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We identify emergent hydrodynamics governing charge transport in Brownian random time evo-
lution with various symmetries, constraints, and ranges of interactions. This is accomplished via
a mapping between the averaged dynamics and the low-energy spectrum of a Lindblad operator,
which acts as an effective Hamiltonian in a doubled Hilbert space. By explicitly constructing dis-
persive excited states of this effective Hamiltonian using a single-mode approximation, we provide a
comprehensive understanding of diffusive, subdiffusive, and superdiffusive relaxation in many-body
systems with conserved multipole moments and variable interaction ranges. Our approach further
allows us to identify exotic Krylov-space-resolved diffusive relaxation despite the presence of dipole
conservation, which we verify numerically. Therefore, we provide a general and versatile frame-
work to qualitatively understand the dynamics of conserved operators under random unitary time
evolution.

Introduction. Recent years have seen a surge of inter-
est in the nonequilibrium dynamics of quantum many-
body systems, driven by rapid advancements in quantum
simulation capabilities across diverse physical platforms.
In particular, significant attention has been devoted to
understanding the thermalization process of interacting
many-body systems [1–7]. A vital theoretical tool that
provides key insights into the dynamics of thermalizing
quantum systems is the study of random unitary time
evolution. While retaining analytical tractability, such
methods can successfully capture universal properties of
non-integrable many-body dynamics such as transport,
operator spreading, or entanglement growth [8–16]. In
particular, the application of methods based on ran-
dom unitary evolution has highlighted the importance
of symmetries and constraints in many-body dynamics,
unveiling a rich phenomenology of emergent hydrody-
namics at late times. Recent results range from trans-
port in long-range interacting systems [17–20] to anoma-
lously slow subdiffusion [21–32] or even localization due
to Hilbert space fragmentation in models with kinetic
constraints [33–44].

In this work, we introduce a simple, yet powerful
method to understand the qualitative behavior of late-
time hydrodynamics based on Brownian Hamiltonian
evolution, which can be modeled by Markovian dynam-
ics and thus captured by a Lindblad equation [45–50].
Our approach successfully reproduces results reported in
previous literature and allows us to uncover novel, uncon-
ventional hydrodynamic relaxation in constrained many-
body systems. The key technical step relates dynamical
properties such as the auto-correlation of conserved oper-
ators to the low-energy spectrum of an emergent effective
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FIG. 1. Brownian circuit and effective Hamiltonian.
Mapping (a) random operator dynamics to (b) imaginary-
time evolution by an effective Hamiltonian L in a doubled
Hilbert space. On the left, an operator ρ is evolved by a lo-
cal Hamiltonian Ht ≡

∑
i hidBi,t with Brownian random vari-

able dB. Overlapping blocks for forward/backward evolution
(dark/light) share the same Brownian variable, but all other
Brownian variables are independently drawn from Gaussian
distributions. On the right, we average over random variables
while taking timesteps to zero; this produces imaginary-time
Schrodinger evolution by a Lindbladian operator.

Hamiltonian in a doubled Hilbert space [51, 52]. The low-
energy excitation spectrum of the latter thus dictates the
long-time dynamics of such correlations. Accordingly,
this mapping allows us to utilize well-established tech-
niques in condensed matter physics, such as the single-
mode approximation, to analyze our problem. Here, we
apply this method to various scenarios: We show that
systems conserving U(1) global charge as well as higher
multipole moments exhibit diverse hydrodynamic relax-
ation depending on their symmetries and ranges of in-
teractions. Then, we extend our approach to understand
Krylov-subspace-resolved hydrodynamics, where we un-
cover general conditions under which relaxation is diffu-
sive despite the presence of dipole conservation. We ver-
ify this diffusive relaxation numerically in lattice models
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in both one and two spatial dimensions.
Brownian Circuits. We consider time evolution by

a time-dependent Hamiltonian Ht ≡
∑

i hi dBi,t, defined
via interaction terms hi with hx,λ =hx+1,λ and Brownian
random variables dBt,i at each time slice [t, t+ δ). Here,
the label i=(x, λ) encodes both the spatial support and
operator type of hi. The random variables have vanishing
mean E[dB] = 0 and finite variance E[dB2] = 1/δ.
Under this time evolution, a density matrix ρ(t) evolves

as ρ(t+ δ)≡ e−iHtδρ(t)eiHtδ. Averaging the infinitesimal
time evolution over the random variables, the leading
order operator evolution becomes [53](Sec. B):

