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Optical lattices and Feshbach resonances are two of the most ubiquitously-used tools in atomic
physics, allowing for the precise control, discrete confinement, and broad tunability of interacting
atomic systems. Using a quantum simulator of lithium-7 atoms in an optical lattice, we investigate
Heisenberg spin dynamics near a Feshbach resonance. We find novel resonance features in spin-
spin interactions that can only be explained by lattice-induced resonances, which have never been
observed before. We use these resonances to adiabatically convert atoms into molecules in excited
bands. Lattice-induced resonances should be of general importance for studying strongly-interacting
quantum many-body systems in optical lattices.

Introduction.—The field of cold atoms has enjoyed
enormous progress in recent years, largely thanks to two
powerful tools: optical lattices, which provide confine-
ment and a way to controllably simulate discrete mod-
els; and Feshbach resonances, which allow for tunable
interactions between particles. Consequently, there has
been keen interest in studying how the lattice mod-
ifies atomic scattering properties [1–10]. In particu-
lar, several studies have theoretically predicted that
the free-space Feshbach resonance vanishes and is re-
placed by multiple shifted “lattice-induced resonances”
[11–14]. Here, we observe multiple resonances in the spin-
spin interactions which we associate with near-resonant
tunneling into molecular states with excited center-of-
mass (COM) motion (Fig. 1). Our observations cannot
be explained by confinement-induced resonances [1, 15–
24], but require the theory of lattice-induced resonances
which have not been observed before [25]. In contrast
to confinement-induced resonances which rely on anhar-
monicities, lattice-induced resonances are caused by tun-
neling.

Since Feshbach resonances in combination with opti-
cal lattices have been used extensively in ultracold atom
experiments for many years [2, 26–33], it is surprising
that none of them have observed the dramatic signature
of lattice-induced resonances. A possible reason is that
many experiments looked only for loss features or stud-
ied deep traps where the dynamics is suppressed. Our
unique approach of measuring these resonances in the
many-body dynamics of Heisenberg spin chains avoids
the strong three-body loss, which enabled us to clearly
observe and identify these resonances. Lattice-induced
resonances should have important consequences for any
system in an optical lattice with strong interactions.

In our work, we find that many-body spin dynam-
ics is affected by free-space scattering lengths |as| larger
than 15, 000 a0; this exceeds not only the oscillator length
aosc =

√
ℏ/µω≈ 2, 500 a0 but even the lattice spacing

alat ≈ 10, 000 a0. This is possible because the unitarity
limit of the oscillator length applies only to two inter-
acting atoms, and not to the deeply bound molecular
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FIG. 1. Resonant tunneling into molecular states. An
optical lattice in the Mott insulating regime with one atom per
site (a) can host different virtual states, such as two atoms per
site with repulsive interaction U (b); two atoms in an excited
COM mode (c); or a molecule with negative binding energy U ′

(d). Both states c and d are typically far detuned from state
a. However, positive COM energy (c) can be combined with
negative binding energy (d), bringing a molecule in an excited
COM mode into resonance with the Mott insulator (e). State
a is connected to e via a resonant tunneling process. These
are lattice-induced resonances, observed here for a quasi-1D
lattice.

states involved in lattice-induced resonances. Here a0 is
the Bohr radius, µ=m/2 is the reduced mass, and ω is
the trap frequency at the bottom of the sinusoidal lattice
potential in the axial direction.

Lattice-induced resonances are a phenomenon emerg-
ing from the paradigmatic Hamiltonian for particles with
short-range interactions in a periodic potential

H =
∑
i

[
p2i
2m

+ Vz sin
2(kxi)

]
+ g

∑
i̸=j

δ(xi − xj) (1)

where Vz is the lattice depth, k is the wavevector of
the lattice light, and g is the interaction strength. This
Hamiltonian is a model for many important materials and
describes almost exactly the physics of ultracold atoms
in optical lattices. We observe the new resonances using
bosons in a 1D lattice, but these effects should occur also
in higher dimensions and for fermionic systems.

