures are decoupled from the displacement
noise term in eq. (1) and thus resilient to this noise.
Thinking of the phase quadratures as k-dimensional col-

umn vectors, the DFS is then the kernel of A†
ph. We de-

note this subspace and its projection operator as MDFS

and ΠDFS respectively. The orthogonal complement of
the DFS is the coupled subspace, it is the linear span of
the column vectors of Aph. This subspace and its projec-
tion operator are denoted as MC and ΠC respectively.

Since A†
ph is an n × k dimensional matrix, a sufficient

condition for the existence of DFS is k > n, i.e. more
fields than mirrors.
Quantum precision limits— Our figure of merit is

the minimal detectable GW amplitude in any given po-
larization. With our interferometer, the dominant polar-
ization is approximately h+, hence the figure of merit is
the standard deviation in estimating h+, we denote it as
σ and refer to it as the Standard Deviation (SD) or the
sensitivity. This reduces the problem to a single param-
eter estimation of h+, where the sensitivity is calculated
below using the Cramér-Rao Bound.
According to the Cramér-Rao Bound, given a specific

readout scheme with outcomes distribution {p (x)}x , the
variance, σ2, of any unbiased estimator of h+ satisfy:

σ2 ≥ F−1, with F = ⟨
(
∂h+ ln (p)

)2⟩ being the Fisher
Information (FI) and this inequality is tight [44].
In the quantum context, further optimization over the

detection schemes yields the Quantum Fisher Informa-
tion (QFI), denoted as I, [45] such that for any readout
scheme σ2 ≥ I−1.
In our case the QFI has a particularly simple form

[8, 46, 47]:

I = 2
(
∂h+dq

)†
Σ−1

q

(
∂h+dq

)
, (3)

where dq and Σq are the mean vector and covariance

matrix of Q̂out respectively:

dq = ⟨Q̂out⟩, Σq = ⟨Q̂outQ̂
†
out⟩ − ⟨Q̂out⟩⟨Q̂†

out⟩. (4)

This simple form is because the output modes are in
Gaussian state, and information about h is encoded only
in the dq.
From eqs. (1) and (2) we observe that ∂h+dq = V+,

with V+ =
(
0 V+,ph

)T
, and that Σq = MΣiM

† +

AΣ∆xA
†, where Σi, Σ∆x are the covariance matrices of

the input quadratures and the displacement noise ∆x
respectively. Assuming the input state is vacuum and the
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displacement noise is Gaussian i.i.d.: ∆x ∼ N
(
0, 1

2δ
21

)
,

the covariance matrix is then Σq = 1
2

(
MM† + δ2AA†) ,

and the QFI reads:

I = 4V†
+

(
MM† + δ2AA†)−1 V+. (5)

In eq. (5), the RPN is included in the MM† term, and
the rest of the displacement noise is encoded by the ad-
ditional AA† term. The shot noise limit is obtained by
nullifying the RPN and the displacement noise i.e. M is

unitary and δ = 0, which yields: I = 4V†
+V+. This limit

serves as an upper bound to any noisy QFI scenario.
The QFI (eqs. (3) and (5)) is attainable with a ho-

modyne measurement of the quadrature
(
Σ−1

q V+

)
· Q̂out

[43, 48]. Our sensitivity curves will therefore correspond
to either the QFI, i.e. the SD with an optimal measure-
ment: σ = 1/

√
I, or to the FI with a specific homodyne

measurement: σ = 1/
√
F .

Precision limits of the simplified model— We
begin with a simplified model to develop an understand-
ing of the DFI method. The simplified model is devoid
of RPN, i.e. M is unitary, and the displacement noise is
taken to be a white noise, i.e. δ (Ω) is constant. The QFI
is therefore:

I = 4V†
+

(
1 + δ2AA†)−1 V+. (6)

The sensitivity for different levels of δ, ranging from
the shot noise limit (δ = 0) to infinite displacement noise
(δ → ∞), is presented in fig. 2 (a). The DFI property
is manifested in the fact that as δ → ∞ the standard
deviation remains finite, denoted by the black line in fig. 2
(a). We thus have finite noise in GW detection even in
the presence of infinite displacement noise.

