
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Universal Cost Bound of Quantum Error Mitigation Based on
Quantum Estimation Theory

Kento Tsubouchi, Takahiro Sagawa, and Nobuyuki Yoshioka
Phys. Rev. Lett. 131, 210601 — Published 22 November 2023

DOI: 10.1103/PhysRevLett.131.210601

https://dx.doi.org/10.1103/PhysRevLett.131.210601


Universal cost bound of quantum error mitigation based on quantum estimation
theory

Kento Tsubouchi,1, ∗ Takahiro Sagawa,1, 2 and Nobuyuki Yoshioka1, 3, 4, †

1Department of Applied Physics, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Tokyo 113-8656, Japan
3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Wako-shi, Saitama 351-0198, Japan

4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

We present a unified approach to analyzing the cost of various quantum error mitigation methods
on the basis of quantum estimation theory. By analyzing the quantum Fisher information matrix
of a virtual quantum circuit that effectively represents the operations of quantum error mitigation
methods, we derive for a generic layered quantum circuit under a wide class of Markovian noise
that, unbiased estimation of an observable encounters an exponential growth with the circuit depth
in the lower bound on the measurement cost. Under the global depolarizing noise, we in particular
find that the bound can be asymptotically saturated by merely rescaling the measurement results.
Moreover, we prove for random circuits with local noise that the cost grows exponentially also
with the qubit count. Our numerical simulations support the observation that, even if the circuit
has only linear connectivity, such as the brick-wall structure, each noise channel converges to the
global depolarizing channel with its strength growing exponentially with the qubit count. This
not only implies the exponential growth of cost both with the depth and qubit count, but also
validates the rescaling technique for sufficiently deep quantum circuits. Our results contribute to
the understanding of the physical limitations of quantum error mitigation and offer a new criterion
for evaluating the performance of quantum error mitigation techniques.

Introduction.— One of the central problems in quan-
tum technology is to establish control and understanding
of unwanted noise, since an accumulation of errors may
eventually spoil the practical advantage of quantum de-
vices. In the case of quantum computing, an elegant
framework of quantum error correction has been devel-
oped as a fundamental countermeasure [1–8], while it re-
mains years to decades ahead when we can reliably im-
plement provably advantageous quantum algorithms. A
realistic and powerful alternative for near-future devices
is to employ the art of quantum error mitigation (QEM);
instead of consuming an excessive number of qubits to
correct the bias caused by noise via interleaved measure-
ment and feedback, we aim to mitigate their effect via ap-
propriate post-processing in trade of an increased number
of measurements.

A wide variety of QEM methods have been proposed:
zero-noise extrapolation [9–11], probabilistic error can-
cellation [10, 12, 13], virtual distillation [14–17], (gener-
alized) quantum subspace expansion [18–21], symmetry
verification/expansion [22–24], and learning-based error
mitigation [25, 26], to name a few (Refer to Ref. [27, 28]
for review). The growing number of demonstrations by
both numerical and experimental means shows that the
QEM has become vital [11, 29–31]. Meanwhile, there
are so far only a few guiding principles to choose from
existing QEM methods [32, 33], due to the limited theo-
retical understanding of their fundamental aspects. It is
an urgent task to understand what is the limit of QEM,
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in particular, the required resource to recover the desired
quantum circuit output.

We find that quantum estimation theory provides a
powerful tool to address this problem. Quantum esti-
mation theory claims that, given an unbiased estima-
tor of a physical observable, its estimation uncertainty
can be characterized by the quantum Fisher informa-
tion [34–36]. For example, the sampling cost for con-
structing an unbiased estimator for noiseless quantum
states from measurements in noisy quantum states can
be bounded using the quantum Fisher information [37].
While this strongly implies that the quantum estimation
theory yields a tool to analyze the trade-off cost to re-
cover the desired quantum operation, it has remained to-
tally unknown how to investigate realistic computation
models such as quantum circuits, in which the holistic
effect of the error cannot be expressed by a single noise
channel in general. Moreover, since QEM methods are
mostly not purely classical post-processing but also re-
quire additional quantum operations, the existing frame-
work is not straightforwardly applicable.