Simple model of lattice-induced resonances.—Lattice-
induced resonances can be understood by first analyzing
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FIG. 2. Energy spectrum for two interacting atoms in
a harmonic trap. In an isotropic trap (a), only the rela-
tive motion (blue curves) is affected by the scattering length
as [34]. A copy of this level structure exists for each unit of
COM excitation ℏω. The lowest three COM excitations (ma-
genta, green, gold) for the lowest molecular branch become
degenerate with the Mott insulator (black) near a Feshbach
resonance (1/as =0, dotted line). The square, triangle, and
circle correspond to the interactions of Figs. 1b, d, and e, re-
spectively. Our experimental conditions are more consistent
with an anisotropic trap (b) with stronger transverse confine-
ment [35] In contrast to a, the first excited branch crosses
zero energy at negative finite scattering length. The vertical
dashed lines correspond to the observed resonance positions
seen in Fig. 3b and agree with the harmonic model. Solid gray
curves correspond to the next six accessible COM excitations
for both panels, while the dashed gray curves are branches
with odd transverse excitations that have suppressed coupling
to the Mott insulator (see supplement). Colored numbers re-
fer to z COM excitations. The first dashed gray curve corre-
sponds to one excitation in either x or y and zero in z.

the eigenstates of two interacting atoms on one lattice
site. These states can couple to two atoms on adjacent
sites via tunneling. When the negative binding energy
of a molecule is offset by the positive energy of its COM
motion, it becomes a zero-energy state (Fig. 1e); conse-
quently, two atoms on isolated sites can resonantly tunnel
into this special molecular state. Near such resonances,
the tunneling dynamics is greatly enhanced. This cou-
pling is not possible in free space since the COM energy
of a bound molecule is determined by the COM momen-
tum of the colliding particles. In a lattice with reduced
translational symmetry, momentum conservation is re-
placed by quasi-momentum conservation. Two colliding
particles near zero quasi-momentum can couple to bound
states only with zero quasi-momentum; however, these
bound states can be in any band, which means there are

in principle an infinite number of accessible states.

To illustrate a simple case, we plot the spectrum of
two particles in an isotropic harmonic trap with con-
tact interactions in Fig. 2a [34]. The harmonic ap-
proximation captures several salient features of interac-
tions in a deep optical lattice. Due to the separation
of the relative and COM motion, only the relative mo-
tion varies with interaction strength. The total energy
spectrum U =ECOM + Erelative of both COM and rel-
ative motion yields infinite copies of the relative mo-
tion spectrum (blue) up-shifted by contributions from
the COM band structure (magenta, green, gold). In an
isotropic trap the excited branches are degenerate. We
note that the first excited molecular branch (magenta
curve) crosses zero energy at the free space Feshbach res-
onance (1/as =0). When tunneling is introduced, the
zero-crossings of higher COM bands yield lattice-induced
resonances.

Our experiment realizes one-dimensional chains with
strong transverse confinement. Each lattice site thus
resembles an anisotropic harmonic trap with ratio
ωx =ωy =1.8ωz whose spectrum is plotted in Fig. 2b
where the oscillator length is in units of the axial fre-
quency aosc =

√
ℏ/µωz. The anisotropy partially breaks

the degeneracy and leads to a much richer energy spec-
trum, as all excitations of the z COM and even excita-
tions of the x, y COM modes are allowed. As the trans-
verse confinement is increased, the interaction energy be-
tween two atoms increases and reaches ℏωz earlier. Hence
the first crossing is shifted to the right of the free-space
Feshbach resonance.

Note that in the harmonic approximation, interactions
do not couple the ground and excited bands of the COM
[34]. Anharmonicities can lead to coupling between them,
which has been theoretically studied [24, 36] and exper-
imentally observed [37, 38]. However, these couplings
only mix COM states of the same parity, with two atoms
already on the same site, and cannot couple the ground
state to the first excited state. The feature of the lat-
tice that allows lattice-induced resonances is interaction-
driven tunneling. As a particle tunnels onto a neighbor-
ing site, its direction breaks the parity symmetry. This
allows an atom in the ground band (of an interacting sys-
tem, see supplement) to couple to any excited band along
the direction of tunneling regardless of parity. While we
use the harmonic trap model for simplicity, we empha-
size that in lattices, many of the energy level crossings
become avoided crossings, and each band attains a finite
width.

