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In the field of monitored quantum circuits, it has remained an open question whether finite-time protocols for
preparing long-range entangled (LRE) states lead to phases of matter which are stable to gate imperfections,
which can convert projective into weak measurements. Here we show that in certain cases, long-range entan-
glement persists in the presence of weak measurements, and gives rise to novel forms of quantum criticality.
We demonstrate this explicitly for preparing the two-dimensional (2D) GHZ cat state and the three-dimensional
(3D) toric code as minimal instances. In contrast to random monitored circuits, our circuit of gates and measure-
ments is deterministic; the only randomness is in the measurement outcomes. We show how the randomness in
these weak measurements allows us to track the solvable Nishimori line of the random-bond Ising model, rig-
orously establishing the stability of the glassy LRE states in two and three spatial dimensions. Away from this
exactly solvable construction, we use hybrid tensor network and Monte Carlo simulations to obtain a non-zero
Edwards-Anderson order parameter as an indicator of long-range entanglement in the 2D scenario. We argue
that our protocol admits a natural implementation in existing quantum computing architectures, requiring only
a depth-3 circuit on IBM’s heavy-hexagon transmon chips.

In extended quantum systems, the rich interplay between
measurements and quantum correlations point to a plethora of
new emergent phenomena. Although measurements are of-
ten associated with reducing entanglement, they provide an
intriguing loophole enabling fast preparation of long-range
entangled (LRE) states – such as macroscopic cat states or
topologically ordered states – that are otherwise forbidden.
Indeed, while LRE can only be prepared with a unitary quan-
tum circuit whose depth grows with system size[1–10], a large
class of them can be prepared in finite time by simply mea-
suring certain stabilizers[11][12]. This allows for determinis-
tic state preparation using a finite-depth unitary feedback[13–
19], intimately tied to the idea of quantum error correcting
codes[20, 21]. Moreover, it has recently been shown that
measurement-based state preparation protocols also exist for
certain non-stabilizer states, including non-Abelian topologi-
cal order[22–25].

Remarkably, it is not known whether such measurement-
induced states form stable phases of matter, which are robust
to local perturbations of the preparation protocol. While this
question is of clear practical significance, it is also of concep-
tual interest to explore whether one can extend the familiar
notion of stability of phases of matter (primarily developed
for solid-state purposes) to the era of quantum simulators and
computers[26, 27]. Here, we explore what happens when the
circuit is perturbed prior to measuring. In effect, this turns an
originally projective measurement into a weak measurement,
as we will discuss. We ask whether such a generic scenario
allows for stable LRE states; and if so, is there a critical point
at the boundary of stability?

This motivating question fits naturally into the broader
realm of monitored quantum circuits[28, 29]. Recent years

have seen immense progress and activity in studying the long-
time limit of random unitary gates combined with (projective)
measurements. A key result has been that there is an entangle-
ment transition between volume-law and area-law entangled
regions as one increases the measurement rate[30, 31]. Sub-
sequent works also explored how the latter can be in distinct
phases of matter[32–37]. While the effects of weak measure-
ments have been partially explored for the case of long-time
quantum trajectories[38–47], to the best of our knowledge, it
has not been explored in the finite-time protocols. This ques-
tion is especially important in the latter case, since using mea-
surement is then the only route towards preparing LRE states.

In this Letter, we establish a stability threshold for various
measurement based protocols that induce long range entangle-
ment, with a novel form of quantum criticality at the thresh-
old. For this it is of fundamental importance to recall how one
experimentally measures a multi-body stabilizer O for an ar-
bitrary state ∣ψ⟩, such as the two-body Ising interaction for a
cat state[13] or the four-body stabilizers of the toric code[49].
Since most platforms naturally perform single-site measure-
ments, one introduces an ancilla qubit and entangles it with
∣ψ⟩ in such a way that measuring the ancilla effectively mea-
sures O. However, if the entangling operation is not perfect,
the net result is to have a (partial collapsing) weak measure-
ment[50]. This can be seen most clearly from the following
identity that transforms real time into imaginary time evolu-
tion up to a complex phase factor (derived in the Supplemental
Material (SM)[51])

