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The phase diagram of an interacting two-dimensional electron system in a high magnetic field is
enriched by the varying form of the effective Coulomb interaction, which depends strongly on the
Landau level index. While the fractional quantum Hall states that dominate in the lower energy
Landau levels have been explored experimentally in a variety of two-dimensional systems, much less
work has been done to explore electron solids owing to their subtle transport signatures and extreme
sensitivity to disorder. Here we use chemical potential measurements to map the phase diagram of
electron solid states in N = 2, N = 3, and N = 4 Landau levels in monolayer graphene. Direct
comparison between our data and theoretical calculations reveals a cascade of density-tuned phase
transitions between electron bubble phases up to two, three or four electrons per bubble in the N=2,
3 and 4 Landau levels respectively. Finite temperature measurements are consistent with melting
of the solids for T≈1K.

In an electron solid, spatial translation symmetry is
spontaneously broken so that the ground state charge
density forms a periodic structure incommensurate with
the underlying crystal lattice. One known example is ob-
tained in high Landau levels (LLs) in two-dimensional
(2D) electron systems. Theoretically, the phase dia-
gram is expected to host a rich interplay of compet-
ing phases[1–9]. A unique feature of electron solids in
higher LLs is that a variable number of electrons may
cluster on each site of the emergent crystal. The for-
mation of the phases—known as “electron bubbles”—is
driven by the structure of the electronic form factors in
the LLs. Electron bubble phases were predicted theo-
retically [1–4] and first identified in the GaAs 2D elec-
tron gas by the observation of re-entrant integer quantum
Hall effect (RIQHE) in transport measurement[10, 11],
in which the crystallized electrons freeze and no longer
contribute to the Hall conductivity. Similar phases are
also expected in graphene[12–14], and recent measure-
ments have confirmed their existence[15, 16]. While the
existence of electron solids is straightforward to confirm
using transport measurements, distinguishing them from
each other to construct a comprehensive phase diagram
is not. To this end, other experimental methods, such
as microwave spectroscopy[17], surface acoustic wave
transmission[18, 19], and tunnelling spectroscopy [20]
have been developed to study vibrating modes related
to the lattice structure of electron solids. More recently,
temperature dependent transport has shown that the
same RIQH state may host more than one bubble phase,
distinguished by different melting temperatures[21–23].
However, a detailed phase diagram of the electron bub-
ble phases across different LLs, long been predicted by

theory, has not been conclusively established.

Measuring thermodynamic properties provides a probe
of quantities directly related to the ground state energy,
offering a chance to map out a complete phase diagram
independent of the detailed transport phenomenology of
the ground state. In this Letter, we use chemical po-
tential measurements [24] to construct just such a phase
diagram for partially filled LLs in monolayer graphene.
Our data demonstrate the existence of multiple distinct
electron bubble phases characterized by different bubble
sizes. By directly comparing our data with mean-field-
theory calculations, we establish a one-to-one correlation
between the filling factor and the electron bubble mor-
phology.

Our measurement is performed in a graphene/hBN
heterostructure assembled using standard dry pickup
techniques[25]. Two graphene monolayers are separated
by an hBN dielectric layer of 40nm thickness, with addi-
tional hBN dielectric and graphite gates forming a four-
plate capacitor geometry. The top graphene serves as a
charge detector, which combined with a feedback loop
allows us to determine changes in chemical potential of
the bottom ‘sample’ graphene accurately[24].

Fig. 1 presents the chemical potential µ measured
across individual LLs with orbital quantum numbers
N = 0, 1, 2, 3, and 4 on the hole carrier side. The
chemical potential is plot as a function of the effective
filling factor, ν∗ ≡ ν − ⌈ν⌉, where ν is the actual fill-
ing factor, and ⌈ν⌉ is the integer part of the filling factor.
The qualitative behavior of µ depends strongly onN . For
N = 0 and N = 1 (Figs. 1a-b) fractional quantum Hall
states are favored, with incompressible states (manifest-
ing here as nearly discontinuous jumps in µ) observed
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FIG. 1. FQH and electron solid states in graphene monolayer probed by chemical potential measurements. (a)
Chemical potential change as a function of effective filling factor, ν∗ ≡ ν − ⌈ν⌉, in the N = 0, (b) N = 1, (c) N = 2, (d)
N = 3, and (e) N = 4 LLs. In the N = 0 and N = 1 LLs, FQH states are observed as jumps in ν at ν∗ = p/(2p ± 1) and
ν∗ = p/(4p ± 1) (p = 1, 2, 3, ...), a selection of which are labeled. For N ≥ 2, broad oscillatory features dominate, which we
associated with electron solids. The N = 2 LL is a marginal case where fractional quantum Hall states and electron bubbles
compete within a narrow range of filling factors. All data measured at B = 13T and T = 15mK.

