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Abstract

Spin textures with various topological order are of great theoretical and practical interests.

Hopfion, a spin texture characterized by a three-dimensional topological order, was recently realized

in electronic spin systems. Here, we show that monochromatic light can be structured such that

its photonic spin exhibits a hopfion texture in the three-dimensional real space. We also provide

ways to construct spin textures of arbitrary Hopf charges. When extending the system to four

dimensions by introducing a parameter dimension, a new type of topological defect in the form of

a monopole loop in photonic spin is encountered. Each point on the loop is a topological spin defect

in three dimensions, and the loop itself carries quantized Hopf charges. Such photonic spin texture

and defect may find application in control and sensing of nanoparticles, and optical generation of

topological texture in motions of particles or fluids.

Topological textures refer to topologically non-trivial distributions of a physical field on

a geometric space [1]. A prominent example of a topological texture is the skyrmion, which

describes a topologically non-trivial distribution of a physical field that can be described by a

unit 3-vector, i.e. a unit vector in three dimensional space, on a spherical surface (S2) [2, 3].

Mathematically, the skyrmion is characterized by the homotopy class of the maps from S2

to S2, as denoted by π2(S
2) [1, 2]. As another example, a hopfion describes a topologically

non-trivial distribution of unit 3-vectors on a three-dimensional spherical hypersurface (S3),

and is characterized by π3(S
2), i.e. the homotopy class of the maps from S3 to S2 [4–7]. The

presence of topological texture is intimately related to the existence of topological defects [1].

For example, a skyrmion texture on a spherical surface implies the existence of a topological

defect inside the spherical surface where the physical field vanishes [8, 9].

The study of topological textures and topological defects plays a prominent role in diverse

physics areas including high-energy [10–12], condensed matter [7, 13–16], and atomic physics

[17]. In particular, the topological textures and topological defects for electronic spins in
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condensed matter systems have been extensively studied in recent years. Both skyrmions

and hopfions have been observed for electronic spins [15, 18, 19]. These topological spin

textures are of fundamental interests since they represent a topologically-nontrivial elemen-

tary excitation, and they are also of practical interests since they may provide a carrier of

information that is robust to perturbations [20, 21].

Inspired by the development in condensed matter physics, there have been emerging

interests in exploring similar topological textures and defects in photonic systems, with

potential applications in sensing and imaging [9, 22–36]. Similar to electrons, photons also

have spin angular momentum. Skyrmion and its associated topological spin defect have been

studied in photonic spin distributions [9, 23–27]. There has not been, however, any work

on hopfion texture in photonic spin. Moreover, the topological defect associated with the

hopfion texture has not been discussed previously in either electronic or photonic systems.

In this Letter, we show that monochromatic electromagnetic wave in real three-dimensional

space can be structured such that its photonic spin distribution form a hopfion texture

(Fig. 1b). The topological property of the hopfion texture is manifested in the integer-

valued Hopf invariant [37], referred as the Hopf charge in the following. We demonstrate the

possibility to construct photonic spin texture with arbitrary Hopf charge. When a certain

parameter is included as a fourth dimension, one may encounter a Hopf defect. Passing

through the defect changes the Hopf charge of the photonic spin texture by one. We note

that hopfion texture have recently been demonstrated in photonics. However, these work

considered polarization [35, 36] or scalar phase [38] that is different from the spin angular

momentum considered here.

The monochromatic electromagnetic field in real 3D space has a spin angular momentum

density vector, defined as [23, 27, 39–46]:

S =
1

4ω
[ϵ0Im(E∗ × E) + µ0Im(H∗ ×H)] (1)

where E andH are respectively complex vectors of electric field and magnetic field, ϵ0 and µ0

are respectively the vacuum permittivity and permeability, and ω is the angular frequency of

the light. Using the spin density vector, one can define a normalized spin vector n = S/|S|

which takes value on the unit sphere S2.

A hopfion texture of photonic spin can be constructed as follows. We consider a monochro-

matic beam propagating in the +z direction. The transverse (x, y) components of the electric
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FIG. 1. Photonic spin hopfion and its creation. (a) Schematic of the structured beam described

by Eq. (5). All beams propagates in the +z direction. The Gaussian beam (dark lines) is a

superposition of the LCP and RCP component. The planewave (gray dashed lines) has right-

circular polarization. (b) The distribution of normalized spin vector n in 3D real space for the

beam configuration in (a). The orientation of the vector is color coded according to the inset on

the top-right. For better visual clarity, the vector here is obtained from the original vector by

dividing Sz by 3 and rescaling such vector to unit length. (c) Lines in real space on which the spin

orientation is constant. The spin orientations and its color are: (1, 0, 0): cyan, (0, 1, 0): purple,

(0,−1, 0): green, and (−1, 0, 0): red.

field can be written as:

Et = u1e
ikz(ex − iey) + u2e

ikz(ex + iey)

= (u1e
−iθ + u2e

iθ)eikzer + (−iu1e
−iθ + iu2e

iθ)eikzeθ (2)

where u1 and u2 are the slowly varying envelope function of right-circular polarization (RCP)

and left-circular polarization (LCP) components, respectively. k = 2π/λ is the wavevector.