⟨±y ∣e−its
z
⊗O ∣+x⟩∝ e±

β
2O with tanh(β/2) = tan t , (1)

where ∣±α⟩ are the eigenstates of Pauli matrix sα on the an-
cilla qubit. This is a projective measurement on ∣ψ⟩ only if
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FIG. 1. Circuit and phase diagram for Nishimori’s cat from measurements. (a) On the Lieb lattice populated with physical site
(blue/green) and ancilla bond (white) spins, a depth-4 circuit of e−itZZ gates is applied to nearest-neighbor spins, where the evolution
time depends on the site sublattice (A/B), and the ancilla bond spins are then measured in Pauli-x basis. (b) A classical snapshot of the
pre-measurement wavefunction. The circles/crosses label spins up(↑)/down(↓), and their domain walls are highlighted by red loops. Ising
evolution correlates the ancillae to the domain walls. (c) Wavefunction phase diagram and the Nishimori line by tuning evolution times on
the A(B) sublattice. The post-measurement wavefunction is a LRE disordered cat state inside the yellow region, and a short-ranged entangled
(SRE) state outside. A Z2 gauge symmetry emerges along the Nishimori lines (red), which upon gauge symmetrization, can be mapped exactly
onto the eponymous line[48] in the phase diagram of the classical RBIM shown in (d). Beyond the Nishimori line, the phase boundaries in (c)
are charted out by numerical computations (yellow dots), which have no direct equivalent in the RBIM phase diagram.

t = π
4

: then β = ∞ pins O = ±1 depending on the measure-
ment outcome. Eq. (1) gives us two key insights into the cor-
relations resulting from weak measurements (e.g., for times
0 < t < π/4): first, the effective imaginary time-evolution sug-
gests we ought to consider phases which are stable to finite
temperature, such as a 2D Ising ferromagnet or 3D discrete
gauge theory. Second, the randomness of measurement out-
comes introduces effective disorder. A large part of our anal-
ysis is devoted to demonstrating stability against this disorder,
which we discuss in detail for the minimal cases of a 2D GHZ-
type[52] state, and whose discussion mutatis mutandis carries
over for the 3D toric code. Crucially, the disorder distribution
in our scenario is highly correlated, enabling us to map the en-
tire range between strong and weak measurements π/4 ≥ t ≥ 0
exactly onto the solvable Nishimori line of the random bond
Ising model (RBIM)[48]. For instance, for the simple protocol
in Eq. (1), we find a Nishimori critical point at tc ≈ 0.143π in
2D. We refer to the stable LRE phase between the GHZ-type
fixed point and the Nishimori critical point as Nishimori’s cat.
Our work thereby also establishes a firm connection between
monitored circuits and the vast literature on spin glasses.

Prior work.– We further note that finite-time transitions
have recently been explored in the context of teleportation
transitions[53, 54], which again involves projective measure-
ments and where one leaves a subextensive region unmea-
sured, while Ref. 55 studied the effect of weak measurement
on removing quantum correlations of an initially critical state.
Finite-depth transitions have also been explored in the context
of computational[56] and complexity transitions[57]. Finally,
we point out an intriguing formal connection to phase tran-
sitions in information recovery in surface codes[21], where
in the absence/presence of syndrome measurement errors, the
problem is also mapped to the 2D RBIM/3D random plaquette
Ising gauge model along the Nishimori line.