To understand the behavior of the sensitivity, we note
that the QFI can be decomposed as:

I = FC + FDFS

= 4V†
+ΠC

(
1 + δ2AA†)−1

ΠCV+ + 4V†
+ΠDFSV+.

(7)

The first term (FC) is the information from the coupled
subspace and the second term (FDFS) is the information
from the DFS.

In the infinite displacement noise limit (δ → ∞), the
first term, FC , vanishes and thus the QFI in this limit is:

Iδ→∞ = 4V†
+ΠDFSV+;

i.e. we get information only from the DFS. As f → 0
this standard deviation diverges, indicating that in this
regime ΠDFSV+ → 0. For finite δ (dashed lines in fig. 2

(a)), the QFI converges to I ≈ 4 1
δ2V

†
+

(
AA†)−1 V+ at

low frequencies, and thus σ grows as δ in this limit.
Furthermore, using eq. (7) we can quantify the ef-

fectiveness of the DFI with the following coefficient:
η = FDFS

FDFS+FC
, i.e. the fraction of the information that
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δ→∞
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FIG. 2. (a) precision limits with the simplified model. The
SD, σ, as a function of frequency for different levels of dis-
placement noise (δ) (eq. (6)). The DFI property is manifested
in the fact that σ is finite in the limit of infinite displacement
noise (solid black curve). (b) Precision limits with realistic
noise profiles: Given RPN alone, by measuring the optimal
quadratures (eq. (8)) the QFI (black dashed line) coincides
with the shot noise limit (solid yellow line). On the other
hand, measuring the (non-optimal) phase quadratures, yields
the solid blue (circles) line (eq. (9)). Similarly, given both
RPN and thermal noise, measuring the phase quadratures
yields the solid red (rectangles) line. Inset: Comparison be-
tween the phase quadratures FI (solid red line) and the QFI
(black dashed line) in the presence of thermal noise and RPN.

comes from the DFS. It will be shown that η has an op-
erational meaning as the gain from squeezing in the limit
of large displacement noise.

Precision limits with realistic noise profiles—
Let us now consider the sensitivity with realistic thermal
noise and RPN. We begin by analyzing the effect of RPN
alone and then study the combination of the two noises.

The effect of RPN is given by a non-unitary M, i.e.
non-zero M21 matrix (eq. eq. (2)). We assume that the
mirrors are free masses, hence M21 ∝ 1

mΩ2 , where m is
the mass of the mirrors. This typically leads to a sensi-
tivity profile that scales as Ω−2 [7, 8].

The QFI, in this case, saturates the shot noise limit
(black dashed line in fig. 2 (b)), i.e. RPN is completely
removed by measuring an appropriate choice of quadra-
tures. This is a generalization of the optimal frequency-
dependent readout introduced in ref. [2, 49]. Specifically,
the k quadratures given by the column vectors of the ma-
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FIG. 3. Effect of squeezing: (a) Performance with squeezing in the simplified model. Dashed lines correspond to SD (σ) with
squeezing and solid lines to unsqueezed . For white displacement noise, squeezing becomes not effective at lower frequencies as
can be also observed from the plot of η in the inset. (b) Performance with squeezing given thermal noise and RPN. The solid
(dashed) line corresponds to unsqueezed (optimally squeezed) SD with phase quadratures measurement. Inset: ηgain (red dots)
and η (green line) as a function of frequency. (c) The SD with optimal squeezed input and optimal measurement (blue curve,
circles) compared to the SD with the same squeezed input but a readout combination that maximizes the signal (red curve,
squares).

trix:

Tdec =

(
−MintM

†
21

1

)
(8)

are decoupled from RPN and homodyne measurement of

the corresponding k operators, T †
decQ̂out, saturates the

QFI and the shot noise limit.
Measuring these optimal quadratures is experimentally

challenging, the standard and simple readout quadra-
tures are the phase quadratures. Phase quadratures how-
ever are not decoupled from RPN and measuring them
yields the following FI [43]:

F = 4V†
+,ph

(
1 +M21M

†
21

)−1

V+,ph, (9)

This expression is analogous to the QFI of the sim-

plified model (eq. (6)), where the term M21M
†
21 is the

displacement noise caused by RPN. It can be shown that
M21 = AphDx, where Dx is the transfer matrix of the
amplitude quadratures to the displacement of the mirrors
[43]. The DFS is therefore decoupled from this noise. The
corresponding sensitivity is presented in the solid blue
line (circles) of fig. 2 (b), where we observe an interest-
ing behavior: unlike the conventional sensitivity curves,
it does not diverge uniformly as 1/Ω2 [50], instead there
is a range of frequencies where the divergence stops. This
plateau is due to a pseudo-DFS, a subspace that is imper-
vious to displacement noise in this range of frequencies.
Let us further elaborate on this.

In our triangular cavity scheme the phase quadratures
can be decomposed to three orthogonal eigenspaces of the
covariance matrix: Mmin⊕Mmax⊕MDFS, where Mmin⊕
Mmax is a decomposition of MC to eigenspaces with min-
imal and maximal eigenvalues respectively. Since these
are eigenspaces of the covariance matrix, the FI is a sum
of the FI’s achieved with each one of them separately, i.e.:

F = Fmin + Fmax + FDFS. For different frequencies, dif-
ferent subspaces are dominant, this accounts for the non-
uniform divergence. The plateau appears when Fmin be-
comes dominant. Mmin is immune to displacement noise
in this range of frequencies, i.e. it is an eigenspace of

M21M
†
21 with an eigenvalue that is much smaller than

shot noise, hence the plateau. This is discussed further
in the supplemental.

Let us now consider thermal noise as well. The thermal
noise is modeled as ∆x ∼ N

(
0, 1

2δ
21

)
, where δ2(Ω) =

2.7 · 10−30/f5 m2/Hz [51]. Hence, the effect of thermal
displacement noise is similar to the simplified model with
a frequency-dependent δ.

In the presence of both RPN and thermal displace-
ment noise, the optimal measurement quadratures are
the quadratures of eq. (8), which are decoupled from
RPN. Hence RPN is completely canceled and we are left
only with the thermal noise. The QFI thus takes the
form of eq. (6) with a frequency-dependent δ. A plot of
the corresponding sensitivity is presented in the inset of
fig. 2.

Measuring the phase quadratures,
RPN is not canceled and the FI reads:

4V†
+,ph

(
1+M21M

†
21 + δ2AphA

†
ph

)−1

V+,ph. The

plot of the corresponding sensitivity profile (red solid
line) and a comparison with the QFI (black dashed line)
is presented in the inset of fig. 2 (b). Three different
regimes can be observed in the plot, that correspond
to three eigenspaces of the covariance matrix. For low
enough frequencies, the DFS becomes dominant and the
SD diverges as f−2, instead of f−5/2. Before that, there
is an intermediate regime where Mmin is dominant and
a short plateau exists. The comparison in fig. 2 (inset)
between the phase quadratures FI and the QFI shows
that they coincide at low frequencies where the thermal
noise is dominant but the QFI clearly outperforms the
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phase quadratures FI at intermediate frequencies where
RPN is dominant.

Effect of squeezing— We summarize the opti-
mal squeezing schemes and sensitivities with squeez-
ing. Given a squeezing factor of e−r the optimal

QFI is: 4V†
+,ph

(
e−2r

1+ δ2AphA
†
ph

)−1

V+,ph, it can

be achieved with squeezing of the phase quadratures
and measuring the optimal quadratures of eq. 8.
For phase quadratures measurement, the optimal FI

is: 4V†
+,ph

(
e−2r

(
1+M21M

†
21

)
+ δ2AphA

†
ph

)−1

V+,ph,

achievable by squeezing the optimal quadratures. These
optimal squeezing quadratures and sensitivity bounds are
derived in the supplemental.