E[∂tρ] = −1

2

∑
i

(h2i ρ− 2hiρhi + ρh2i ) = L[ρ], (1)

where L is a superoperator called the Lindblandian.
We now construct an alternative description of the op-

erator dynamics Eq. (1) by employing the Choi isomor-
phism, a mapping from an operator acting on the Hilbert
space H to a state defined on the doubled Hilbert space
Hu ⊗ Hl, where subscripts u, l are introduced to dis-
tinguish two copies of H. For a given operator O, the
mapping reads O 7→ ∥O⟩⟩≡∑

i |i⟩ ⊗
(
O|i⟩

)
, where the

summation is over all basis states of the original Hilbert
space [53](Sec.A). Under this mapping, the Lindbladian

superoperator L maps to a linear operator ĤL acting on
the doubled Hilbert space:

ĤL =
1

2

∑
i

∣∣hTi ⊗ I− I⊗ hi
∣∣2 =:

1

2

∑
x,λ

O†
x,λOx,λ. (2)

where | . . . |2 should be understood as (. . . )†(. . . ), and

Ox,λ = (hTx,λ ⊗ I − I ⊗ hx,λ). The average dynamics in

Eq. (1) can then be recast into an imaginary time evolu-

tion generated by the effective Hamiltonian ĤL:

∂t∥O⟩⟩ = −ĤL∥O⟩⟩ ⇒ ∥O(t)⟩⟩ = e−tĤL∥O0⟩⟩. (3)

We are interested in the dynamics of a local operator O
under Brownian evolution, which we characterize by the
averaged auto-correlation function E⟨Oy(0)Ox(t)⟩ρ [54]
with respect to the maximally mixed state ρ= 1

D I, where
D is the dimension of the many-body Hilbert space.

Note that Eq. (2) inherits translation invariance from
the interaction terms, hx,λ = hx+1,λ. Therefore, we

can label the eigenstates of ĤL by their momentum; let
∥k, ν⟩⟩ be the eigenstates of ĤL with energy Ek,ν , carry-
ing momentum k and an additional label ν. Inserting a
completeness relation, we obtain

E⟨Oy(0)Ox(t)⟩ρ =
1

D
⟨⟨Oy(0)∥e−tĤL∥Ox(0)⟩⟩

=
1

D

∑
k,ν

e−tEk,νeik·(y−x)|⟨⟨k, ν∥Ox⟩⟩|2. (4)

Consider a d-dimensional system. Assuming a gapless
dispersion minν{Ek,ν}∼ kn at low momentum k→ 0, as

well as a finite overlap |⟨⟨k, ν∥Ox⟩⟩|2 of the operator of
interest ∥Ox⟩⟩ with these gapless modes [55], the auto-
correlation at x= y decays algebraically as

E⟨Ox(t)Ox(0)⟩ρ ∼
t→∞

∫
k

e−tkn

ddk ∼ t−d/n, (5)

implying that the dynamical exponent z=n. Therefore,
the study of late-time operator dynamics in the Brownian
evolution reduces to the identification of gapless dispers-
ing states in the effective Hamiltonian ĤL.
Charge Conservation. We now assume that each hi in

the original Hamiltonian exhibits a U(1) charge conserva-
tion symmetry. In the doubled Hilbert space, the symme-
try is doubled as well, and the effective Hamiltonian ĤL
in Eq. (2) must be symmetric under G=U(1)u × U(1)l.
We denote by Gdiag and Goff the diagonal and off-

diagonal subgroups of G, generated by gdiag/off = Q̂u⊗I∓
I⊗ Q̂l, where Q̂ is the total charge operator [53](Sec.A).

First, we examine the ground states of ĤL, which is
positive semidefinite. The Choi state of the identity op-
erator ∥I⟩⟩ satisfies ĤL∥I⟩⟩=0 and is thus a ground state

of ĤL. Due to U(1) symmetry, I decomposes into the
summation over projectors onto different charge sectors:
I=

∑
m Pm, where Pm is the projector onto a U(1) sector

of charge m. For a system with N = Ld sites and local
Hilbert space dimension M , m ∈ {0, 1, ...,MLd}. We de-
note ∥m⟩⟩ as the Choi state of Pm. As such, ∥m⟩⟩ is also
a ground state of ĤL with vanishing Gdiag charge and
a Goff-charge of 2m. Note that ⟨⟨m∥m⟩⟩=dim[Hm], the
dimensionality of the charge-m sector. Moving forward,
we renormalize ∥m⟩⟩ to ⟨⟨m∥m⟩⟩=1.
The degenerate groundstate manifold with different