at filling factors associated with two-flux and four-flux
composite fermion sequences[26]. For ν∗ > −1/5 (or
ν∗ < −4/5) within the N = 0 and N = 1 LL, µ changes
smoothly, showing a large negative inverse compressibil-
ity dµ/dν[27]. This behavior has been identified with
the formation of Wigner crystal states in previous exper-
iments in both GaAs[28, 29] and graphene[24, 30].

For N ≥ 2 (Figs. 1c-e), a qualitatively different be-
havior is observed, with µ dominated by much weaker
oscillatory features that are not associated with any par-
ticular fractional ν. As we elaborate upon below, these
features are signatures of multi-electron bubble states.
Bubble states are generically expected in higher LLs due
to the nature of the single-particle wave functions, which
feature multiple nodes. This form factor considerably
modifies the Coulomb repulsion at short distances, fa-
voring charge-density-wave-type states instead of incom-
pressible fractional quantum Hall states. In the N = 2
LL, our measurement reveals a competition between the
FQH states observed at ν∗ = −1/5 and −4/5 and elec-
tron bubble states, as reported previously[15]. In the
N = 3 and N = 4 LLs, the electron bubble phases are
favored over the entire range of filling factors, manifest-
ing as a slow modulation of µ and dµ/dν, as shown in
2a-b. The number of oscillatory features increases with
N . In the N = 3 and N = 4 LL we observed three and
four pairs of features, related by particle hole symmetry
about ν∗ = −1/2, respectively.

The panels of Fig. 2a-b show dµ/dν measured over a
range spanning several LLs each, grouped by their orbital
quantum number. For the N = 3 orbital (Fig. 2a), the
four curves depicted are acquired in filling factor ranges
corresponding to each of the four symmetry broken levels
spanning −10 < ν < −6. Due to limitations on the range
of the electrostatic gates, for the N = 4 LL (Fig. 2b) only
−12 < ν < −10 is shown. Remarkably, the repetition of
the pattern of µ oscillations across different symmetry-
broken levels indicates that this physics is independent
of the spin and valley order. We may conclude that the
formation of the bubble phases is governed only by single-

component LL physics; as a consequence, the bubbles
are not expected to be accompanied by complex spin or
valley textures as have been shown to play a role in lower
LLs[30, 31].

The energy scale characterizing the bubble phases may
be directly accessed via the temperature dependence,
shown in Fig. 2c-d. Signatures of the bubble phases
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FIG. 2. Electronic compressibility and temperature
dependence of electron bubble phases. (a) dµ/dν∗ in
the N = 3 and (b) N = 4 LLs. The data is obtained via
numerical differentiation of µ measured at 13T and 15mK.
Within each LL, the four symmetry breaking levels are plotted
by blue, red, orange and purple curves with increasing |ν|.
ν0 represents the actual integer filling factor on the left side
of each level. The curves are offset as indicated by the gray
dashed lines. Stars indicate the center of the regions identified
with electron bubble states. (c) Temperature dependence of
electron bubble states in N = 3 and (d) N = 4 LLs, measured
at B = 13T .
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disappear rapidly for T ≈ 1 − 2K in the N = 3 LL,
and below 1K in the N = 4. This is consistent with
the general scale of the chemical potential changes asso-
ciated with these phases, which are on the order of a few
hundred µeV , as well as previously reported transport
data[15]. The order of magnitude of this scale is consis-
tent with simplified Lindemann criterion[32] for crystal
melting, according to which the thermal position fluctu-
ations need to be roughly 15% of the lattice spacing to
make the crystal melt. Within the harmonic approxi-
mation for the crystal, one obtains critical temperatures
in the ∼ 1 K range (see supplementary material). No-
tably, the energy scale of the bubble phases is consid-
erably smaller than that of the fractional quantum Hall
physics in the lower LLs, where gaps (at comparable mag-
netic fields) typically are in the > 10K range.