Circuit model.– To achieve an Ising LRE phase, we weakly
measure the domain wall operator: O = σz

i σ
z
j , which is

weight-three when including additional ancillae (see Eq. (1)).
However, one can design a protocol with only two-body
evolutions[51]. For this, we consider qubits on the Lieb lattice
(Figure 1a), where we denote the target spins on the square
lattice as σz(x)

j and the ancillae at the bond centers as sz(x)ij .
We entangle these two types of spins by a depth-4 circuit of
nearest-neighbor Ising evolutions (Fig. 1a):

∣ψ(tA, tB)⟩ = e−i∑⟨ij⟩ tjσ
z
j s

z
ij ∣+x⟩⊗N . (2)

Crucially, we have introduced two evolution times tj = tA(B)
if j belongs to the A or B sublattice (of the original square
lattice of site spins), see Fig. 1a. As shown in Fig. 1b, the pair
of gates associated with any given bond effectively rotates the
ancilla spin by an angle 2(tA ± tB) depending on the align-
ment of the neighboring spin pair. Consequently, measuring
the ancilla spin in x direction weakly measures the domain
wall of the target spins, which becomes a strong measurement
only when both tA, tB → π

4
, in which case ∣ψ⟩ equals the 2D

cluster state[13]. More generally, the entire wavefunction (2)
can be viewed as a superposition of all allowed {σ} classical
configurations, in which the orientation of ancillae uniquely
depends on whether it sits on a domain wall or not (Fig. 1b).

The probability of the measurement outcome sxij → sij =
±1 is given by Born’s rule:

p{s} ≡ ∥⟨{s}∣ψ⟩∥2 ∝ ∑
{σ}

e−β∑ij(Jsij
σiσj+hsij) , (3)

which we recognize as the partition function of the RBIM
(with the measurement outcome labeling the random bond
configuration), where a straightforward computation[51]
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shows that

tanh
β

2
J+ = tan tA tan tB , tanh

β

2
J− = − tan tA cot tB ,

and βh = 1
2
ln∣tan(tA + tB) tan(tA − tB)∣. The subspace

(tA, tB = π/4) of this two-parameter protocol recovers the
single-parameter protocol of Eq. (1). Note that we can in-
terpret the right-hand side of Eq. (3) as a classical partition
function Z{s}, which contains the information of all diagonal
correlation functions[58–60] of our post-measurement quan-
tum state.

We can thus interpret the ensemble (over all measurement
outcomes of the ancillae) as a classical system with disorder
{s}, where frustrated plaquettes∏l∈◻ sl = −1 are said to have
an Ising vortex. However, unlike commonly studied disor-
dered models, the disorder distribution in Eq. (3) is highly cor-
related (making the vortices attractive). In fact, the property
that Z{s} ∝ p{s} is akin to the structure Nishimori first un-
covered after a gauge transformation [48] for his eponymous
line in the RBIM. It implies that certain quantities (like the
internal energy) are non-singular even at the transition. This
remarkable fact is naturally explained by our approach, since
those quantities can be expressed as linear functions of the
density matrix of the pre-measurement wavefunction, gener-
ated by finite-depth unitary circuit.

To chart out our generic phase diagram in Fig. 1c, we use
the Edwards-Anderson (EA) order parameter as our diagnos-
tic for the formation of a glassy LRE state[61]:

q ≡ [⟨σ0σc⟩2] ≡∑
{s}

p{s}⟨σ0σc⟩2{s} , (4)

where σc(0) is the spin at the central(corner) site of the open
square lattice, [⋯] denotes the measurement (disorder) aver-
age, and ⟨⋯⟩ the quantum average of the post-measurement
wavefunction, equivalent to the classical ensemble average
for a given disorder pattern. Due to the global Ising sym-
metry of the protocol, the quantum state is Ising symmetric
with ⟨σ⟩ = 0, and a nonzero EA order in thermodynamic limit
signifies long-range connected quantum correlation, which
serves as lower bound for the quantum mutual information
between two sites at a distance[62]. Therefore the ordered
phase of this classical description corresponds to the post-
measurement quantum state being a LRE cat state.

