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Quantum flow algorithms for simulating many-body systems on quantum computers

Karol Kowalski∗ and Nicholas P. Bauman
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA

We conducted quantum simulations of strongly correlated systems using the quantum flow (QFlow) approach,
which enables sampling large sub-spaces of the Hilbert space through coupled variational problems in reduced
dimensionality active spaces. Our QFlow algorithms significantly reduce circuit complexity and pave the way
for scalable and constant-circuit-depth quantum computing. Our simulations show that QFlow can optimize the
collective number of wave function parameters without increasing the required qubits using active spaces having
an order of magnitude fewer number of parameters.

Introduction.— The development of quantum comput-
ing has grabbed the attention of the many-body chemistry
and physics communities with the promise to provide expo-
nential speed-ups over traditional computing for problems
such as solving the electronic Schrödinger equation for
ground and excited states or the time-dependent equation
for studying dynamics. For the electronic problem, the two
salient quantum algorithms for determining energetics with
the electronic Hamiltonian are quantum phase estimation
(QPE)[1–6] and variational quantum eigensolver (VQE)
[7–18]. Both algorithms are seized by complexities that
prevent routine calculations of meaningful problems that
plague traditional computing. These complexities result
from the inherently large dimensionality needed to provide
accurate and reliable results. For QPE, this manifests in
circuit depths far beyond what is achievable in the noisy
intermediate-scale quantum (NISQ) device era of quantum
computing. For VQE, a measure of complexity is the num-
ber of parameters from a given ansatz currently optimized
using traditional computing algorithms. The progress in
enabling quantum computing technologies is contingent not
only on the advances in the design of quantum materials but
also on the ability to adapt to new methodological advances
in the theory of correlated many-body systems.

The reduction of dimensionality and compression of
quantum Hamiltonians has become a crucial area of fo-
cus in the realm of quantum computing. In light of this, it
is of utmost importance to develop methodologies that aim
to compress the correlation effects in smaller spaces that
can be handled by current quantum computing resources
[19–21]. As such, the authors have devised a coupled clus-
ter (CC)-based downfolding formalism that enables the
incorporation of dynamical correlation effects from large
Hilbert spaces into manageable effective Hamiltonians for
a smaller sub-space of the original problem [22]. This let-
ter describes and provides numerical evidence for a new
dimensionality-reducing technique called the quantum flow
(QFlow) approach. The QFlow algorithm integrates the
reduced-dimensionality active space variational problems
to approximate the ground-state energy of the Hamiltonian
operator within a larger sub-space of Hilbert space [23].

Within the framework of QFlow formalism, the high-
est demand for qubits is linked to the number of qubits
necessary for the representation of the quantum problem
that corresponds to the largest active space incorporated in
the flow. Using modest-size active spaces, we demonstrate
that QFlow can efficiently recover the corresponding en-

ergetics of the full problem. It is a flexible workflow that
we expected to play a pivotal role in performing quantum
simulations on quantum computers during the transition
from NISQ devices to fully-fledged error-corrected quan-
tum computing.

CC Theory and Quantum Flows.— The CC theory
[24–31] has evolved into a one of the most prominent
formalisms to describe correlated systems. In the single-
reference variant (SR-CC), the ground-state wave function
|Ψ⟩ is defined by the exponential Ansatz

|Ψ⟩= eT |Φ⟩ , (1)

T =
NA

∑
k=1

1
(k!)2 ∑

i1,...,ika1,...,ak

ta1...ak
i1...ik

a†
a1
. . .a†

ak
aik . . .ai1 , (2)

where T and |Φ⟩ represent the cluster operator and refer-
ence function. The T operator is defined by the maximum
excitation level (NA), cluster amplitudes ta1...ak

i1...ik
, and cre-

ation/annihilation operators a†
p/aq where p,q stand for the

general spin-orbital indices. The indices i j (a j) stand for oc-
cupied (unoccupied) spin-orbitals in the reference function
|Φ⟩. Standard CC equations are given by the equations

Qe−T HeT |Φ⟩ = 0 , (3)
⟨Φ|e−T HeT |Φ⟩ = E , (4)

where Q is a projection operator onto excited Slater deter-
minants generated by acting with T on |Φ⟩ (the projection
onto the reference function is denoted as P). Recently, it has
been demonstrated that CC energies can be calculated by
diagonalizing effective Hamiltonians in a class of complete
active spaces (CASs) that are specific to the approximation
of the T operator[23, 32, 33]. If, in the particle-hole for-
malism, CAS is generated by the excitation sub-algebra (h),
and the cluster operator T can be partitioned into internal
(Tint(h); producing excitation within CAS) and external
(Text(h); producing excitation outside of CAS) parts and
eTint(h)|Φ⟩ represents an exact-type expansion in the CAS,
then the CC energy can be obtained as:

Heff(h)eTint(h)|Φ⟩= EeTint(h)|Φ⟩ , (5)

Heff(h) = (P+Qint(h))e−Text(h)HeText(h)(P+Qint(h)) ,
(6)

where Qint(h) is a projection onto excited (with respect to
|Φ⟩) configurations in the CAS. The above property of the
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CC formalism (referred to as the CC downfolding) is valid
for any type of sub-algebra h (henceforth referred to as
the sub-system embedding sub-algebras (SES)) described
above. The partitioning of the cluster operator into internal
and external parts has been originally introduced in the
context of the state-selective multireference CC formalism
in Refs.[34–37]. Although the SES Theorem (Eq.(5)) and
Equivalence Theorem (vide infra) are based on the decom-
position of cluster operator into internal/external parts, the
possibility of calculating CC energies in an alternative way
and integrating various active-space problems were pro-
posed only recently [23, 32]. The invariance of the CC
energy with respect to the choice of SES led to the concept
of quantum flow and Equivalence Theorem [23, 38], which
states that when several SES problems represented by (6)
are coupled into the flow, i.e.,

Heff(hi)eTint(hi)|Φ⟩= EeTint(hi)|Φ⟩(i = 1, . . . ,M) (7)

(M stands for the number of CASs included in the flow),
the corresponding solution is equivalent to the standard rep-
resentation of the CC theory given by Eqs. (3) and (4) with
the T operator defined as a combination of all non-repetitive
excitations included in Tint(hi) (i= 1, ...,M) operators, sym-
bolically denoted as,

T = ∑̃
M

i=1Tint(hi) . (8)

An important consequence of the Equivalence Theorem is
the fact that for some choices of cluster operator, Eq. (8),
high-dimensionality problem, Eqs. (3) and (4) can be re-
placed by a flow composed of reduced-dimensionality non-
Hermitian eigenvalue problems. For each sub-algebra hi
in the eigenvalue problem of Eq. (7), the effective Hamil-
tonian Heff(hi) follows Eq. (6), where the external cluster
operators Text(hi) are the collection of operators excluding
Tint(hi),

Text(hi) = T −Tint(hi) . (9)

The T operator defined by Eq.(8) does not correspond, in
general, to a typical rank-truncated cluster operator. For
example, for all possible (4e,4o)-type active spaces, the T
operator encompasses all single and double excitations as
well as sub-sets of triple and quadruple. A version of the
Equivalence Theorem holds for truncated forms of Tint(hi)
operators, which leads to the recovery of standard rank-
defined CC approximations. However, in this case, the
active-space problems cannot be represented in an elegant
form involving effective Hamiltonian language.

To extend the SR-CC flows to the Hermitian case, in con-
trast to previous analysis [23], we will employ variational
principle using functional

E = ⟨Φ|e−σ Heσ |Φ⟩ (10)

where a general-type anti-Hermitian cluster operator σ

(σ = ∑
NA
k=1

1
(k!)2 ∑p1,...,pkq1,...,qk

σ
q1...qk
p1...pk a†

q1
. . .a†

qk
apk . . .ap1 , σ† =

−σ ) includes all excitations needed to generate space

that is too large to be handled by available quantum com-
puters. To tackle the problem using limited quantum re-
sources, let us assume that the σ operator can be approxi-
mated by amplitudes included in anti-Hermitian operators
σint(hi)(i = 1, . . . ,M), producing excitations within corre-
sponding active spaces (AS(i)) generated by sub-algebras
hi

σ ≃ ∑̃
M

i=1σint(hi) . (11)

In the next step, we will look at the problem (10) from the
point of view of i-th active space and decompose σ operator
as

σ ≃ σint(hi)+σext(hi) , (12)

and

E = ⟨Φ|e−σint(hi)−σext(hi)Heσint(hi)+σext(hi)|Φ⟩ . (13)

Next, we will utilize the order-N active-space-specific Trot-
ter formula (in analogy to Ref. [23]) to expand exponents,
which introduce active-space-specific E(hi) approximation
to energy E:

E(hi) = ⟨Ψint(hi,N)|Heff(hi,N)|Ψint(hi,N)⟩ , (14)

where

Heff(hi,N) = (P+Qint(hi))[G
(N)
i ]−1HG(N)

i (P+Qint(hi))
(15)

G(N)
i = (eσext(hi)/Neσint(hi)/N)N−1eσext(hi)/N (16)

and

|Ψint(hi,N)⟩= eσint(hi)/N |Φ⟩ . (17)

The coupled variational problems (14) for i = 1, . . . ,M
define the QFlow algorithm. As in the non-Hermitian
case, the total pool of amplitudes optimized in the QFlow
corresponds to all non-repetitive amplitudes for active
spaces included in the flow. As a consequence of the non-
commutativity of operators defining σ -operators and the
need to use Trotter approximations, the energy values in
(14) may be, in general different. For this purpose, we in-
troduce physically motivated ordering of the active spaces
(the first (last), or primary active space contains the most
(the least) important part of correlation effects) based, for
example, on the orbital energy criteria and use the energy
(E(h1)) to probe the energy in the QFlow procedure. The
advantage of the quantum version of the QFlow algorithm
stems from the fact that the qubits requirement is associated
with the qubits requirement of the largest active space in the
flow. In this Letter, we will mainly focus our attention on
the simplest N = 1 case where sets of amplitudes defining
effective Hamiltonian and |Ψint(hi,N = 1)⟩ ≡ |Ψint(hi)⟩ are
disjoint.
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Numerical Implementation.— The QFlow algorithm
has never been validated numerically. To fill this gap, we
developed QFlow implementation for the first-order Trot-
terization approximation (N = 1) based on the stringMB
code - an occupation number representation-based emulator
of quantum computing [33]. Our QFlow implementation,
which emulates a VQE solver for each CAS involved in the
flow, is schematically shown in Fig. 1 and uses conventional
computers to store a global pool of amplitudes and prepare

effective Hamiltonian for each cycle. When representing
the flow in the form of coupled eigenvalue problems, one
has the flexibility in defining the active spaces, which can in-
clude those that overlap with each other and share common
parameters. For the hi computational block we partition
the set of variational parameters θ(hi) into subset θCP(hi)
that refers to common pool of amplitudes determined in
preceding steps (say, for h j ( j = 1, . . . , i− 1)) and subset
θX(hi) that is uniquely determined in the hi minimization
step for E(hi), i.e,

min
θX(hi)

⟨Ψint(θ
X(hi),θ

CP(hi))|Heff(hi)|Ψint(θ
X(hi),θ

CP(hi))⟩ , (i = 1, . . . ,M) , (18)

where Heff(hi) ≡ Heff(hi,N = 1) and
|Ψint(θ

X(hi),θ
CP(hi))⟩ (chosen in the form of uni-

tary CC (UCC) Ansatz [39–41]) approximates
|Ψint(hi)⟩= eσint(hi)|Φ⟩ in Eq. (17). When combined with
a simple form of the gradients estimates on the quantum
computers [14]

∂E(hi)

∂θ X(hi)k
≃ ⟨Ψint(hi)|[Heff(hi),τ

X
k (i)]|Ψint(hi)⟩ , (19)

where τX
k (i) is a corresponding combination of the strings

of a creation/annihilation operators associated with the
θ X(hi)k amplitude in the σint(hi) operator. Instead of per-
forming full optimization for each active space included in
the QFlow, we perform only one optimization step based on
the gradient (19). We also employ UCC-type representation
for each σext(hi) needed to construct Heff(hi) operator in
Eq. (15).

Results.— As a test system to demonstrate the perfor-
mance of the QFlow techniques, we chose the Hn linear
chains of the hydrogen atoms: H6 and H8 models in small
STO-3G basis set [42], where one can vary the complexity
of the ground-state wave function by changing the H-H
distances (RH−H) between adjacent atoms. For example,
while for RH−H= 2.0 a.u., one deals with the weakly cor-
related case, for RH−H= 3.0 a.u., the system is strongly
correlated and all Hartree-Fock orbitals used in simulations
are non-negligible. This means that one cannot define a sin-
gle small-dimensionality active space to capture all needed
correlation effects for the RH−H= 3.0 a.u. case. Recently,
the Hn models have been used for validation of cutting-edge
many-body numerical methodologies for treating correlated
quantum systems [43–47].