Goff-charges implies spontaneous symmetry breaking of
Goff. This can be shown explicitly by constructing a
groundstate state ∥θ⟩⟩ ≡ ∑

m f(m)eimθ∥m⟩⟩ such that
under the rotation by Goff generator, eiαgoff∥θ⟩⟩ = ∥θ +
α⟩⟩ ̸= ∥θ⟩⟩. The low-energy excitations of ĤL must be
given by the Nambu-Goldstone modes for the broken con-
tinuous symmetry. A standard approach for constructing
Goldstone modes is to apply Goff density modulations
with momentum k on the ground state ∥m⟩⟩. The varia-
tional ansatz for such a state is defined as

∥mk⟩⟩ ≡
1√Nk

ρ̂k∥m⟩⟩, ρ̂k ≡
∑
x

eik·x

Ld/2
(ρ̂x,u + ρ̂x,l),

(6)

where ρ̂x,u/l measures U(1) charge in the layer u or l

at position x, and Nk ≡⟨⟨m∥ρ̂†kρ̂k∥m⟩⟩ is a static struc-

tural factor with ρ̂†k = ρ̂−k. It straightforward to show
that ∥mk⟩⟩ carries a well-defined momentum k and thus
⟨⟨mk∥mk′⟩⟩= δk,k′ [53](Sec. E). We remark that since
(ρ̂x,u+ρ̂x,l) measures a local Goff-charge, the constructed
mode corresponds to the density fluctuations of the Goff-
charge.
What is the energy of this variational state? With

orthogonality between ∥mk⟩⟩ for different momenta, the
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variational expected energy provides an upper bound for
the low-energy dispersion of Eq. (2):

⟨⟨mk∥ĤL∥mk⟩⟩ =
1

Nk

∑
x,λ

⟨⟨m∥[Ox,λ, ρ̂k]
†[Ox,λ, ρ̂k]∥m⟩⟩,

(7)

where we used Ox,λ∥m⟩⟩=0. By using U(1) symmetry,
the commutator in Eq. (7) can be recast as

[Ox,λ, ρ̂k] = eik·x
∑
y∈Sx

∞∑
n=1

[Ox,λ,
[ik · (y − x)]n

n!
ρ̂y], (8)

where we used [Ox,λ,
∑

y ρ̂y] = 0, and Sx is the local sup-

port of the operator Ox,λ (thus warranting the expan-

sion of eik·(y−x) for small k). Generally, assuming a
finite expectation value of the local dipole fluctuations

⟨⟨m∥
∣∣[Ox,λ,

∑
y yi ρ̂y]

∣∣2∥m⟩⟩, the expansion Eq. (8) does
not vanish at n=1, giving rise to a leading order contri-
bution proportional to k:

[Ox,λ, ρ̂k] ∝ k ⇒ ⟨⟨mk∥ĤL∥mk⟩⟩ ∝ k2. (9)

Here, we focus on isotropic systems for simplicity; how-
ever, dynamical exponents can be obtained similarly for
non-isotropic systems. Furthermore, Nk is a constant,
independent of k [53](Sec. E). Therefore, ∥mk⟩⟩ generi-
cally exhibits a quadratic (Ek ∝ k2) dispersion, regard-
less of the details of the effective Hamiltonian. Note the
similarity of our approach to the single-mode approxima-
tion in superfluid or quantum Hall states [56–58], where
the Feynman-Bijl ansatz [53](Sec.D) provides variational
states that capture the dispersion of density fluctuation
excitations.

Long-Range Interactions. We extend our preceeding
analysis to charge-conserving systems with long-range in-
teractions. Specifically, we consider the effects of long-
range terms in our Hamiltonian of the form hx,x′ =

|x−x′|−α(Ŝ+
x Ŝ

−
x′+h.c.), where Ŝ±

x are raising and lower-

ing operators for the charge ρ̂x at site x and Q̂ =
∑

x ρ̂x
is conserved. The effective Hamiltonian reads ĤL =∑

x,x′ O†
x,x′Ox,x′ and the commutator entering Eq. (7)

becomes

[Ox,x′ , ρ̂k] = eik·x
(1− eik·(x

′−x))

|x− x′|α
[
Õx,x′ , ρ̂x

]
, (10)

where Õx,x′ :=Ox,x′ |x−x′|α is now distance-
independent. Assuming α>d/2 and a finite expectation
value for the square of the commutator on the RHS of
Eq. (10), the variational energy of ∥mk⟩⟩ is [53](Sec. F)