In this Letter, we aim to fill these gaps by extend-
ing the applicability of quantum estimation theory. By
analyzing the quantum Fisher information matrix of an
enlarged virtual quantum circuit which translates the
operations of QEM methods, we show that the lower
bound of the sampling cost for unbiased QEM grows ex-
ponentially with the circuit depth L for a generic lay-
ered quantum circuit under a wide class of noise (The-
orem 1). Furthermore, for random layered circuits un-
der local noise, we show that the cost grows exponen-
tially also with the qubit count n (Theorem 2). We have
also numerically verified that noise channels in the large
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depth regime may be effectively described by the global
depolarizing channel whose strength grows exponentially
with n, for which we provide an optimal technique to
suppress the effect of noise. These results surpass some
prior work suggesting some exponential growth (not nec-
essarily the sampling cost of QEM) under the local depo-
larizing noise [32, 33, 38] from both theoretical and prac-
tical points of view: our result not only provides the first
mathematical proof for a necessary condition for unbi-
ased QEM under a wide range of noise, but also provides
practical guidelines toward cost-optimal QEM.

Problem setup.— Analysis of sample complexity via
the quantum estimation theory assumes operations to be
expressed as quantum channels. Therefore, it is benefi-
cial to embed QEM operations into a quantum circuit.
Below, we first define a noiseless and noisy layered quan-
tum circuit, and then present the concept of a virtual
quantum circuit that encodes QEM operations.

Let ρ̂ = UL ◦ · · · ◦ U1(ρ̂0) (Ul(·) = Ûl · Û†
l ) be an un-

known n-qubit target state generated from L layers of
noiseless unitary gates {Ul}Ll=1 operating on an initial
state ρ̂0. The target state ρ̂ can be parameterized by the
generalized Bloch vector [39] θ ∈ R4n−1 as

ρ̂ =
1

2n
Î + 2(−1−n)/2θ · P̂ , (1)

where Î ≡ σ̂⊗n
0 and P̂ = {P̂i}2

2n−1
i=1 is an array

of non-trivial tensor product of Pauli operators P̂i ∈
{σ̂0, σ̂x, σ̂y, σ̂z}⊗n \ {σ̂0}⊗n

.
An n-qubit noisy layered circuit is defined to have the

following structure: (i) noiseless preparation of initial
state ρ̂0 [40], (ii) L layers of noisy unitary operations

{El ◦ Ul}Ll=1 with El assumed to be a Markovian error, and
(iii) noiseless POVMmeasurementM0 aimed to estimate

the expectation value of a traceless observable X̂ = x · P̂
with x ∈ R4n−1. Each noise channel El maps a general-
ized Bloch vector as

El : θ 7→ Alθ + cl, (2)

where (Al)ij = 2−ntr[P̂iEl(P̂j)] is the unital part
of the Pauli transfer matrix of El and (cl)i =

2(1−3n)/2tr[P̂iEl(Î)] quantifies the non-unital action of the

noise [37]. We also define noise strength Γ(El) ≡ ∥Al∥−1

with ∥Al∥ = maxe∈R22n−1
∥Ale∥
∥e∥ and ∥e∥ =

∑
i |ei|

2
,

which represents the minimal degree of shrinkage of
the generalized Bloch sphere caused by El, and γ =
minl {Γ(El)}l as the minimal strength among the differ-
ent noise.

The objective of QEM methods is to remove the ef-

fect of the noise channels {El}Ll=1 so that we have an

unbiased estimator of traceless observable X̂, or namely
⟨X̂⟩ ≡ tr[ρ̂X̂] = 2(n−1)/2θ ·x. Since the essence of QEM
is to run noisy quantum circuits with implementable
modifications into the gates, errors, and classical post-
processing, we can construct a virtual quantum circuit
which encompasses the functionality of QEM methods.
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FIG. 1. A virtual quantum circuit structure that gives an
equivalent representation of most existing QEM methods.
The blue (red) coloring denotes that the operation is ideal
(noisy), while the operations with yellow coloring explicitly
involve QEM operations.