Effects of resonances on spin dynamics.—The spin dy-
namics in a singly-occupied Mott insulator is driven by
superexchange, a second-order tunneling process involv-
ing virtual intermediate states with two atoms on the
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FIG. 3. Spin interaction anisotropy at different mag-
netic fields. We plot the anisotropy ∆= Jz/Jxy as a func-
tion of magnetic field (a) and zoomed in for fields with
large bb scattering lengths |abb| ≳ 500 a0 (b). Far from the
bb Feshbach resonances (dotted lines), the data (open cir-
cles) agree well with perturbative calculations (gray curves).
Such theory is not applicable in the regions with large scat-
tering lengths (filled circles). The dispersive features at
845.459G, 892.249G, 893.182G, and 895.537G (dashed ver-
tical lines) are consistent with lattice-induced resonances cor-
responding to band excitations of ECOM/ℏωz =1, 2, and 3
(magenta, green, gold). Note that the behavior of the spin
anisotropy is smooth across the free-space resonances. Some
data are inherited from [40]. Fits are shown in black curves
(see supplement). The statistical errors of the data and fitted
resonances are smaller than the symbols and widths of the
dashed lines, respectively.

same site. The resultant spin-exchange coupling J is

J ∝
∑
i

−t2i /Ui. (2)

where Ui is the energy of the intermediate state and
ti the tunnel coupling to the initial state. Due to the
energy denominator, superexchange physics is a very
sensitive probe for zero-energy states of two atoms per
site and therefore for lattice-induced resonances. In the
regime of small scattering lengths the dominant inter-
mediate state is two atoms per site without COM ex-
citation as it possesses the smallest energy defect. In
this case, the relevant Ui is simply the single-band on-
site interaction energy, and ti the conventional tunneling.
The energies of the excited bands are far-detuned, and
therefore their contribution to superexchange is highly
suppressed. However, in the strongly-interacting regime
(as/aosc ≳ 1), lattice-induced resonances can bring the
energy of these excited-band states into resonance. Near
the zero-crossings of Fig. 2b, the second-order tunneling
process Eq. 2 is resonantly enhanced.

Experimental methods.—Our quantum simulator uses
ultracold lithium-7 atoms in an optical lattice to real-
ize the two-component Bose-Hubbard model. The atoms
are in the lowest two hyperfine states, labeled as a and

b, forming a pseudo-spin. The system is then turned
quasi-1D by lowering the lattice depth along the axial
(z) direction (Vx,y,z =35ER, 35ER, 10.7ER). The bare
tunneling t in the lowest band is approximately 0.0164ER

along the axial direction where ER =h2/8ma2lat ≈ 25 kHz
is the recoil energy.

The SU(2) symmetry of the system implies that it can
be mapped onto the spin-1/2 XXZ Heisenberg model

HXXZ =
∑
i

[Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1) + Jz(S

z
i S

z
i+1)] (3)

when prepared as a singly-occupied Mott insulator [32,
42]. The effective spin-spin interactions Jxy and Jz are
comprised of superexchange and off-site energies [32, 43].
Away from the Feshbach resonance, conventional su-
perexchange involving lowest-band doublons dominates;
however, close to the Feshbach resonance, excited-band
molecules can form as a result of lattice-induced reso-
nances, and their resonant tunneling can dictate the dy-
namics of the system.

We have recently observed that spin helix states have
an enhanced lifetime at a wavevector directly related
to the spin anisotropy ∆ :=Jz/Jxy. We use this phe-
nomenon now as a method to determine ∆. In general,
∆ depends on interactions of atoms between all three
combinations of spin states aa, ab, and bb and can be
written (see supplement)

∆ =
Jbb + J0

Jxy
(4)

Here, J0 and Jxy represent spin exchange interactions
between aa and ab atoms, which are not affected by
the bb Feshbach resonances [32]. The spin-spin interac-
tions between two b atoms Jbb = J+2Vbb incorporates the
superexchange terms of eq. (2) and off-site interactions
Vbb. Off-site interactions are an extension of the standard
Hubbard model, which only includes on-site interactions.
Because they are small they have not been observed for
alkali atoms in a lattice before (see supplement).