⟨⟨mk∥ĤL∥mk⟩⟩ ∝
k→0

C1(α)|k|2α−d + C2(α)k
2. (11)

Thus, for α< 1+ d/2, the system relaxes superdiffusively
with z=2α− d, successfully reproducing previous works
on long-range interacting systems [17, 18, 59]. Alter-
natively, for α≤ d/2 the prefactors C1(α) and C2(α)

exhibit divergences and the associated modes become
gapped [53](Sec. F); accordingly, the operator decays ex-
ponentially fast [17], entering an effectively nonlocal “all-
to-all” interacting regime.

Dipole Conservation. The method outlined above
also applies to systems with conserved quantities beyond
U(1) charges. Let us focus on one-dimensional models
with charge multipole symmetries, as relevant to frac-
ton systems [60–68], generated by Q(n) ≡ ∑

x x
nρ̂x =∑

x x
n(ρ̂x,u + ρ̂x,l). Concretely, we consider Brown-

ian time evolution conserving the first two multipole
moments n=0 and n=1, i.e. [hi, Q

(0)] = [hi, Q
(1)] = 0.

This combination of charge and dipole symmetries gen-
erally leads to Hilbert space fragmentation [33, 34, 69]:
For a given symmetry sector Q(0), Q(1) labeled by the
different charge and dipole values, there are numerous
distinct Krylov sectors, K, connected by the Hamilto-
nian evolution. Our goal is to understand the associ-
ated Krylov-space-resolved hydrodynamics in such sys-
tems. For this purpose, we introduce the operator PK
projecting onto an individual Krylov sector, K, and its
Choi state ∥K⟩⟩, which we define to be normalized. In the
doubled Hilbert space formalism, we thus define new ex-
cited states, ∥Kk⟩⟩= ρ̂k∥K⟩⟩/(NK

k )1/2, where ĤL∥K⟩⟩=0

and NK
k ≡⟨⟨K∥ρ̂†kρ̂k∥K⟩⟩ is the Krylov-resolved structure

factor.

In the presence of both charge and dipole conserva-
tion symmetries, the commutator in Eq. (8) now van-
ishes at n=1, and takes a finite value only at order
n≥ 2. Accordingly, the excited modes ∥Kk⟩⟩ carry an

energy Ek = ⟨⟨Kk∥ĤL∥Kk⟩⟩ ∝ 1
NK

k

k4. For generic dipole-

conserving systems featuring weak fragmentation, the
largest Krylov sector K0 makes up a finite portion of
the full Hilbert space (up to a prefactor algebraic in sys-
tem size). As a consequence, its static structure factor

NK0

k →O(1) remains finite as k→ 0. We thus obtain
subdiffusive relaxation with dynamical exponent z=4.
The generalization of this result to systems conserving
{Q(0), ..., Q(m)} multipoles is straightforward: The com-
mutator in Eq. (8) now vanishes up to order n=m, giving
rise to a dispersion proportional to k2(m+1) and dynam-
ical exponent z=2(m + 1), in accordance with previous
results [22–25, 70, 71].

Similar to the charge-conserving case, these
results can be extended to long-range interact-
ing systems in arbitrary dimensions. For exam-
ple, consider power-law decaying dipole hopping

terms hx,x′ ∼ 1
|x−x′|α (D

†
xDx′ +h.c.), where Dx

is a local operator lowering the dipole moment.
When α> d

2 , we determine the dispersion to be

Ek ∼C1(α)k
2α+2−d +C2(α)k

4 [53](Sec. F). Therefore, if
α< 1+ d/2, charge spreads faster than the subdiffusive
transport z=4 of short-range systems. For α< d

2 ,
dipole hopping becomes highly non-local, and charge
transport effectively arises from individual local dipole
creation/annihilation terms, analogous to systems with
conventional charge conservation. In our framework,
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FIG. 2. Relaxation dynamics in multipole-conserving
systems with long-range interactions. Systems with
1
rα

power-law decaying hopping of local multipoles of or-
der m exhibit three distinct dynamical regimes. When
α> d

2
+ 1 (orange), the dynamics is (sub)diffusive with dy-

namical exponent z = 2(m + 1). For d
2

+ 1>α> d
2

(blue),
the dynamics is faster, with dynamical exponent z = 2(m +
α)− d. When α≤ d

2
, the system is effectively non-local,

thus, relaxation occurs from individual m-th multipole cre-
ation/annihilation operators, which are hoppings of (m− 1)-
th multipole charges. This results in (sub)diffusive transport
with z = 2(m− 1) + 2 = 2m.

after renormalizing the single-mode dispersion to be
bounded [53](Sec. F), we obtain Ek ∼ k2. We provide
a summary of the dynamical exponents emerging in
multipole-conserving systems with such long-range
hopping of local moments in Fig. 2.