As is shown in Fig. 1, the virtual circuit involves N
copies of noisy layered circuits with three-fold modifica-
tions from the original one: (boosted) noise Elm in the l-
th layer of m-th copy such that Γ(Elm) ≥ Γ(El) ≥ γ, clas-
sical register ρ̂c,m coupled with the system qubits via the
additional operation Clm, and finally, the POVM mea-
surement M performed on the entire copies to output
the estimator of ⟨X̂⟩. Classical register ρ̂c,m is initial-
ized with probabilistic mixtures of computational bases
as ρ̂c,m =

∑
i pmi |i⟩⟨i|, and additional operation Clm per-

forms unitary operation Clmi according to the state of the
classical register as Clm =

∑
i Clmi ⊗ |i⟩⟨i|. Note that the

virtual circuit structure excludes the quantum error cor-
rection. This is because we only allow Clm to be unitary
operation according to the state of the classical registers.
We further describe in SM how various QEM methods
can be mapped into this virtual circuit structure [41].
The cost of QEM can be defined as the number of

copies N of the noisy circuits, or the sample complex-
ity, which roughly can be interpreted as the number of
measurements on the actual setup. Our goal is to de-
rive the lower bound on the cost N required to perform
unbiased estimation of ⟨X̂⟩, by analyzing the evolution
of the quantum Fisher information matrix of quantum
states generated by the virtual circuit. Note that the
lower bound described below also holds even when we
think of measurement error and measurement error mit-
igation [42–44]. This is because noisy measurement fol-
lowed by the process of measurement error mitigation can
be seen as a single POVM measurement.
Main Results.— In order to achieve our goal, we re-

express the m-th copy of the quantum state in the virtual
circuit as

E ′
m(ρ̂(θ)⊗ ρ̂c,m), (3)

where E ′
m is an effective noise channel defined by compil-

ing all the gates as E ′
m = ELm ◦ UL ◦ CL−1m ◦ · · · ◦ E1m ◦

U1 ◦ C0m ◦ U−1
1 ◦ · · · ◦ U−1

L . This compilation allows us to
calculate the quantum Fisher information matrix of the
state right before the measurement. To be concrete, we
analyze the SLD Fisher information matrix J [45] of the

quantum state
⊗N

m=1 E ′
m(ρ̂(θ)⊗ ρ̂c,m).



3

(a) (b)global depolarizing local depolarizing

Sc
al

in
g 

of
 c

os
t 

Depth L Depth L

Sc
al

in
g 

of
 c

os
t 

(c) amplitude damping

Depth L

Sc
al

in
g 

of
 c

os
t 

FIG. 2. Scaling of the cost to perform QEM methods for random Clifford circuit of n = 2 qubits under (a) global depolarizing
noise, (b) local depolarizing noise, and (c) local amplitude damping noise with error rate p = 0.01. The red, blue, and green
lines denote the sampling overhead of generalized subspace expansion [21, 46] using power subspace, the probabilistic error
cancellation as derived in Ref. [47], and the rescaling technique as explained in the main text. The rescaling factor is (1− p)−L

and (1 − p)−3nL4n−1/(4n−1) for global and local depolarizing noise, and (1 − p)−2nL4n−1/(4n−1) for amplitude damping noise,
respectively. Bound (Thm. 1) and Bound (Thm. 2) represent the lower bound of the cost obtained from Theorem 1 and
Theorem 2, respectively. The explicit scaling of Bound (Thm.2) is given in Eq. (8). Note that GSE and the rescaling methods
do not completely eliminate the errors for (b) and (c), while we confirm a significant reduction of bias.

We find that J can be bounded as J ≲
∑

m Γ(E ′
m)−2I≲

Nγ−2L, which implicates the exponential decay of J with
the circuit depth L. By combining this fact with the
quantum Cramér-Rao inequality, which relates J with
the standard deviation ε of an unbiased estimator [48],
we immediately obtain the following theorem for the cost
N of the unbiased QEM (See SM [41] for the proof):

Theorem 1. Suppose that the noise Elm satisfies the fol-
lowing conditions for all l and m:

(I) For all ρ̂ ̸= σ̂, Elm(ρ̂) ̸= Elm(σ̂).
(II) For all ρ̂, Elm(ρ̂) is full rank, that is, Elm(ρ̂) is a

positive definite matrix whose eigenvalues are all
greater than zero.