Fig. 3b shows the main result of this paper: four dis-
persive features which indicate resonances in the spin-
spin interaction Jbb. These are signatures of lattice-
induced resonances. Near the resonance positions, spin
dynamics is dominated by resonant tunneling into molec-
ular states. The strongest lattice-induced resonance we
observe is caused by the first excited band of the COM
motion coupled to the Mott insulator, which cannot be
observed with RF spectroscopy starting with two atoms
per site. Tunneling to excited bands is only possible due
to interatomic interactions, and can be classified as multi-
orbital bond-charge hopping [47]. There can be more
lattice-induced resonances involving even higher COM
bands, but the higher resonances have vanishing coupling
as the molecule is more tightly bound and may be broad-
ened by the larger energy spread in higher bands. There-
fore, only the lowest three features were observed. The
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dashed vertical lines in Figs. 2b and 3b correspond to
each other. Note that the observed resonance positions
are only consistent with axial COM excitations. We also
observe the first experimental evidence for contact off-site
interactions in lattices (see supplement).

Sweeping into molecules.—The dispersive features in
Fig. 3 confirm the presence of lattice-induced resonances
which admix molecules in excited bands (Fig. 2b), i.e. cre-
ate virtual molecules. We also observe real molecules
by adiabatically sweeping the magnetic field across the
lattice-induced resonance at 895.537G in both direc-
tions without crossing the free-space resonance. Such
sweeps create a high fraction of excited-band molecules
as shown in Fig. 4. We note the up-sweep could not cre-
ate molecules in a free-space Feshbach resonance, which
only creates molecules in one direction of the sweep since
the stable molecular branch ends at the resonance posi-
tion. In contrast, lattice-induced resonances have a stable
branch far from the resonance in either direction. We re-
peated these sweep experiments for a Mott insulator of a
atoms and found an analogous high molecule conversion
around 739.1G (see Fig. ??).

Our experiment resembles studies that sweep an en-
ergy gradient across the value U/alat, which was shown
to map to the Ising model in a transverse field [52–54].
In these works, the sweep drives a quantum phase tran-
sition to antiferromagnetic order [55]. However, with-
out the directionality of the gradient, we do not expect
antiferromagnetic order in our experiment, but a corre-
lated state with equal number of molecules and holes.
This state shares some features with a quantum spin
liquid: namely, long-range entanglement between parti-
cles and massive degeneracy in the ground state. This
could be an interesting testbed for future work to study
quantum thermodynamics in many-body systems. While
these bound states are in an excited Bloch band which
will suffer from collisional loss, the lifetime may be long
enough to explore interesting new phases of matter as
experimentally shown in [56, 57].

Discussion.—Our work reports the first observation of
the long-predicted lattice-induced resonances [13]. The
resonant tunneling can completely determine the dy-
namics of a system with strong interactions. The dra-
matic modification of spin dynamics in our experiment
was caused by the three lowest-lying lattice-induced res-
onances. Higher resonances (with even COM excita-
tions) can in principle also occur via anharmonicities, and
some (if the excitations are transverse) could be classi-
fied as confinement-induced resonances. We have not ob-
served any signatures of these higher resonances and ex-
pect them to be much weaker than the measured lattice-
induced features. Furthermore, because the lowest-lying
excitation seems to be the most pronounced, it is very
possible that only lattice-induced resonances have a sig-
nificant impact on the dynamics of a system with unity
filling. Further theoretical work is required to understand
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FIG. 4. Creation of molecules with adiabatic sweeps
through a lattice-induced resonance. We sweep the mag-
netic field to different values without crossing the free-space
resonance at 894G (inset, dotted line). In a 3D lattice with
shallow axial confinement, molecules are created when sweep-
ing up (filled circles) or down (open squares) past the lattice-
induced resonance (dashed line). Statistical errors are given
by the shaded area, and is larger for the down-sweep due to
fewer data points. The reduction of molecule fraction beyond
895.7G can be explained by the finite time of the sweep which
was kept constant at 15ms for all final fields. The small off-
set of the crossover between the sweeps can be explained by
hysteresis of the magnetic field during the ramp.

how the higher-band resonances can affect spin interac-
tions and dynamics in a lattice.