λ is the wavelength. ex,y,r,θ are unit vectors along the respective coordinate axis. r and

θ are cylindrical coordinates defined as r =
√

x2 + y2, θ = arctan(y/x). The transverse

components of the magnetic field are:

Ht =
1

Z0

[(iu1e
−iθ − iu2e

iθ)eikzer + (u1e
−iθ + u2e

iθ)eikzeθ] (3)

Z0 is the vacuum impedance. The field in the longitudinal (z) direction is obtained by

4



satisfying the Gauss’s law ∇ · E = 0 and ∇ ·H = 0 to first order [47, 48]:

Ez =
i

kr

[
∂(rEr)

∂r
+

∂Eθ

∂θ

]
Hz =

i

kr

[
∂(rHr)

∂r
+

∂Hθ

∂θ

] (4)

We first analyze a simple example that lead to a hopfion texture. As we will explain

below, various general considerations for creating and engineering such spin texture can be

seen from this simple example. We choose:

u1 = −0.7 + 4.5ug

u2 = 1.5ug

(5)

where ug is the Gaussian beam envelope, given by:

ug(r, θ, z) = −i

√
2zR
λ

1

z − izR
exp

[
ikr2

2(z − izR)

]
(6)

zR is the Rayleigh range of the beam, taken to be 20λ throughout the paper. The constant

−0.7 in u1 represents a planewave component. Such beam configuration is schematically

shown in Fig. 1a, where we superpose the LCP and RCP component with the same Gaussian

profile and represent the beam as elliptically polarized.

The spin texture from such beam configuration is plotted in Fig. 1b. As we will show

below, the spin texture is rotationally symmetric around the z axis. For points on the z axis

or sufficiently far away from the origin, the spin density points to the −z direction. The

former is because the z component of the fields is zero on axis, and the latter is because

ug → 0 sufficiently far from the origin. In the semi-infinite plane of constant θ (refered as

the rz-plane in the following), there is a point r = r0, z = 0 where the spin points to the +z

direction (white arrow in Fig. 1b). In a 2D region on the rz-plane around such point, the

spin forms a skyrmion texture. Such point is referred as the center of the skyrmion below.

As θ vary from 0 to 2π, the skyrmion texture ’co-rotates’ with θ, producing a rotationally

invariant 3D texture, known as a twisted skyrmion loop [49]. One can also trace the position

of a given spin orientation in space (Fig. 1c). Their trajectories form pairwise linked loop,

where the linking number equals the Hopf charge [37, 50]. Such linking behavior and the

twisted skyrmion loop are signatures of a hopfion texture [15, 50].

The spin texture here is defined in 3D real space. Since the planewave component ensures

the spin vector sufficiently far away from the origin approaches the same vector, the 3D real
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FIG. 2. General rules for constructing a photonic spin hopfion. The amplitude (a) and the phase

(b) of the envelope function u1 in Eq. (5). (c) The region where Sz > 0 (white) and Sz ≤ 0

(gray). Circle represents the phase singularity point of f1. Solid dot represents the point where

Sr = Sθ = 0. The spin is purely in +z direction. (d) Emergent magnetic field in the rz plane.

Br and Bz components are shown in purple arrows, and Bθ component is shown in color plot.

Negative Bθ components points out of the paper.

space can be compactified into a 3-sphere S3. The hopfion texture can then be classified by

the homotopy group π3(S
2) = Z, describing topologically distinct classes of maps from S3

to S2 [1, 4, 7, 14, 51]. The Hopf charge, being the topological invariant of this map, is given

by [35, 37, 52]:

Q =

∫
V

A ·Bd3x (7)

Here, B is known as the emergent magnetic field, or skyrmion density, defined as Bi =

1
8π
ϵijkn · (∂jn × ∂kn), where i, j, k denote real space indices [2, 9], and A is the ’vector

potential’ ofB satisfying∇×A = B. Duplicate indices indicate summation. The integration

domain V is the whole 3D space. We note that such expression of Hopf charge has a similar

form with the optical helicity [53] or the magnetic helicity [51], although the physical context

is completely different.