Then, the cost N required for any unbiased estimator
of ⟨X̂⟩ with standard deviation ε constructed from QEM
that can be translated into the virtual quantum circuit in
Fig. 1 satisfies

N ≥ ∥x∥2

ε2
βγ2L, (4)

where β is the largest 0 < β < 1 such that Elm(ρ̂)− β
2n Î ≥

0 for all ρ̂, l, and m. Suppose further that the noise Elm is

unital, that is, Elm( Î
2n ) =

Î
2n . Then, the cost N satisfies

N ≥ ∥x∥2

ε2
(
1− (1− β)L

)
γ2L ∼ ∥x∥2

ε2
γ2L. (5)

Theorem 1 shows that, if γ > 1, the cost N of the un-
biased QEM grows exponentially with the circuit depth
L no matter how we choose Elm (with their strength
bounded from below), Clm, and M. We can indeed
show γ > 1 for unital noise under the condition (II) (See
SM [41] for details).

Let us make a few remarks on the condition of Theo-
rem 1. Condition (I) is a necessary condition for success-
ful QEM, meaning that the information of the quantum

state is not completely destroyed by noise. Condition (II)
means that the variance of all observable of any state af-
ter the noise is applied is non-zero. In other words, for
any observable and quantum state, the cost of obtain-
ing an unbiased estimator from the measurement of the
noisy state is greater than zero. We also remark that β is
a constant that represents how far away the generalized
Bloch sphere is from the original surface due to the noise.
It is noteworthy that the lower bound stated in The-

orem 1 is for a generic layered quantum circuit. Since
it also involves circuits that only weakly entangle qubits,
the lower bound (4) does not depend on the qubit count
n. However, if the quantum circuit scrambles the quan-
tum state strong enough, we expect that every noise af-
fects the measurement outcome; we must pay overhead
to eliminate every local noise and thus encounter depen-
dence on n. In fact, under local noise we can tighten the
bound as in the following informal theorem (See SM for
details [41]):

Theorem 2. Let U1, U2, ..., UL−1, UL be n-qubit unitary
gate drawn from a set of random unitary that form uni-
tary 2-design [49] and El be a local noise. Then, there is
exponential growth with both qubit count n and depth L
in the average over the number of copies N required to
perform unbiased estimation of ⟨X̂⟩ over {U1, ..., UL}.

Applications.— Here, we compare the obtained bounds
and the practical performance of QEM methods under
realistic noise channels to determine the efficiency of ex-
isting methods. For the sake of illustrativeness, we con-
sider three typical noise channels: the global and local
depolarizing noise as representative of unital noise, and
amplitude damping noise as representative of nonunital
noise.

First, we consider the case where all unitary gates are
followed by the global depolarizing noise Elm : θ 7→ (1−
plm)θ, where the error rate is lower bounded as plm ≥
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p. Since the global depolarizing noise channel is unital
and satisfies the assumptions of Theorem 1 with minimal
noise strength γ = 1

1−p and β = p, the cost N required

for the unbiased estimator of the expectation value ⟨X̂⟩
constructed from QEM shall satisfy

N ≥ ∥x∥2

ε2
(
1− (1− p)L

)( 1

1− p

)2L

(6)

∼ ∥x∥2

ε2

(
1

1− p

)2L

. (7)

We can show that Eq. (7) can be saturated in the limit
of large L. By setting plm = p and ignoring the classi-
cal registers and the additional operations, the effective
noise channel E ′

j can be seen as the global depolariz-

ing noise channel with error rate 1 − (1 − p)L. Since

the measurement on the observable X̂ yields ⟨X̂⟩noisy =
2(n−1)/2(1− p)Lθ · x, we achieve unbiased estimation by

rescaling the measurement result as (1 − p)−L ⟨X̂⟩noisy.
Since the estimation variance on ⟨X̂⟩noisy is ∥x∥2 in the

limit of large L, the sampling cost to estimate ⟨X̂⟩ ap-

proaches ∥x∥2

ε2

(
1

1−p

)2L

, which satisfies the lower bound

of Theorem 1. We compare these results in Fig. 2 (a)
with other error mitigation methods that also allow un-
biased estimation.

Next, we consider the case of local noise Elm = (E(0)
lm )⊗n

with E(0)
lm : θ 7→ (1 − plm)θ for local depolarizing and

(θx, θy, θz) 7→ (
√
1− plmθx,

√
1− plmθy, (1 − plm)θz +

plm) for amplitude damping noise, where θ = (θx, θy, θz)
denotes the Bloch vector and the error rate is lower
bounded as plm ≥ p. From Theorem 1, we can show
that the cost N required by any unbiased estimator of
the expectation value ⟨X̂⟩ constructed from QEM satis-
fies Eq. (7) in the case of local depolarizing noise. For a
random circuit whose unitary gate is drawn from unitary
2-design such as n-qubit Clifford group [49], we can even
tighten this bound in the average case as

E[N ] ≥


O

((
1 + 3

2
4n

4n−1p
)nL

)
(local dep.)