We summarized QFlow results in Table I and in Figs.
(2) and (3). For both systems, the QFlow included all ac-
tive spaces defined by arbitrary two occupied active and
two virtual active orbitals and four active electrons (the
QFlow(4e,4o) model). For H6 and H8 systems QFlow inte-
grates 9 and 36 active spaces, respectively. In Table I, the
QFlow(4e,4o) results are compared against exact diagonal-
ization (ED) in the full space, in the primary active space
(CAS-ED) consisting of the two highest energy occupied

orbitals and two lowest energy unoccupied orbitals, and
typical CC approximations including excitations from sin-
gles to quadruples (CCSD, CCSDT, and CCSDTQ) [31]. It
is evident that the QFlow algorithm significantly reduces
errors of the CAS-ED method - a prevailing model for per-
forming quantum simulations on NISQ-type devices. In
the extreme case, the error of CAS-ED amounting to 279
mHartree for the H8 3.0 a.u. system is reduced by QFlow
to 12.4 mHartree. Additionally, it should be noticed that
for the H6 and H8 RH−H=3.0 a.u. models, the CCSD and
CCSDT formulations experience variational collapse plac-
ing the ground-state energies significantly below the ED
ones. For weakly correlated H6 and H8 models (RH−H=2.0
a.u), the QFlow results are within chemical accuracy error
bars (less than 1.59 mHartree). In Fig. 2, we show energies
(E(hi)) calculated in the first four QFlow cycles for two ge-
ometries of H8. In both cases, we can observe that energies
obtained in the first non-trivial cycle (second cycle) are con-
siderably better than the CAS-ED energy for the primary
active spaces (targeted in typical VQE simulations).

In Fig. 3, we discuss the discrepancies between the mini-
mum and maximum values of E(hi) for each cycle for H8
3.0 a.u. model. Despite the fact that in cycles two and three
these discrepancies are substantial, in the following itera-
tions, these discrepancies significantly decrease. For 20-th
cycle, the discrepancy is less than 2.0 mHartree, which
indicates that despite approximations associated with the
non-commutative characters of cluster operators in QFlow,
the energy invariance of the SR-CC flow (7) at the solu-
tion is approximately satisfied. This discrepancy is further
reduced to the 0.2 mHartree by order-3 N = 3 Trotter ex-
pansion for the effective Hamiltonians (15) (at the same
time order-3 expansion reduces order-1 QFlow(4e,4o) error
of 12.5 mHartree for H8 3 a.u. model to 9.7 mHartree). In
the QFlow simulations for the H8 system, we optimized
684 parameters using coupled computational blocks cor-
responding to active space eigenvalue problems that opti-
mize at most 35 parameters. Concurrently, the number of
QFlow optimized amplitudes is considerably lower than
that of CCSDTQ ones. For instance, QFlow optimizes only
36 quadruply excited amplitudes, while the CCSDTQ ap-
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Figure 1. Schematic representation of the QFlow algorithms.
All cluster amplitudes (Global Pool of CC amplitudes; (GPA))
are residing on classical computers. The effective Hamiltonians
are formed on classical computers using GPA and encoded on
quantum computers (light blue arrows). Quantum computers use
these Hamiltonians to optimize internal excitations for a given
active space and are used to update GPAs (dark blue lines).

Table I. Converged QFlow energies (in Hartree) for H6 and H8
benchmark systems at RH−H=2.0 a.u. and RH−H=3.0 a.u. corre-
sponding to weakly and strongly correlated regimes, respectively.

Method H6 H6 H8 H8
(2.0 a.u) (3.0 a.u) (2.0 a.u) (3.0 a.u)

HF -3.1059 -2.6754 -4.1382 -3.5723
CAS-ED -3.1669 -2.8021 -4.1906 -3.6656
CCSD -3.2173 -2.9673 -4.2848 -3.9727
CCSDT -3.2180 -2.9692 -4.2867 -3.9784
CCSDTQ -3.2177 -2.9574 -4.2860 -3.9439
QFlow(4e,4o)a -3.2173 -2.9521 -4.2847 -3.9322
ED -3.2177 -2.9576 -4.2860 -3.9447

a QFlow energies are reported from the primary active space consisting
of the two highest energy occupied orbitals and two lowest energy
unoccupied orbitals.

proach utilizes 1810 of them (with no spatial symmetry
invoked in both techniques).