We expect our results to be important for future
studies of strongly interacting atoms in optical lattices.
Lattice-induced resonances can be used to tune spin-spin
interactions and possibly probe new phases of matter.
For instance, as shown in [11], different contributions
of superexchange cancel at special points. This could
allow higher-order processes to dominate the dynamics
and drive the system into exotic phases. It would also be
interesting to see how these lattice-induced resonances
modify scattering properties of atoms in the superfluid
phase, as they should tune elastic interactions and affect
the mean field energy of a BEC. Additionally, the adi-
abatic sweeps to molecules may create novel correlated
many-body states. It is an intriguing question whether
they can be described as a superfluid state of molecules or
some other exotic phase and how such states thermalize.

We thank Paul Niklas Jepsen for experimental assis-
tance, discussions, and comments on the manuscript,
Jinggang Xiang for comments on the manuscript, Sabrina
Chern for discussions, and Martin Zwierlein for discus-
sions and sharing equipment. We acknowledge support
from the NSF through the Center for Ultracold Atoms
and Grant No. 1506369, the Vannevar-Bush Faculty Fel-
lowship, and DARPA. Y. K. L. is supported in part by
the National Science Foundation Graduate Research Fel-
lowship under Grant No. 1745302. Some of the analysis
was performed by W.K. at the Aspen Center for Physics,
which is supported by NSF grant PHY-1607611. Author



5

contributions: Y. K. L., H. L., and W. K. conceived the
experiment. Y. K. L. and H. L. performed the experi-
ment. Y. K. L. and H. L. analyzed the data. All authors
discussed the results and contributed to the writing of
the manuscript. Competing interests: The authors
declare no competing financial interests. Data and ma-
terials availability: The data that support the findings
of this study are available from the corresponding author
upon reasonable request. Note.—Following our submis-
sion, Ref. [58] reported the observation of confinement-
induced resonances in a 3D lattice.

∗ These authors contributed equally to this work.
[1] P. O. Fedichev, M. J. Bijlsma, and P. Zoller, “Extended

molecules and geometric scattering resonances in optical
lattices,” Phys. Rev. Lett., vol. 92, p. 080401, Feb 2004.

[2] M. Kohl, H. Moritz, T. Stöferle, K. Günter, and
T. Esslinger, “Fermionic atoms in a three dimensional
optical lattice: Observing Fermi surfaces, dynamics, and
interactions,” Phys. Rev. Lett., vol. 94, p. 080403, Mar
2005.

[3] D. B. M. Dickerscheid, U. Al Khawaja, D. van Oosten,
and H. T. C. Stoof, “Feshbach resonances in an optical
lattice,” Phys. Rev. A, vol. 71, p. 043604, Apr 2005.

[4] L.-M. Duan, “Effective Hamiltonian for fermions in an
optical lattice across a Feshbach resonance,” Phys. Rev.
Lett., vol. 95, p. 243202, Dec 2005.

[5] T. Stoferle, H. Moritz, K. Guenter, M. Kohl, and
T. Esslinger, “Molecules of fermionic atoms in an optical
lattice,” Phys. Rev. Lett., vol. 96, p. 030401, Jan 2006.

[6] M. Wouters and G. Orso, “Two-body problem in periodic
potentials,” Phys. Rev. A, vol. 73, p. 012707, Jan 2006.

[7] H. P. Büchler, “Microscopic derivation of Hubbard
parameters for cold atomic gases,” Phys. Rev. Lett.,
vol. 104, p. 090402, Mar 2010.

[8] X. Cui, Y. Wang, and F. Zhou, “Resonance scattering
in optical lattices and molecules: Interband versus intra-
band effects,” Phys. Rev. Lett., vol. 104, p. 153201, Apr
2010.

[9] X. Cui, “Resonant scattering and microscopic model of
spinless Fermi gases in one-dimensional optical lattices,”
Phys. Rev. A, vol. 95, p. 041601(R), Apr 2017.

[10] M. J. Mark, F. Meinert, K. Lauber, and H.-C. Nägerl,
“Mott-insulator-aided detection of ultra-narrow Feshbach
resonances,” SciPost Phys., vol. 5, p. 055, 2018.