Nishimori line.– Along the line (tB = π/4) (the red hor-
izontal line in Fig. 1c, although the same discussion also
applies to tA = π/4), the EA order parameter can be ex-
actly mapped to the magnetization of the Nishimori line in
the RBIM, which exhibits a phase transition on crossing
the Nishimori multicritical point[63–71]. Importantly, this
point is located at a finite tA < π/4 in our model, imply-
ing stability of the cat state up to a finite error threshold
at tcA ≈ 0.143π[48, 66–72]. This can be seen as follows:
Firstly, consider the partition function (3) for a given disor-
der realization. Then as βJ+ = −βJ− and βh = 0, our cir-
cuit model becomes precisely equivalent to the RBIM with

quenched binary bond disorder, where the inverse tempera-
ture β ≡ ln ∣ tan(tA + π/4)∣ (by setting J+ = −J− = 1) is
tuned by the unitary evolution time. Secondly, consider the
disorder ensemble: due to an Ising gauge symmetry in the
pre-measurement wavefunction[51], any pair of bond disor-
der configurations that share the same vortex configuration are
gauge equivalent and have the same probability. Together, this
implies that our possible measurement outcomes {s} form a
gauge symmetric disorder ensemble generated by gauge sym-
metrizing an uncorrelated bond disorder {s′} with probability
ps′=1 = 1/(1 + e2β) = (1 − sin(2tA))/2, according to

σ′j = σjτj , s′ij = sijτiτj , (5)

where τj = ±1 stands for a local Z2 gauge transformation.
Then the measurement average can be decomposed to two
steps: [⋯] = ∑{τ}[⋯]′, where [⋯]′ denotes the uncorrelated
disorder average as in the RBIM, and ∑{τ} denotes gauge
symmetrization. We thus find that all gauge invariant observ-
ables of the Nishimori line in the RBIM (i.e. the red line in
Fig. 1d) coincide with those in our model.

The Nishimori line is known to be invariant under a
renormalization group flow[72, 73], which crosses the para-
magnetic/ferromagnetic phase boundary at a multicritical
point[48, 67, 74]. It was mathematically proven that the phase
transition happens at finite critical disorder probability[21, 48,
75]. Inside the ferromagnetic phase, [⟨σ0σc⟩]′ ≠ 0. Neverthe-
less, our wavefunction measurement average involves an ex-
tra gauge symmetrization, i.e. summation over τ = ±1, which
turns the ferromagnetic phase into a finite-temperature spin
glass: [⟨σ0σc⟩] = 0, [⟨σ0σc⟩2] ≠ 0 . That is, while the linear
magnetization vanishes, the non-linear EA order parameter
keeps track of the magnetization correlation in each gauge
sample, because [⟨σ0σc⟩2] = [⟨σ0σc⟩2]′ = [⟨σ0σc⟩]′[48].
More generally, any odd moment of a σ correlation function
is odd under gauge transform and thus vanishes under gauge
symmetrization. Note that this spin glass state should be con-
trasted to the zero-temperature spin glass in the 2D RBIM (in-
dicated by the gray dashed line in Fig. 1e). The robust glassi-
ness of our state against finite temperature originates from
the gauge symmetry, analogous to the exactly solvable Mattis
spin glass[65, 76] which gauge symmetrizes the frustration-
free Ising ordered phase. Nevertheless, away from the limit
tA → π/4, our state features a finite density of Ising vor-
tices which is more nontrivial than conventional Mattis spin
glasses.

Beyond the Nishimori line.– We expect the phase diagram
established on the Nishimori line to be perturbatively robust,
because any symmetric perturbation in the circuit away from
the Nishimori line can be mapped to a local, Ising-symmetric
perturbation in the corresponding classical model. For more
generic (tA, tB), the partition function Z{s} of Eq. (3) can
still be interpreted as a disordered Ising model, albeit one with
imbalanced strengths, J+ and J−, of the ferro- and antiferro-
magnetic bonds signaling the breakdown of the gauge sym-
metry, i.e. we are moving away from the solvable line in the
phase diagram of Fig. 1c (and out of the plane of the phase
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FIG. 2. Transition from SRE to LRE states after finite evolution
time along the Nishimori line (tA, tB = π/4) in the phase diagram
of Fig. 1(d). Shown are results for the EA order parameter from our
hybrid Monte-Carlo / tensor-network approach (symbols) for Lieb
lattices of varying system sizes with open boundaries. The vertical
grey line indicates our estimate of the critical point tc ≈ 0.149π ex-
tracted from a data collapse in a window 0.1π ≤ tA ≤ 0.2π, fitting a
scaling function[77] q = [⟨σ0σc⟩