Theoretically, the ground state of the interacting elec-
tron system in a partially filled high-N Landau level
is expected to evolve through a series of multi-electron
bubble phases, as illustrated in Fig. 3a for the case of
N=4. These crystalline phases can be described within
a mean-field approach as presented in detail in the Sup-
plementary Material. Fig. 3a shows the cohesive en-
ergy per particle for the bubble crystals with M elec-
trons per lattice site as a function of the effective filling
factor ν∗[4]. The cohesive energy is the energy per parti-
cle, from which we have already subtracted the Hartree-
Fock energy of a featureless electronic liquid[9] as well
as the charging energy of the parallel plate capacitor in
which the sample is embedded. For a fixed value of M ,
the energy of the triangular bubble crystals depends on

the spacing ΛB =
√
4πM/

√
3ν∗lB between the bubbles,

which in turn depends on the effective filling ν∗. Here,
lB =

√
ℏ/eB is the magnetic length.

One obtains a family of curves, with minima at po-
sitions described approximately by ν∗ ∼ M/2N . The
M -bubble phase is realized whenever it is lowest in en-
ergy within a a certain filling-factor range. Within a
given Landau level, the maximum stabilized value of M
equals N [2]. Theoretically, one may even stabilize a bub-
ble phase with M = N +1 in the vicinity of a half-filled,
singly-degenerate Landau level (ν∗ ∼ 1/2)[8]. However,
this phase is thought to compete energetically with a
stripe phase; we find no evidence for it in the experimen-
tal data.

Notably, the family of minimum energy curves shown
in Fig. 3b are not convex upon variation of ν∗, a sig-
nature of thermodynamic instability to the formation of
mixed phases in which parts of the sample area are oc-
cupied by crystals with differing number of electrons per
bubble. However, we note that for our experimental ge-
ometry, the variations in internal energy caused by the
bubble phases are dwarfed by the electrostatic energy of
the electron gas. Taking this into account, mixed phases
are only found in a range δν ≈ 2× 10−3 (see supplemen-
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FIG. 3. Cohesive energy for electron bubble states. (a)
Schematic depiction of electron bubble phases in the N = 4
LL. (b) Calculated cohesive energy for the N = 4 LL (see
supplementary information for details). The ground state is
obtained by tracing the lowest energy state at each filling
factor, which is highlighted by colored lines. The color codes
here match those in panel (a).

tary information) in the vicinity of the level crossings
visible in Fig. 3b. In this picture, then, we expect a suc-
cession of pure bubble phases, separated by sharp phase
transitions.

To facilitate comparison between experiment and the-
ory, in Fig. 4a-c, we plot the experimentally measured
µ scaled by the Coulomb energy, Ec = e2/(ϵℓB). Each
panel presents µ measured at different values of the mag-
netic field B for the same LL fillings, with an offset of
0.01EC between curves introduced for clarity. The µ
modulations observed in the curves are almost identical
in these units, as expected given the Coulomb-driven na-
ture of the electron bubble phases. Fig. 4d-f presents the
calculated chemical potential of electron bubble phases
in the N = 2, N = 3, and N = 4 LLs in the absence
of disorder. The solid curves are obtained from the cal-
culated energy per particle E of the M -bubble phases
via µ = ∂ (νE) /∂ν[9]. Note that in these calculations,
we restore the contribution of the featureless background
charge omitted above in the calculation of the cohesive
energy. Our calculations account for screening caused by
both the dielectric environment as well as inter-Landau
level excitations in the graphene[33, 34]. As in the N=0
and N=1 Landau levels[24], accurately accounting for
screening is required for quantitative agreement between
experiment and theory in graphene.