To understand the construction of such spin texture, we plot the amplitude and phase of

the function u1 in Figs. 2a and 2b respectively. We see that near r/w0 ≈ 1 and z = 0, the
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amplitude of u1 goes to zero and its phase shows a vortex around such zero. In contrast,

u2, being a Gaussian envelope, does not have any zeros or phase singularities. The location

of the vortex therefore approximately determines the center of the skyrmion texture in the

rz-plane. This relation between the phase vortex and the skyrmion texture in the rz-plane

underlies our construction of a hopfion texture in this example.

Building upon the understanding of the specific example of Eq. (5), we next discuss the

general criterion for the choice of u1 and u2 in Eq. (2) that leads to a Hopfion texture. We

calculate the spin distribution of a field given by Eqs. (2, 3, 4), using Eq. (1):

Sr =
ϵ0
kω

(Imf1 + Imf2)

Sθ =
ϵ0
kω

(Ref1 − Ref2)

Sz =
ϵ0
kω

(|u2|2 − |u1|2)

(8)

where

f1 = u∗
1

(
−∂u1

∂r
+

i

r

∂u1

∂θ

)
f2 = u∗

2

(
∂u2

∂r
+

i

r

∂u2

∂θ

) (9)

In our general construction criteria, we choose u1 to be a superposition of Laguerre Gaussian

modes [54, 55] with azimuthal index m1 = 0 and a planewave component. We choose u2 to

be a superposition of Laguerre Gaussian modes with the same azimuthal index m2. If we

choose m2 = 0, a small planewave component that is smaller than the planewave component

for u1 may be included in the superposition. We see that Eq. (5) fits into our general

choice here. Under this general choice of u1 and u2, the spin component Sr, Sθ, Sz does not

explicitly depend on θ, since in Eq. (9), all exp (imθ) dependency are cancelled. Therefore

such spin texture is rotationally invariant. If we choose the envelope function u2 to be small

enough, for most of the spatial locations including infinity, |u1| > |u2| and therefore Sz < 0

(gray region in Fig. 2c). In general, u2 is nonzero around the zero of u1. Therefore, around

each zero of u1 we have a finite region where Sz > 0 (white region in Fig. 2c). Each region

contains only one zero of u1 if we choose a sufficiently small u2. If u2 is also sufficiently

slow-varying, we have |f2| ≪ |f1|. Note that if u2 represents a planewave, f2 = 0. When f2

is negligibly small, Sr and Sθ are approximately the imaginary and real part of a complex

function f1, which equals to zero when u1 = 0. At these points, we have the spin inversion

(i.e. spin being completely in the +z direction). Around such zeros of f1, the phase vortex
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leads to a winding in the Sr and Sθ component. Such winding and the spin inversion point

lead to a skyrmion texture in the rz-plane.

Although ideally we require u2 to be sufficiently small and slow-varying, in practice, we

found that u2 being a fraction of the amplitude of u1 (see Eq. (5)) suffices to create a

skyrmion texture in the rz-plane and therefore a hopfion texture in 3D space. In Fig. 2c, we

use ’o’ to represent the zero of f1, and use solid dot to represent the point where Sr = Sθ = 0.

The two points are close in position. In fact, one can view f2 as a small perturbation added

onto f1 that will not destroy the phase singularity, but only shifts it slightly. As long as

the perturbation is small such that the solid dot stays in the region where Sz > 0 (white

region), the skyrmion texture in the rz-plane and hence the hopfion texture in 3D remains.

We numerically calculate the Hopf charge of photonic spin texture (Fig. 1b) for the beam

configuration given by Eq. (5). We first calculate the emergent magnetic field B and then

solve for the A under the gauge choice ∇ ·A = 0. Such calculation can be done conveniently

in the spatial frequency domain [16]. Numerically integrating Eq. (7) indicates a Hopf charge

of +1. This is consistent with the fact that the field lines of B, which is also the line of

constant spin orientation in Fig. 1c, have a positive (right-handed) helicity when going along

the θ direction. This indicates a positive Hopf charge [56]. Any two of the field lines also

has a linking number 1. Therefore, such configuration has a Hopf charge +1.

Due to the correspondence between the phase vortices of u1 and the skyrmion texture

of photonic spin in the rz-plane, one can in fact create photonic spin textures of arbitrary

Hopf charge by engineering the phase vortices of u1. We provide such a construction and

examples in the supplemental material [52].

We now proceed to demonstrate the topological defect that is closely related to such topo-

logical texture, known as the Hopf defect [11, 57]. Hopf defect appears in four dimensions.