2
]∝ L−β/νf((tA − tcA)L

1/ν
).

diagram in Fig. 1d). Indeed, while the ‘Nishimori property’
p{s} ∝ Z{s} remains, the gauge symmetry was crucial for ob-
taining exact results along the Nishimori line[48]. This cou-
pling imbalance becomes particularly pronounced when one
approaches the diagonal line tA = tB in the phase diagram of
Fig. 1c, where the strength of the ferromagnetic bond diverges
to infinity.

For this generic scenario with two time scales (tA, tB),
one needs to numerically contract out the entire tensor net-
work to calculate the disorder probability p{s}, which is es-
sentially a structured shallow version of the quantum circuit
sampling problem [78–80]. To do so, we develop a hybrid
Monte-Carlo/tensor-network approach, which traces out the
two degrees of freedoms in different manners: We sample the
ancilla bond spins {s} using a standard Metropolis algorithm
but the weights of the importance sampling are computed by
tracing out the site spins {σ} via a tensor-network algorithm
(for details of the algorithm see SM[51]). Despite the consid-
erable cost of such Monte Carlo sweeps, this treatment has the
advantage that it effectively avoids the minima of the glassy
landscape for the {σ} spins in the presence of disorder [81].

We use this method to chart out the phase diagram in Fig. 1c
by performing calculations for three scenarios: along the
Nishimori line tB = π/4 (to validate our approach), along
the diagonal line tB = tA (with maximal coupling imbal-
ance), as well as for a case in-between with tB = π/5. Along
the Nishimori line, varying the system size and analyzing
the finite-size scaling of the EA order parameter as shown in
Fig. 2, we can verify the existence of a true critical point at
tcA ≈ 0.149π, in reasonable numerical agreement with the lo-
cation of the multicritial Nishimori point established in large-
scale simulations[48, 66–72] of the RBIM identifying the crit-

ical point tcA ≈ 0.143π and ν ≈ 4/3. The numerical results for
the diagonal line tB = tA and tB = π/5 are qualitatively simi-
lar and provided in SM[51].

Realization in quantum devices.– Vying a potential realiza-
tion of our 2D cat state construction, we note that our pro-
tocol employs two basic ingredients that are readily available
in current digital quantum computing platforms: a two-body
Ising evolution and selective measurements for an extensive
set of ancilla qubits on every bond. A particularly well-suited
platform is IBM’s quantum computing systems[27], which
arrange their superconducting transmon qubits in a heavy-
hexagon lattice geometry – a honeycomb variant of the square
Lieb lattice, which can be realized by a depth-3 circuit and
exhibits qualitatively similar physics as discussed above, ex-
hibiting a smaller LRE phase region (for detailed calculations
see the SM[51]). An important question is how to experimen-
tally prove the successful preparation of a LRE state. Along
the Nishimori line, a large number of distinct ancillae con-
figurations are related by the gauge transformation such that
the classical spin snapshot for one ancilla configuration can
be transformed to that for another gauge equivalent configu-
ration. The current chip sizes (with up to 127 qubits), allow a
brute-force approach by post-selecting[82] the same ancillae
vortex configuration to measure the EA order, which at worst
case costs O(2Q) number of operations with Q = 18 being
the number of plaquettes. Note the probability of obtaining
vortex-free configuration approaches 100% when tA → π/4.