Despite the comparative simplicity of our model, it
agrees quantitatively with the data in the overall scale
of the chemical potential modulation across the Lan-
dau level, as well as in the locations of the various bub-
ble phases, which we identify with positive compressibil-
ity regions for the M >= 2. However, in contrast to
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FIG. 4. Quantitative comparison with theoretical model of electron bubble cascade. (a) µ(ν∗) at several magnetic
fields in the N = 2, (b) N = 3, and (c) N = 4 Landau level. The data at B = 31.5T and 20T were measured at 300mK, while
the data at 13T , 7T , and 5T were measured at 15mK. The chemical potential change is presented in units of the Coulomb

energy Ec = e2

ϵlB
≈ 12.5meV ·

√
B/Tesla. The red, orange, and purple curves are offset by −0.01Ec, −0.02Ec, and −0.03Ec from

the blue curve, respectively. (d) Chemical potential calculated by mean field-theory (solid lines, see supplementary materials)
in the N = 2, (e) N = 3, and (f) N = 4 Landau level. The dashed lines in these panels are chemical potential taking disorder
broadening into account. The pink, blue, purple, and green color bars represent the domain of stability for the M = 1, M = 2,
M = 3, and M = 4 electron bubble phases within the disorder broadened model, respectively. The gray regions represent
broadened phase transitions where neighboring pure electron bubble phases coexist. Panel (a)-(c) use the same color codes to
label the corresponding regions identified by experiments from the sign of the compressibility.

the theoretical model, where the phase transitions are
sharp, in the experimental data the phase transitions
are marked by broad regions of negative compressibil-
ity typically rather than sharp jumps. It is natural to
associate these regions with a mixed phase arising from
disorder potentials. To capture this physics, we convolve
the disorder-free curves with a Gaussian ‘inhomogenous
broadening’ of width ∆ν = 0.015 at 13T . Given the neg-
ligible quantum capacitance in the bubble regime, this
is equivalent to an energy broadening ∆E = 7.5meV .
The dashed curves in Fig. 4d-f show the results of this
model. We use the same color code to label the regions
associated with pure and mixed electron bubble phases in
both experimental and simulation data in the figure; the
disordered model quantitatively reproduces the key miss-
ing feature of the experimental data, replacing the cusps
of the disorder-free model with negative compressibility
regimes as observed experimentally.

We note in closing several open questions raised by our
work. First, while electron solids evidently dominate the
ground states for N > 2, it is likely that they appear in

the lower LLs as well, but are difficult to detect with bulk
methods where their subtle thermodynamic or transport
phenomenology may be overwhelmed by the incompress-
ibility of the fractional quantum Hall states. Second, it
is unclear whether the particular orbital wave functions
of single- and multi-layer graphene may lead to any par-
ticularities in the electron solid ground states as com-
pared to semiconductor systems. Finally, our disorder
model is likely to be gross oversimplification. In partic-
ular, the lack of observed magnetic field dependence in
the sharpness of the phase transitions is at odds with a
model of quenched disorder where the effective broaden-
ing ∆E would be expected to be magnet field indepen-
dent. These and other questions might be directly re-
solved via scanning tunneling microscopy measurements
of the real space structure of these phases[31, 35], as well
as more detailed theoretical modeling that accounts for
the interplay of disorder, finite temperature, and meso-
scopic phase separation.
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[13] M. E. Knoester, Z. Papić, and C. Morais Smith, Physical
Review B 93, 155141 (2016).

[14] C.-H. Zhang and Y. N. Joglekar, Physical Review B 75,
245414 (2007).

[15] S. Chen, R. Ribeiro-Palau, K. Yang, K. Watanabe,
T. Taniguchi, J. Hone, M. O. Goerbig, and C. R. Dean,
Physical Review Letters 122, 026802 (2019).

[16] Y. Zeng, J. I. A. Li, S. A. Dietrich, O. M. Ghosh,

K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean,
Physical Review Letters 122, 137701 (2019).

[17] R. M. Lewis, P. D. Ye, L. W. Engel, D. C. Tsui, L. N.
Pfeiffer, and K. W. West, Physical Review Letters 89,
136804 (2002), publisher: American Physical Society.

[18] M. E. Msall and W. Dietsche, New Journal of Physics
17, 043042 (2015), publisher: IOP Publishing.

[19] B. Friess, Y. Peng, B. Rosenow, F. von Oppen, V. Uman-
sky, K. von Klitzing, and J. H. Smet, Nature Physics 13,
1124 (2017), number: 11 Publisher: Nature Publishing
Group.

[20] J. Jang, B. M. Hunt, L. N. Pfeiffer, K. W. West, and
R. C. Ashoori, Nature Physics advance online publi-
cation (2016), 10.1038/nphys3979.

[21] D. Ro, N. Deng, J. D. Watson, M. J. Manfra, L. N. Pfeif-
fer, K. W. West, and G. A. Csáthy, Physical Review B
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