The performance of the squeezed schemes, and com-
parison with the unsqueezed case, is shown in fig. 3. Ob-
serve that the gain from squeezing is not uniform and
depends on the effectiveness of the DFI, i.e. on η. We

can define the gain from squeezing as ηgain =
Fsq/F−1
e2r−1 ,

where Fsq(F ) is the FI with(out) squeezing. Clearly
0 ≤ ηgain ≤ 1, where 0 corresponds to no gain and 1 to
maximal gain. We show in the supplemental that in the
limit of large displacement noise ηgain = η, hence ηgain
equals the fraction of information coming from the DFS.
This is illustrated in the insets of fig. 3. DFI is therefore
necessary to gain from squeezing in the presence of large
displacement noise. The improvement introduced by DFI
is summarized in fig. 3 (c) where we compare the sensitiv-
ity with squeezed input given different readout combina-
tions: a combination that maximizes the signal and the
optimal combination that saturates QFI. The sensitivity

with optimal combination considerably outperforms the
sensitivity with maximal-signal combination at low fre-
quencies due to two DFI properties: better scaling with f
(f−2 compared to f−2.5), and larger gain from squeezing.

Extensions and conclusions— The supplemental
contains extensions of this triangular scheme to n−gons
with n mirrors. Such polygon schemes may lead to fur-
ther sensitivity improvement. The supplemental contains
also an analysis of the Sagnac noise, i.e. a phase shift due
to rotation. We show that the resulting sensitivity loss
is small.

To conclude, we developed new DFI schemes and de-
rived general quantum precision limits, optimal measure-
ments, and optimal squeezing quadratures.

There are still several challenges and open questions.
The main challenge is to incorporate suppression of laser
noise in this architecture. The laser noise must be corre-
lated between the different ports and the challenge is to
engineer such correlation. Other challenges include fur-
ther optimization over the architecture and considering
also detuning.
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Demkowicz-Dobrzański. The quantum allan variance.
New Journal of Physics, 18(8):083035, 2016.

[14] Raphael Kaubruegger, Denis V Vasilyev, Marius Schulte,
Klemens Hammerer, and Peter Zoller. Quantum varia-
tional optimization of ramsey interferometry and atomic
clocks. Physical Review X, 11(4):041045, 2021.

[15] Simon Schmitt, Tuvia Gefen, Felix M Stürner, Thomas
Unden, Gerhard Wolff, Christoph Müller, Jochen
Scheuer, Boris Naydenov, Matthew Markham, Sebastien
Pezzagna, et al. Submillihertz magnetic spectroscopy
performed with a nanoscale quantum sensor. Science,
356(6340):832–837, 2017.

[16] Jens M Boss, KS Cujia, Jonathan Zopes, and Christian L
Degen. Quantum sensing with arbitrary frequency reso-
lution. Science, 356(6340):837–840, 2017.

[17] Nati Aharon, Amit Rotem, Liam P McGuinness, Fedor
Jelezko, Alex Retzker, and Zohar Ringel. Nv center based
nano-nmr enhanced by deep learning. Scientific reports,
9(1):1–11, 2019.

[18] D Cohen, T Gefen, L Ortiz, and A Retzker. Achieving the
ultimate precision limit with a weakly interacting quan-
tum probe. npj Quantum Information, 6(1):1–7, 2020.

[19] Simon Schmitt, Tuvia Gefen, Daniel Louzon, Chris-
tian Osterkamp, Nicolas Staudenmaier, Johannes Lang,
Matthew Markham, Alex Retzker, Liam P McGuinness,
and Fedor Jelezko. Optimal frequency measurements
with quantum probes. npj Quantum Information, 7(1):
1–8, 2021.

[20] Benjamin P Abbott, Richard Abbott, TDe Abbott,
MR Abernathy, Fausto Acernese, Kendall Ackley, Carl
Adams, Thomas Adams, Paolo Addesso, RX Adhikari,
et al. Observation of gravitational waves from a binary
black hole merger. Physical review letters, 116(6):061102,
2016.