While the STO-3G basis set is useful for validating the
QFlow algorithm, in practical applications, larger basis
sets that properly capture short-range dynamical correlation
effects are required. To address this challenge, we have
implemented a two-step strategy, referred to as the DUCC-
QFlow approach described in Ref.[23]. This approach uti-
lizes (i) classical computers and a simplified downfolding
technique to evaluate an approximate form of the effective
Hamiltonian (A) for active spaces that are too large for
current quantum hardware, and (ii) quantum computers to
solve the problem described by Eq.(10) with H replaced by
A using the QFlow algorithm. We illustrate the feasibility
of the DUCC-QFlow algorithm in handling larger basis
sets on the challenging example of H6 for RH−H=3 a.u.
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Figure 2. Energies evaluations (for all active spaces) in the QFlow
for STO-3G H8 model: (a) RH−H =2.0 a.u., blue circles, (b) RH−H
=3.0 a.u., red circles. The dotted and solid horizontal black lines
correspond to the active-space and full-space exact diagonaliza-
tions, respectively. We report the energies of all active space
problems for the first four cycles, where the start of each cycle is
indicated by the green vertical lines. To initiate the optimization
process, we utilized a zero vector as the initial guess for all active
spaces. The optimization process is based on the gradients (19),
and the update of the parameter pool starts from the second cycle.
Thus, all energies in the first cycle correspond to HF energies.

Table II. The DUCC-QFlow energies (in Hartree) for the H6 model
(RH−H=3 a.u.) in the cc-pVDZ basis set.

Method Energy

CCSD -3.1571
CCSDT -3.1619
CCSDTQ -3.1591
DUCC(6act)-QFlow(4e,4o) -3.1570
DUCC(7act)-QFlow(4e,4o) -3.1589
ED -3.1591

for cc-pVDZ basis set [48] and active orbitals defined by
six (DUCC(6act)-QFlow(4e,4o)) and seven (DUCC(7act)-
QFlow(4e,4o)) lowest Hartree-Fock orbitals. As a down-
folding procedure for the first step, we adopted the A(7)
approximation for the downfolding technique of Ref.[49].
The DUCC-QFlow results shown in Table II indicate that
while DUCC(6act)-QFlow(4e,4o) provides accuracies of
the CCSD energies, the DUCC(7act)-QFlow(4e,4o) fur-
nishes energies in a good agreement with the CCSDTQ or
ED results.
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Figure 3. The minimum and maximum values of E(hi) at the
beginning of each QFlow cycle of the STO-3G H8 RH−H=3.0 a.u.
model.

Summary.— We provided numerical evidence that the
QFlow algorithm can efficiently sample large sub-spaces of
the Hilbert space through coupled variational problems in
reduced dimensionality active spaces. Using very modest
active space sizes, we illustrated the utility of the QFlow
procedure with the STO-3G H6 and H8 hydrogen chains in
weakly and strongly correlated regimes with errors within
chemical accuracy for weakly correlated systems and rel-
atively small errors for the strongly correlated systems.
For the strongly correlated H8 model, we recover nearly
97% of the correlation using active spaces containing small
number of optimized parameters compared to the exact di-
agonalization. Additionally, the application of the two-step
DUCC-QFlow protocol successfully accounted for corre-
lation effects in the highly correlated version of the H8
molecule utilizing a larger cc-pVDZ basis set. Our expec-
tations are that the DUCC-QFlow algorithm will facilitate
the seamless integration of classical and quantum computa-
tional resources.

The examples in this paper are very conservative esti-
mates of the dimensionality reduction that can be achieved
with the QFlow algorithm. As quantum technology evolves
and we transition from the noisy intermediate-scale quan-
tum devices era to fully-fledged error-corrected quantum
computing, the ability to adapt to new methodological
advances and efficiently utilize hybrid computational re-
sources is ever-important. An intriguing aspect of QFlow,
to be explored in forthcoming studies is the possibility to
(1) employ the local character of correlation effects, and
(2) construct adaptive QFlow approaches involving a pre-
selected set of various-size active spaces relevant to the
problem of interest [50–54]. This has the potential to over-
come the limitations of models based on all possible fixed-
size active spaces for large-scale applications. Moreover,
preliminary tests suggest that modifying the QFlow by opti-
mizing all active space problems simultaneously, rather
than using a serial-type algorithm, produces equivalent
optimized energy and comparable convergence patterns,
enabling the development of efficient parallel/distributed
QFlow algorithms. The authors expect that the QFlow al-

gorithm demonstrated in this letter will play an important
role in pushing the envelope of many-body applications as
quantum computing continues to evolve.
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[26] J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).
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