Point-like Hopf defects are usually unstable against perturbations. As a result of perturba-

tions, it deforms into a ring, known as the monopole loop [11, 57]. Each point on the loop

is a monopole-like defect in a three dimensional space that does not include the tangential

direction of the loop. When the monopole points form loop in four dimensions, the entire

loop can be regarded as a Hopf defect and carries integer Hopf charges. We illustrate the

formation of monopole loops in the supplemental material [52]. An analogous phenomena

known as disclination ring that occur in 3D space were found in liquid crystals [58] and

systems with non-Hermitian Hamiltonians [59].
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FIG. 3. Photonic spin defect in 3D and 4D spaces. (a) Schematic of the loop that consists of points

of photonic spin defect (gray) in 4D space (x, y, z, w). The upper plane at w = 4.5 has photonic

spin texture in xyz space with Hopf charge +1. The lower plane at w = 0.5 has photonic spin

texture in xyz space with Hopf charge 0. Red and blue dot represent two representative point on

the monopole loop (w = 3.0), and have skyrmion number +1 and −1, respectively. (b) The same

pair of defect points in xyz space. w = 3.0. The spin orientation is constant along each colored

line, with the color scheme the same as Fig. 1c.

One can realize the monopole loop in photonic spin density distribution by introducing

a parameter dimension to be the 4-th dimension. As an example, we introduce a parameter

w by modifying Eq. (5) as:

u1 = −0.7 + wug

u2 = 1.5ug

(10)

When w = 4.5, this is the previously studied case where the spin exhibits a charge 1 hopfion

texture (upper plane in Fig. 3a). When decreasing w to 3.71, a pair of monopole-like

singularities start to appear on the z-axis (Fig. 3a). For such singularities, the spin vanishes

at a specific point in 3D real space. And on a spherical surface around that point the spin has

a skyrmion texture. Such singularities are known as topological spin defect, and are classified

by the skyrmion number of that texture [9]. The skyrmion number is −1 for the blue dot and

+1 for the red dot. This is further illustrated in Fig. 3b. The lines of constant spin, which

are also the emergent magnetic field lines, form a dipole-like structure. Further decreasing

w to 0.71, two spin defect points annihilate each other. Therefore, the defects form a loop

in 4D space. At w = 0.5 < 0.71, the Hopf charge of the spin texture in 3D real space is

zero (lower plane in Fig. 3a). Comparing this case with the case where w = 4.5, we see

that the monopole spin defect loop carries unity Hopf charge and is therefore topologically
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equivalent to a Hopf defect. For spin texture with higher Hopf charge, passing through a

monopole loop also changes the Hopf charge by unity [52]. To the authors’ knowledge, such

monopole loop was not previously discussed in the spin texture of any system.

Our work shows that photon can exhibits a hopfion spin texture. These results certainly

have connections to hopfion spin texture for electrons. But photons and electrons are differ-

ent fundamental particles, and their spin properties have different physical manifestations.

The Stokes vector, a real vector calculated from the local polarization state of light (often

known as pseudo-spin) was also shown recently to form hopfion textures [35, 36]. However,

we point out that the spin density and the Stokes vector are different quantities and there is

no straight forward relation between the polarization Hopf charge and the spin Hopf charge.

In fact, the spin hopfion texture presented above has a zero Hopf charge in its Stokes vector.

We provide more discussion in the supplemental material [52].

We envision that such spin texture can be experimentally measured by analyzing the

scattering from a probe particle [48]. Considering the mechanical effect, the spin density

give rise to a torque to such particles inside the electromagnetic field [9, 41, 60]. Given

that the cross section of a spin hopfion contains skyrmions, the torque on the particle may

be oriented along arbitrary direction by changing the relative position between the beam

and the particle. It is also conceivable to collectively rotate many particles to imprint the

hopfion texture onto their rotation axes, therefore potentially creating topological textures

in the vorticity of a fluid flow [61].

Spin density occurs in many other types of waves, including electron waves [62], acoustic

waves [63], and surface gravity waves [64]. Besides spin, there may be other quantities of

field, such as the linear momentum or the orbital angular momentum, that contribute to

wave-matter interaction [42, 65]. This work points to the potential in engineering topological

textures in spin density and possibly other quantities of various waves.