[11] J. P. Kestner and L.-M. Duan, “Effective single-band
models for strongly interacting fermions in an optical lat-
tice,” Phys. Rev. A, vol. 81, p. 043618, Apr 2010.

[12] J. P. Kestner and L.-M. Duan, “Anharmonicity-induced
resonances for ultracold atoms and their detection,” New
Journal of Physics, vol. 12, p. 053016, May 2010.

[13] J. von Stecher, V. Gurarie, L. Radzihovsky, and A. M.
Rey, “Lattice-induced resonances in one-dimensional
bosonic systems,” Phys. Rev. Lett., vol. 106, p. 235301,
Jun 2011.

[14] M. L. Wall and L. D. Carr, “Microscopic model for Fesh-
bach interacting fermions in an optical lattice with arbi-
trary scattering length and resonance width,” Phys. Rev.
Lett., vol. 109, p. 055302, Jul 2012.

[15] M. Olshanii, “Atomic scattering in the presence of an
external confinement and a gas of impenetrable bosons,”
Phys. Rev. Lett., vol. 81, pp. 938–941, Aug 1998.

[16] T. Bergeman, M. G. Moore, and M. Olshanii, “Atom-
atom scattering under cylindrical harmonic confinement:
Numerical and analytic studies of the confinement in-
duced resonance,” Phys. Rev. Lett., vol. 91, p. 163201,
Oct 2003.

[17] H. Moritz, T. Stöferle, K. Günter, M. Köhl, and
T. Esslinger, “Confinement induced molecules in a 1d
Fermi gas,” Phys. Rev. Lett., vol. 94, p. 210401, Jun 2005.

[18] V. Peano, M. Thorwart, C. Mora, and R. Egger,
“Confinement-induced resonances for a two-component
ultracold atom gas in arbitrary quasi-one-dimensional
traps.” New Journal Of Physics, vol. 7, p. 192, Sep 2005.

[19] S. Grishkevich and A. Saenz. “Theoretical description of
two ultracold atoms in a single site of a three-dimensional
optical lattice using realistic interatomic interaction po-
tentials.” Phys. Rev. A, vol 80, p. 013403, Jul 2009.

[20] E. Haller, M. Mark, R. Hart, J. Danzl, L. Reichsöll-
ner, V. Melezhik, P. Schmelcher, and H. C. Nägerl.
“Confinement-Induced Resonances in Low-Dimensional
Quantum Systems.” Phys. Rev. Lett., vol. 104, p. 153203,
Apr 2010.

[21] S. Sala, P.I. Schneider, and A. Saenz, “Inelastic
Confinement-Induced Resonances in Low-Dimensional
Quantum Systems.” Phys. Rev. Lett.. vol. 109, p. 073201,
Aug 2012.

[22] Y.-C. Zhang, S.-W. Song, and W.-M. Liu, “The confine-
ment induced resonance in spin-orbit coupled cold atoms
with Raman coupling.” Scientific Reports, vol. 4, no. 1,
p. 4992, 2014.

[23] Leyton, V., Roghani, M., Peano, V. & Thorwart, M.
“Photon-Assisted Confinement-Induced Resonances for
Ultracold Atoms.” Phys. Rev. Lett.. vol. 112, p. 233201,
Jun 2014.

[24] S. Sala and A. Saenz, “Theory of inelastic confinement-
induced resonances due to the coupling of center-of-mass
and relative motion,” Phys. Rev. A, vol. 94, p. 022713,
Aug 2016.

[25] Confinement-induced resonances (CIR) were introduced
for 1D waveguides with harmonic transverse confinement
and are caused by a zero-energy bound state where the
negative binding energy is offset by transverse excitation
of the relative motion of the two particles. Additional res-
onances involving even-parity transverse COM motion
can occur due to anharmonicities. In contrast, in the
simplest case, lattice-induced resonances involve bound
states in excited bands of the longitudinal center-of-mass
motion of the two particles and are caused by interaction-
driven tunneling. CIR can only excite even parity exci-
tations, in contrast to lattice-induced resonances. The
strongest features in our experiment are assigned to the
lowest-lying odd parity excitations.