Constrained dynamics. Returning to short-range mod-
els with dipole-conservation, we may ask whether re-
laxation differing from the subdiffusive behavior z = 4
can emerge in specific Krylov sectors. The presence
of the structure factor in the dispersion of Eq. (7) sug-
gests this may be the case in Krylov sectors where
charge fluctuation follow a sub-volume law with vanishing
limk→0 NK

k = 0. We demonstrate this effect in concrete
examples below.

Let us first consider a one-dimensional chain with
charge and dipole conservation and introduce bond vari-
ables êx defined via ρ̂x = êx − êx−1, i.e. êx =

∑x
i=0 ρ̂i.

For convenience, we define the charge density ρ̂x relative
to its average value within K, i.e.

∑
x ⟨ρ̂x⟩K = 0. We note

that the êi can be understood as a local dipole density,
with

∑
x êx = Q(1) [27, 72, 73]. Let us now assume that

a sector K exhibits bounded fluctuations of these bond

variables. Formally, limL→∞ ⟨êkê−k⟩K
k→0−−−→ σ2

1 < ∞,
where êk = 1√

L

∑
x e

ikxêx and σ1 corresponds to the

average fluctuation of the local dipole density. Since
êx =

∑x
i=0 ρ̂i, the finiteness of êx implies area-law fluctu-

ations of the total charge within any given region. Using
that ρ̂k =(1 − e−ik)êk for k ̸=0, the structure factor for
small k becomes

NK
k = ⟨ρ̂kρ̂−k⟩K = k2 ⟨êkê−k⟩ → σ2

1 k
2. (12)

Therefore, for Krylov sectors satisfying Eq. (12), the en-
ergy of the excited mode ∥Kk⟩⟩ scales as Ek ∝ k2 and
we expect diffusive relaxation, despite the presence of
dipole-conservation. To interpret this result, note that
the êx constitute a conserved local density with an effec-
tively finite local state space due to their bounded fluc-
tuations. If êx is bounded, these local dipoles move with-
out additional kinetic constraints and are thus expected
to relax diffusively, see also Ref. [72]. Generalization to
systems conserving {Q(0), ..., Q(m)} is again straightfor-
ward: Krylov sectors with bounded multipole densities
up to order p≤m have Nk →σ2

p k
2p, leading to a disper-

sion ∝ k2(m−p+1) in short-range systems.

As a concrete example of Eq. (12), we consider ran-
dom Brownian evolution in a S = 1 spin chain with local
dipole-conserving terms hi = Ŝ+

i (Ŝ−
i+1)

2Ŝ+
i+2 +h.c.. Al-

though these terms induce a strong fragmentation of the
Hilbert space, there exist exponentially large, delocalized
Krylov sectors [33, 35]. We label the local charge density
by ρ̂x = Sz

x ∈ {0,±} and consider the Krylov sector con-
taining the initial state |ψ0⟩ = |...00 + 00...⟩. In terms of
the variables êx introduced above, |ψ0⟩ = |...00111...⟩
corresponds to a domain wall, and the êx ∈ {0, 1}
can be shown to take values in a bounded range [33],
thus satisfying our condition Eq. (12). Diffusive relax-
ation of this state has indeed been found in Ref. [72],
and E⟨Sz

x=L/2(t)⟩∼ t−1/2 can be verified numerically us-

ing random classical time evolution, as illustrated in
[53](Sec.G).