Glassy topological order.– As the 2D Ising protocol mea-
suring domain walls generates Nishimori’s cat state with Ising
vortex disorder, an analogous 3D gauge protocol that weakly
measures plaquette fluxes[83] results in a glassy Z2 topolog-
ical order[84, 85] with magnetic monopole disorder[21]. For
instance, using Eq. (1) for the four-body plaquette stabilizer
O = Bp of the toric code on the cubic lattice, results in the
correlations of classical 3D Z2 lattice gauge theory (describ-
ing the fluctuation of magnetic flux tubes). The latter is well-
known to have a finite-temperature transition[86, 87] in the
clean case. Our correlated disorder distribution is by con-
struction (and like the 2D case) of Nishimori type, which al-
lows us to directly relate the post-measurement state to the
solvable line of the classical 3D random plaquette Z2 gauge
model[51]. This has an extended deconfined phase with
a known transition[21, 75, 88] which, mapped to our time
parametrization, occurs at tc ≈ 0.192π. For times beyond this
critical threshold, we have stable topological order, which can
be detected by the perimeter law scaling of the EA analogue
of the Wilson loop. We note that this protocol only (weakly)
measures fluxes; gauge charges remain frozen and absent at
all times. See the SM for more details, in particular, how the
above solvable path can be achieved using only three-body
gates[51].

Outlook.– We have demonstrated that stable LRE phases
(2D cat states and 3D topological order) can be realized in
fixed-depth unitaries upon relaxing strong to weak measure-
ments. The key conceptual finding is that weak measurements
can effectively act as a source of thermal fluctuations and cor-
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related disorder that conspire to yield precisely Nishimori’s
critical state. The stability of the ordered phase in the clas-
sical model implies that the cat state is stable against generic
Ising symmetric noise, a detailed study of which is left to fu-
ture study. Unlike deep-depth random unitary circuits which
feature fluctuations in the temporal dimension, our state ex-
hibits criticality with fluctuations solely in space, reminiscent
of projected-entangled-paired-state wavefunction deformation
criticality[58–60, 89–94] effectively tuned by a deterministic
circuit.

Although the focus of the present work was on stable
measurement-induced LRE, we note that our mechanism can
be used more generally to prepare exotic states, such as de-
terministically preparing phase transitions between distinct
stable SRE phases in 1D[95–97], or symmetry-enriched cat
states in higher dimensions[98], see SM for details[51]. More
generally, it would be interesting to further explore how weak
measurements can give rise to new phenomenology in moni-
tored circuits.

We emphasize the implementability of our protocol, with
regard to the heavy-hexagon geometry of the IBM transmon
chips, which will require only a depth-3 circuit to bring Nishi-
mori’s cat to life. Alternatively, Rydberg atom simulators
are a highly tunable platform[99–101] allowing for measur-
ing ancillae[102–104]. The Ising interactions of Rydbergs
on sites and bonds of a hexagonal lattice have been argued
to generate the requisite unitary evolution[22], making this
a promising platform for realizing this transition. While
the EA order parameter can in principle be measured in a
brute-force manner for current chip sizes, an important open
question is whether post-selection can be effectively avoided,
e.g., by engineering a clever decoder for reading out hidden
information[105–109]. To implement a minimal instance of
glassy topological order via a 3D ‘Nishimori code’, we an-
ticipate that a two-body Ising evolution on the Raussendorf
lattice[110] is sufficient to give a stable toric code phase in
3D.

Note added.– Upon completion of the present manuscript,
we became aware of an independent work studying extended
long-range entangled phases and transitions from finite-depth
unitaries and measurement, which will appear in the same
arXiv posting [111].

Acknowledgments.– We thank Ehud Altman, Zhen Bi,
Max Block, Michael Buchhold, Matthew Fisher, Sam Gar-
ratt, Antoine Georges, Sarang Gopalakrishnan, Wenjie Ji,
Roderich Moessner, Vadim Oganesyan, Drew Potter, Miles
Stoudenmire, and Sagar Vijay for insightful discussions.
The Cologne group acknowledges partial funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project grant 277146847 – through CRC net-
work SFB/TRR 183 (projects A04, B01). RV is supported
by the Harvard Quantum Initiative Postdoctoral Fellowship in
Science and Engineering, and RV and AV by the Simons Col-
laboration on Ultra-Quantum Matter, which is a grant from
the Simons Foundation (651440, AV). Part of this work was

performed by RV and AV at the Aspen Center for Physics,
which is supported by National Science Foundation grant
PHY-1607611. NT is supported by the Walter Burke In-
stitute for Theoretical Physics at Caltech. The numerical
simulations were performed on the JUWELS cluster at the
Forschungszentrum Juelich. The Flatiron Institute is a divi-
sion of the Simons Foundation.