O

((
1 + 4n

4n−1p
)nL

)
(amp. damping)

(8)

from Theorem 2. We compare these results in Fig. 2
(b)(c) with some QEM methods.

While the scaling of Eq. (8) is derived under the as-
sumption of unitary 2-design, our numerical simulation
suggests that the bound shall hold for even wider class of
quantum circuits. Concretely, as is presented in Fig. 3,
the effect of each noise becomes indiscriminable from that
of the global depolarizing noise whose error rate grows
exponentially with n in the large-L regime, even when
any of {Ul} does not constitute unitary 2-design. These
results are in agreement with the phenomenological ar-
gument provided in Ref. [50] that, noise in deep layered
circuits shall be modeled by global depolarizing noise
with its strength fluctuating as O(1/

√
L). These facts
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FIG. 3. Convergence of (a) local depolarizing and (b) am-
plitude damping into global depolarizing noise under random
circuits of n = 6 qubits with error rate p = 0.0001. We
denote by (1 − p)kL the singular values of the unital part
of the Pauli transfer matrix for the effective noise channel
E ′
m at each depth L, where k for the maximal and minimal

ones are plotted in this figure. As is highlighted in the inset,
we find that all k’s approach the geometric mean kmean of
the singular values for each noise channel with its fluctuation
scaling as O(1/

√
L), implying the convergence to the global

depolarizing noise. For instance, kmean = 3n4n−1/(4n − 1)
for local depolarizing and kmean = 2n4n/(4n − 1) for am-
plitude damping. Here, we consider three class of random
circuits: hardware-efficient ansatz with random parameters,
2-qubit random unitary between random pairs, and Haar ran-
dom unitary (See SM for details [41]).

not only give us another evidence for scaling as in Eq.
(8) but also imply that, although we cannot remove bias
completely, we may optimally suppress the effect of noise
by just rescaling the measurement results as in the case
of global depolarizing noise. We also applied our results
for local dephasing noise, and showed that such a picture
also holds as well (See SM for details [41]).
Conclusion.— In this Letter, we have presented a the-

oretical analysis of quantum error mitigation (QEM) to
reveal two unavoidable cost bound for unbiased QEM: ex-
ponential growth with depth L for generic layered quan-
tum circuits, and furthermore exponential growth with
qubit count n for random/chaotic quantum circuits. The
lower bound is shown to be saturated under global depo-
larizing noise by just rescaling the measurement result,
while numerical results suggest that other noise may also
be mitigated as well when the circuit is sufficiently deep,
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since the noise including both unital ones and nonunital
ones may converge to the global depolarizing noise.

We envision a rich variety of future directions. Here
we mention the most important two in order. The first
is to develop even more knowledge of cost-optimal QEM,
especially in the early fault-tolerant regime. Even for
the fault-tolerant quantum computer, a slight amount
of logical errors may remain in the circuit (especially in
the early regime). The implemented quantum circuits
will be much deeper than those of NISQ, and thus the
convergence of logical errors to global depolarizing noise
is expected to be stronger. Thus, we believe that we
can use our results to develop ways to utilize long-term
quantum computation in the most efficient way.

The second is to incorporate the influence of bias in the
estimators. QEM methods in reality are not designed to
completely remove the effect of the noise, and a slight
bias is allowed to remain in the estimation results. In
such situations, we can expect a trade-off relationship
between the cost, bias, and uncertainty of the estimator.
Extending the results on single parameter estimation [51]
is left as an interesting future work.
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Note added.— During the completion of our manuscript,
we became aware of an independent work by Takagi et
al. [52], which also showed the exponential growth of
the cost N with circuit depth based on analysis of dis-
criminability between quantum states. Also, Quek et
al. [53] has theoretically analyzed the exponential scal-
ing of sample complexity regarding both qubit counts
and circuit depth via statistical learning theory. We note
that, for non-unital noise, our average bound is quadrat-
ically tighter than the bound obtained by Refs. [53]. See
SM [41] for more details.
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