To illustrate the generality of the condition Eq. (12),
we consider systems beyond 1D. In analogy to
d=1, for d> 1 we write ρ̂(x)=∇ · ê(x), where
ê(x)= (ê1(x), ..., êd(x)) is now a d-component vector.
We recognize that ê(x) is not uniquely determined by the
charge configuration ρ̂(x), and the relation between these
variables takes the form of a U(1) Gauss law, where the
ê(x) constitute electric field degrees of freedom. Indeed,
area-law charge fluctuations arise in U(1) gauge theories
if fluctuations of the electric fields ê(x) are bounded, as∫
V
dV ρ̂(x)=

∫
∂V

dA · ê(x). Thus, imposing global dipole
conservation on U(1) link models [74–76] with a finite
electric field state space gives rise to diffusive behavior
through Eq. (12). To verify this prediction, we numeri-
cally simulate classical, discrete random time evolution in
a hard-core dimer model on a square lattice (see Fig. 3a),
which can be mapped to a U(1) link model [77, 78]. Un-
der this mapping, a site x without any attached dimer
carries a charge ρ̂(x)= (−1)x1+x2 at x=(x1, x2), while
a site with an attached dimer carries no charge. In
the dynamics carried out numerically (see [53] Sec.G,
as well as Refs. [21, 24, 25, 70] for related approaches),
we then explicitly incorporate conservation of the dipole
moment associated to ρ̂(x). Starting from an initial state
with an isolated positive charge in the bulk of the sys-
tem ρ̂(x, t=0)= δx1,0 δx2,0 (see Fig. 3a), we numerically
find a diffusive broadening of the resulting charge dis-
tribution at late times. As the overall charge density in
the system vanishes, and positive and negative charges
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FIG. 3. Relaxation dynamics in a dipole-conserving
dimer model. a) We numerically consider a classical, dis-
crete random time evolution in a dimer model with hard-core
constraint, i.e. maximally one dimer attached to each site in
the square lattice. This model can be mapped onto a U(1)
link model following Refs. [74–76]. Under this mapping, va-
cancies, i.e. sites without attached dimer, carry positive (blue
spheres) or negative charge (orange spheres), depending on
their sublattice. We explicitly incorporate preservation of the
hard-core constraint, the total charge, and the dipole moment
associated with these charges in the time evolution. b) De-
cay of the charge density ρ̄(0, t) for an isolated positive charge
initially placed at x = 0 in the bulk of the system: see a).
The decay is consistent with diffusion in two dimensions. c)
Scaling collapse of the charge distribution at different times
along ρ̄(x = (x, 0), t), indicating Gaussian diffusion. Numeri-
cal results were averaged over 3×106 runs of the random time
evolution [53](Sec. G).

occupy different sublattices, we consider the quantity
ρ̄(x1, t)≡ ρ̂((x1, 0), t)+ρ̂((x1−1, 0), t). We show in Fig. 3c
that t ρ̄(x1, t) exhibits a scaling collapse when plotted
against x1/

√
t, in agreement with diffusive relaxation in

two dimensions.

Conclusion and Outlook. In this work we have estab-
lished a comprehensive understanding of conserved oper-
ator dynamics under Brownian random unitary time evo-
lution through a duality with the spectral properties of an
associated effective Hamiltonian. Though the U(1) sym-
metric Brownian evolution was used for clarity of presen-

tation, these results generalize for any dynamics conserv-
ing a continuous global symmetry governed by a Lindblad
equation [53](Sec. C). As the groundstate manifold al-
ways exhibits a spontaneous symmetry breaking of a con-
tinuous symmetry, a single-mode approximation could be
applied to capture the low energy physics of this effec-
tive Hamiltonian to reproduce a number of dynamical
universality classes for short- and long-range interacting
systems with charge and multipole conservation laws. In
addition, our formalism allowed us to study the Krylov-
space-resolved hydrodynamics of dipole-conserving sys-
tems, establishing diffusive behavior in Krylov spaces
with area law charge fluctuations, in contrast to more
generic dynamics in the presence of dipole conservation.
We expect that such diffusive relaxation in dipole-

conserving systems is valid beyond the specific examples
studied numerically here and holds whenever the time
evolution proceeds within an effective state space (not
necessarily a Krylov space) that fulfills Eq. (12). In par-
ticular, bounded fluctuations of the variables êx can arise
from energetics, for example via a term ∼ (êx)

2 in the
Hamiltonian, as appears naturally in standard electro-
magnetism. In this context, the resulting area-law charge
fluctuations can be interpreted as Coulomb repulsion,
which consequently leads to diffusive relaxation in dipole-
conserving systems. Furthermore, bounded charge fluc-
tuations occur in many other interesting models: It was
shown in Refs.[73, 79] that area law charge fluctuations
can arise in dipole-conserving Bose-Hubbard models in
low-energy Mott states whenever a finite energy gap ex-
ists for charged excitations. It would be interesting to
study the relevance of our results to such systems in the
future.
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