In summary, we point out that the spin density of monochromatic light can form hopfion

textures. The hopfion texture, which can be viewed as a twisted skyrmion loop, can be

created by engineering the vortices in one of the envelope function of the beam. We provide

examples to construct photonic spin hopfion texture of unity and higher Hopf charges. By

introducing a parameter dimension, we encounter monopole loops as the topological defect

that separates photonic spin texture of different Hopf charges. Such topological defects

and textures may allow new ways of controlling nanoparticles, may be used to generate
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topological texture in the motion of particles or the flow of fluids, and points to the possibility

in engineering topological textures in other types of waves.
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electromagnetic knot in a three-dimensional skyrmion, Science Advances 4, eaao3820 (2018).

[18] S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and

P. Boni, Skyrmion lattice in a chiral magnet, Science 323, 915 (2009).

[19] X. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. Han, Y. Matsui, N. Nagaosa, and Y. Tokura,

Real-space observation of a two-dimensional skyrmion crystal, Nature 465, 901 (2010).

[20] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Current-induced skyrmion dynamics in constricted

geometries, Nature Nanotechnology 8, 742 (2013).

[21] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential

applications, Nature Reviews Materials 2, 1 (2017).

[22] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. Lindner, and G. Bartal, Optical skyrmion

lattice in evanescent electromagnetic fields, Science 361, 993 (2018).

[23] L. Du, A. Yang, A. V. Zayats, and X. Yuan, Deep-subwavelength features of photonic

skyrmions in a confined electromagnetic field with orbital angular momentum, Nature Physics

15, 650 (2019).

[24] X. Lei, A. Yang, P. Shi, Z. Xie, L. Du, A. V. Zayats, and X. Yuan, Photonic spin lattices:

symmetry constraints for skyrmion and meron topologies, Phys. Rev. Lett. 127, 237403 (2021).

[25] X. Lei, L. Du, X. Yuan, and A. V. Zayats, Optical spin–orbit coupling in the presence of

magnetization: photonic skyrmion interaction with magnetic domains, Nanophotonics 10,

3667 (2021).

[26] M. Lin, W. Zhang, C. Liu, L. Du, and X. Yuan, Photonic spin skyrmion with dynamic position

control, ACS Photonics 8, 2567 (2021).

[27] Y. Dai, Z. Zhou, A. Ghosh, R. S. Mong, A. Kubo, C.-B. Huang, and H. Petek, Plasmonic

topological quasiparticle on the nanometre and femtosecond scales, Nature 588, 616 (2020).

[28] T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F.-J. Meyer zu Heringdorf, and H. Giessen,

12



Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution,

Science 368, eaba6415 (2020).

[29] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett, and J. B. Götte,

Paraxial skyrmionic beams, Phys. Rev. A 102, 053513 (2020).

[30] C. Guo, M. Xiao, Y. Guo, L. Yuan, and S. Fan, Meron spin textures in momentum space,

Phys. Rev. Lett. 124, 106103 (2020).

[31] C. Guo, M. Xiao, M. Orenstein, and S. Fan, Structured 3d linear space–time light bullets by

nonlocal nanophotonics, Light: Science & Applications 10, 160 (2021).

[32] Y. Shen, Y. Hou, N. Papasimakis, and N. I. Zheludev, Supertoroidal light pulses as electro-

magnetic skyrmions propagating in free space, Nature Communications 12, 5891 (2021).

[33] Y. Shen, Topological bimeronic beams, Optics Letters 46, 3737 (2021).

[34] Y. Shen, E. C. Mart́ınez, and C. Rosales-Guzmán, Generation of optical skyrmions with

tunable topological textures, ACS Photonics 9, 296 (2022).

[35] D. Sugic, R. Droop, E. Otte, D. Ehrmanntraut, F. Nori, J. Ruostekoski, C. Denz, and M. R.

Dennis, Particle-like topologies in light, Nature Communications 12, 6785 (2021).

[36] Y. Shen, B. Yu, H. Wu, C. Li, Z. Zhu, and A. V. Zayats, Topological transformation and

free-space transport of photonic hopfions, Advanced Photonics 5, 015001 (2023).

[37] J. Whitehead, An expression of Hopf’s invariant as an integral, Proceedings of the National

Academy of Sciences 33, 117 (1947).

[38] C. Wan, Y. Shen, A. Chong, and Q. Zhan, Scalar optical hopfions, eLight 2, 1 (2022).

[39] S. M. Barnett, Rotation of electromagnetic fields and the nature of optical angular momentum,

Journal of modern optics 57, 1339 (2010).

[40] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Extraordinary momentum and spin in evanescent

waves, Nature Communications 5, 3300 (2014).

[41] A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, Transverse spin and momentum in two-wave

interference, Phys. Rev. X 5, 011039 (2015).

[42] K. Y. Bliokh and F. Nori, Transverse and longitudinal angular momenta of light, Physics

Reports 592, 1 (2015).
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