[26] R. B. Diener and T.-L. Ho, “Fermions in optical lat-
tices swept across Feshbach resonances,” Phys. Rev. Lett.,
vol. 96, p. 010402, Jan 2006.

[27] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan,
C. Sanner, K. Xu, and W. Ketterle, “Evidence for su-
perfluidity of ultracold fermions in an optical lattice,”
Nature, vol. 443, no. 7114, pp. 961–964, 2006.

[28] K. Winkler, G. Thalhammer, F. Lang, R. Grimm,
J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P. Büch-
ler, and P. Zoller, “Repulsively bound atom pairs in an



6

optical lattice,” Nature, vol. 441, no. 7095, pp. 853–856,
2006.

[29] L. de Forges de Parny, V. G. Rousseau, and T. Roscilde,
“Feshbach-stabilized insulator of bosons in optical lat-
tices,” Phys. Rev. Lett., vol. 114, p. 195302, May 2015.

[30] I. Dimitrova, N. Jepsen, A. Buyskikh, A. Venegas-
Gomez, J. Amato-Grill, A. Daley, and W. Ketterle, “En-
hanced superexchange in a tilted Mott insulator,” Phys.
Rev. Lett., vol. 124, p. 043204, Jan 2020.

[31] F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and
Y. Takahashi, “Tools for quantum simulation with ultra-
cold atoms in optical lattices,” Nature Reviews Physics,
vol. 2, no. 8, pp. 411–425, 2020.

[32] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho,
E. Demler, and W. Ketterle, “Spin transport in a tunable
Heisenberg model realized with ultracold atoms,” Nature,
vol. 588, no. 7838, pp. 403–407, 2020.

[33] J. S. Rosenberg, L. Christakis, E. Guardado-Sanchez,
Z. Z. Yan, and W. S. Bakr, “Observation of the Han-
bury Brown–Twiss effect with ultracold molecules,” Na-
ture Physics, vol. 18, no. 9, pp. 1062–1066, 2022.

[34] T. Busch, B.-G. Englert, K. Rzażewski, and M. Wilkens,
“Two cold atoms in a harmonic trap,” Foundations of
Physics, vol. 28, no. 4, pp. 549–559, 1998.

[35] Z. Idziaszek and T. Calarco, “Analytical solutions for the
dynamics of two trapped interacting ultracold atoms,”
Phys. Rev. A, vol. 74, p. 022712, Aug 2006.

[36] I. S. Ishmukhamedov and V. S. Melezhik, “Tunneling of
two bosonic atoms from a one-dimensional anharmonic
trap,” Phys. Rev. A, vol. 95, p. 062701, Jun 2017.

[37] S. Sala, G. Zürn, T. Lompe, A. N. Wenz, S. Mur-
mann, F. Serwane, S. Jochim, and A. Saenz, “Co-
herent molecule formation in anharmonic potentials
near confinement-induced resonances,” Phys. Rev. Lett.,
vol. 110, p. 203202, May 2013.

[38] T. Hartke, B. Oreg, N. Jia, and M. Zwierlein, “Quan-
tum register of fermion pairs,” Nature, vol. 601, no. 7894,
pp. 537–541, 2022.

[39] V. Popkov, X. Zhang, and A. Klümper, “Phantom Bethe
excitations and spin helix eigenstates in integrable pe-
riodic and open spin chains,” Phys. Rev. B, vol. 104,
p. L081410, Aug 2021.

[40] P. N. Jepsen, Y. K. Lee, H. Lin, I. Dimitrova, Y. Mar-
galit, W. W. Ho, and W. Ketterle, “Long-lived phantom
helix states in Heisenberg quantum magnets,” Nat. Phys.,
vol. 18, no. 8, pp. 899–904, 2022.

[41] P. N. Jepsen, W. W. Ho, J. Amato-Grill, I. Dimitrova,
E. Demler, and W. Ketterle, “Transverse spin dynamics
in the anisotropic Heisenberg model realized with ultra-
cold atoms,” Phys. Rev. X, vol. 11, p. 041054, Dec 2021.