[21] Benjamin P Abbott, Rich Abbott, TDea Abbott, Fausto
Acernese, Kendall Ackley, Carl Adams, Thomas Adams,
Paolo Addesso, RX Adhikari, Vaishali B Adya, et al.
Gw170817: observation of gravitational waves from a bi-
nary neutron star inspiral. Physical review letters, 119
(16):161101, 2017.

[22] BP Abbott, Richard Abbott, TDea Abbott, S Abraham,
F Acernese, K Ackley, C Adams, RX Adhikari, VB Adya,
Christoph Affeldt, et al. Gwtc-1: a gravitational-wave
transient catalog of compact binary mergers observed by
ligo and virgo during the first and second observing runs.
Physical Review X, 9(3):031040, 2019.

[23] R Abbott, TD Abbott, S Abraham, F Acernese, K Ack-
ley, A Adams, C Adams, RX Adhikari, VB Adya,
Christoph Affeldt, et al. Gwtc-2: compact binary coa-
lescences observed by ligo and virgo during the first half
of the third observing run. Physical Review X, 11(2):
021053, 2021.

[24] R Abbott, TD Abbott, F Acernese, K Ackley, C Adams,
N Adhikari, RX Adhikari, VB Adya, C Affeldt, D Agar-

wal, et al. Gwtc-3: compact binary coalescences observed
by ligo and virgo during the second part of the third ob-
serving run. arXiv preprint arXiv:2111.03606, 2021.

[25] Peter R Saulson. Terrestrial gravitational noise on a grav-
itational wave antenna. Physical Review D, 30(4):732,
1984.

[26] Scott A. Hughes and Kip S. Thorne. Seismic gravity-
gradient noise in interferometric gravitational-wave de-
tectors. Phys. Rev. D, 58:122002, Nov 1998. doi:
10.1103/PhysRevD.58.122002. URL https://link.aps.

org/doi/10.1103/PhysRevD.58.122002.
[27] Jennifer C. Driggers, Jan Harms, and Rana X. Ad-

hikari. Subtraction of newtonian noise using optimized
sensor arrays. Phys. Rev. D, 86:102001, Nov 2012. doi:
10.1103/PhysRevD.86.102001. URL https://link.aps.

org/doi/10.1103/PhysRevD.86.102001.
[28] Jan Harms. Terrestrial gravity fluctuations. Living re-

views in relativity, 18:1–150, 2015.
[29] Aaron Buikema, Craig Cahillane, GL Mansell, CD Blair,

R Abbott, C Adams, RX Adhikari, A Ananyeva, S Ap-
pert, K Arai, et al. Sensitivity and performance of the
advanced ligo detectors in the third observing run. Phys-
ical Review D, 102(6):062003, 2020.

[30] Seiji Kawamura and Yanbei Chen. Displacement-noise-
free gravitational-wave detection. Physical review letters,
93(21):211103, 2004.

[31] Yanbei Chen and Seiji Kawamura. Displacement-and
timing-noise-free gravitational-wave detection. Physical
review letters, 96(23):231102, 2006.

[32] Yanbei Chen, Archana Pai, Kentaro Somiya, Seiji Kawa-
mura, Shuichi Sato, Keiko Kokeyama, Robert L Ward,
Keisuke Goda, and Eugeniy E Mikhailov. Interferometers
for displacement-noise-free gravitational-wave detection.
Physical review letters, 97(15):151103, 2006.

[33] Atsushi Nishizawa, Seiji Kawamura, and Masa-aki Sak-
agami. Resonant speed meter for gravitational-wave de-
tection. Physical review letters, 101(8):081101, 2008.

[34] Keiko Kokeyama, Shuichi Sato, Atsushi Nishizawa, Seiji
Kawamura, Yanbei Chen, and Akio Sugamoto. Devel-
opment of a displacement-and frequency-noise-free inter-
ferometer in a 3d configuration for gravitational wave
detection. Physical review letters, 103(17):171101, 2009.

[35] Yan Wang. Octahedron configuration for a displacement
noise-canceling gravitational wave detector in space.
In First-stage LISA Data Processing and Gravitational
Wave Data Analysis, pages 139–174. Springer, 2016.

[36] Atsushi Nishizawa, Shoki Iwaguchi, Yanbei Chen, Taigen
Morimoto, Tomohiro Ishikawa, Bin Wu, Izumi Watan-
abe, Yuki Kawasaki, Ryuma Shimizu, Hirohiko Shimizu,
et al. Neutron displacement noise-free interferometer for
gravitational-wave detection. Physical Review D, 105
(12):124017, 2022.

[37] Glenn De Vine, Brent Ware, Kirk McKenzie, Robert E
Spero, William M Klipstein, and Daniel A Shaddock.
Experimental demonstration of time-delay interferome-
try for the laser interferometer space antenna. Physical
review letters, 104(21):211103, 2010.

[38] Massimo Tinto and Sanjeev V. Dhurandhar. Time-
delay interferometry. Living Reviews in Relativ-
ity, 24, Dec 2020. doi:10.1007/s41114-020-00029-
6. URL https://link.springer.com/article/10.

1007/s41114-020-00029-6.
[39] D. A. Shaddock, B. Ware, R. E. Spero, and M. Val-

lisneri. Postprocessed time-delay interferometry for

https://link.aps.org/doi/10.1103/PhysRevLett.116.030801
https://doi.org/10.1088/1367-2630/16/11/113002
https://doi.org/10.1088/1367-2630/16/11/113002
https://doi.org/10.1088/1367-2630/16/11/113002
https://doi.org/10.1088/1367-2630/16/11/113002
https://doi.org/10.1103/PhysRevD.58.122002
https://doi.org/10.1103/PhysRevD.58.122002
https://link.aps.org/doi/10.1103/PhysRevD.58.122002
https://link.aps.org/doi/10.1103/PhysRevD.58.122002
https://doi.org/10.1103/PhysRevD.86.102001
https://doi.org/10.1103/PhysRevD.86.102001
https://link.aps.org/doi/10.1103/PhysRevD.86.102001
https://link.aps.org/doi/10.1103/PhysRevD.86.102001
https://doi.org/10.1007/s41114-020-00029-6
https://doi.org/10.1007/s41114-020-00029-6
https://link.springer.com/article/10.1007/s41114-020-00029-6
https://link.springer.com/article/10.1007/s41114-020-00029-6


7

lisa. Phys. Rev. D, 70:081101, Oct 2004. doi:
10.1103/PhysRevD.70.081101. URL https://link.aps.

org/doi/10.1103/PhysRevD.70.081101.
[40] Junaid Aasi, BP Abbott, Richard Abbott, Thomas Ab-

bott, MR Abernathy, Kendall Ackley, Carl Adams,
Thomas Adams, Paolo Addesso, RX Adhikari, et al. Ad-
vanced ligo. Classical and quantum gravity, 32(7):074001,
2015.

[41] Carlton M Caves and Bonny L Schumaker. New for-
malism for two-photon quantum optics. i. quadrature
phases and squeezed states. Physical Review A, 31(5):
3068, 1985.

[42] Thomas Corbitt, Yanbei Chen, and Nergis Mavalvala.
Mathematical framework for simulation of quantum fields
in complex interferometers using the two-photon formal-
ism. Physical Review A, 72(1):013818, 2005.

[43] Supplementary material.
[44] Thomas M Cover. Elements of information theory. John

Wiley & Sons, 1999.
[45] Jing Liu, Haidong Yuan, Xiao-Ming Lu, and Xiaoguang

Wang. Quantum fisher information matrix and multipa-
rameter estimation. Journal of Physics A: Mathematical
and Theoretical, 53(2):023001, 2019.

[46] Petre Stoica and Randolph L Moses. Spectral analysis of
signals. Pearson Prentice Hall Upper Saddle River, NJ,
2005.

[47] Rosanna Nichols, Pietro Liuzzo-Scorpo, Paul A Knott,
and Gerardo Adesso. Multiparameter gaussian quantum
metrology. Physical Review A, 98(1):012114, 2018.

[48] Manuel Gessner, Augusto Smerzi, and Luca Pezzè. Mul-
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