[42] L.-M. Duan, E. Demler, and M. D. Lukin, “Controlling
spin exchange interactions of ultracold atoms in optical
lattices,” Phys. Rev. Lett., vol. 91, p. 090402, Aug 2003.

[43] A. B. Kuklov and B. V. Svistunov, “Counterflow super-
fluidity of two-species ultracold atoms in a commensurate
optical lattice,” Phys. Rev. Lett., vol. 90, p. 100401, Mar
2003.

[44] T. Secker, J. Amato-Grill, W. Ketterle, and S. Kokkel-
mans, “High-precision analysis of Feshbach resonances in
a Mott insulator,” Phys. Rev. A, vol. 101, p. 042703, Apr
2020.

[45] “Multi-band radio-frequency spectroscopy of 7Li in a
three-dimensional optical lattice,” to be published.

[46] N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich,
“Observation of universality in ultracold 7Li three-body
recombination,” Phys. Rev. Lett., vol. 103, p. 163202, Oct
2009.

[47] D.-S. Lühmann, O. Jürgensen, and K. Sengstock, “Multi-
orbital and density-induced tunneling of bosons in optical
lattices,” New Journal of Physics, vol. 14, p. 033021, Mar
2012.

[48] O. Jürgensen, F. Meinert, M. J. Mark, H.-C. Nägerl, and
D.-S. Lühmann, “Observation of density-induced tunnel-
ing,” Phys. Rev. Lett., vol. 113, p. 193003, Nov 2014.

[49] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A.
Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of
dipolar spin-exchange interactions with lattice-confined
polar molecules,” Nature, vol. 501, no. 7468, pp. 521–525,
2013.

[50] W. D. Newman, C. L. Cortes, A. Afshar, K. Cadien,
A. Meldrum, R. Fedosejevs, and Z. Jacob, “Observa-
tion of long-range dipole-dipole interactions in hyper-
bolic metamaterials,” Science Advances, vol. 4, no. 10,
p. eaar5278, 2018.

[51] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnor-
rberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D.
Lukin, and I. Bloch, “Time-resolved observation and con-
trol of superexchange interactions with ultracold atoms
in optical lattices,” Science, vol. 319, no. 5861, pp. 295–
299, 2008.

[52] S. Sachdev, K. Sengupta, and S. M. Girvin, “Mott in-
sulators in strong electric fields,” Phys. Rev. B, vol. 66,
p. 075128, Aug 2002.

[53] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss,
and M. Greiner, “Quantum simulation of antiferromag-
netic spin chains in an optical lattice,” Nature, vol. 472,
no. 7343, pp. 307–312, 2011.

[54] F. Meinert, M. J. Mark, E. Kirilov, K. Lauber, P. Wein-
mann, A. J. Daley, and H.-C. Nägerl, “Quantum quench
in an atomic one-dimensional Ising chain,” Phys. Rev.
Lett., vol. 111, p. 053003, Jul 2013.

[55] Unlike previous work, in the presence of an energy gra-
dient, the lattice-induced resonances would be split into
an “uphill” and “downhill” resonance.

[56] T. Müller, S. Fölling, A. Widera, and I. Bloch, “State
preparation and dynamics of ultracold atoms in higher
lattice orbitals,” Phys. Rev. Lett., vol. 99, p. 200405, Nov
2007.

[57] J. Vargas, M. Nuske, R. Eichberger, C. Hippler,
L. Mathey, and A. Hemmerich, “Orbital many-body dy-
namics of bosons in the second Bloch band of an optical
lattice,” Phys. Rev. Lett., vol. 126, p. 200402, May 2021.

[58] D. Capecchi, C. Cantillano, M. J. Mark, F. Mein-
ert, A. Schindewolf, M. Landini, A. Saenz, F. Re-
vuelta, and H.-C. Nägerl, “Observation of confinement-
induced resonances in a 3D lattice,” arXiv e-prints,
p. arXiv:2209.12504, Sept. 2022.

[59] G. K. Campbell, J. Mun, M. Boyd, P. Medley, A. E.
Leanhardt, L. G. Marcassa, D. E. Pritchard, and W. Ket-
terle, “Imaging the Mott insulator shells by using atomic
clock shifts,” Science, vol. 313, no. 5787, pp. 649–652,
2006.