∗ gzhu@uni-koeln.de
[1] S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson

Bounds and the Generation of Correlations and Topological
Quantum Order, Phys. Rev. Lett. 97, 050401 (2006).

[2] M. Aguado and G. Vidal, Entanglement Renormalization and
Topological Order, Phys. Rev. Lett. 100, 070404 (2008).

[3] R. König, B. W. Reichardt, and G. Vidal, Exact entangle-
ment renormalization for string-net models, Phys. Rev. B 79,
195123 (2009).

[4] X. Chen, Z.-C. Gu, and X.-G. Wen, Local unitary transforma-
tion, long-range quantum entanglement, wave function renor-
malization, and topological order, Phys. Rev. B 82, 155138
(2010).

[5] M. P. Zaletel and F. Pollmann, Isometric Tensor Network
States in Two Dimensions, Phys. Rev. Lett. 124, 037201
(2020).

[6] T. Soejima, K. Siva, N. Bultinck, S. Chatterjee, F. Pollmann,
and M. P. Zaletel, Isometric tensor network representation of
string-net liquids, Phys. Rev. B 101, 085117 (2020).

[7] Y.-J. Liu, K. Shtengel, A. Smith, and F. Pollmann, Methods for
simulating string-net states and anyons on a digital quantum
computer, (2021), arXiv:2110.02020.

[8] Z.-Y. Wei, D. Malz, and J. I. Cirac, Sequential Generation of
Projected Entangled-Pair States, Phys. Rev. Lett. 128, 010607
(2022).

[9] K. X. Wei, I. Lauer, S. Srinivasan, N. Sundaresan, D. T. Mc-
Clure, D. Toyli, D. C. McKay, J. M. Gambetta, and S. Sheldon,
Verifying multipartite entangled greenberger-horne-zeilinger
states via multiple quantum coherences, Phys. Rev. A 101,
032343 (2020).

[10] G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L. Hol-
lenberg, Generation and verification of 27-qubit greenberger-
horne-zeilinger states in a superconducting quantum com-
puter, Journal of Physics Communications 5, 095004 (2021).

[11] Which are finite products of Pauli operators.
[12] D. Gottesman, Stabilizer Codes and Quantum Error Correc-

tion (1997), arXiv.quant-phys:9705052.
[13] H. J. Briegel and R. Raussendorf, Persistent Entanglement

in Arrays of Interacting Particles, Phys. Rev. Lett. 86, 910
(2001).

[14] R. Raussendorf, S. Bravyi, and J. Harrington, Long-range
quantum entanglement in noisy cluster states, Phys. Rev. A
71, 062313 (2005).

[15] M. Aguado, G. K. Brennen, F. Verstraete, and J. I. Cirac,
Creation, Manipulation, and Detection of Abelian and Non-
Abelian Anyons in Optical Lattices, Phys. Rev. Lett. 101,
260501 (2008).

[16] G. K. Brennen, M. Aguado, and J. I. Cirac, Simulations of
quantum double models, New Journal of Physics 11, 053009
(2009).

[17] A. Bolt, G. Duclos-Cianci, D. Poulin, and T. M. Stace, Foli-

mailto:gzhu@uni-koeln.de
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.100.070404
https://doi.org/10.1103/PhysRevB.79.195123
https://doi.org/10.1103/PhysRevB.79.195123
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevLett.124.037201
https://doi.org/10.1103/PhysRevLett.124.037201
https://doi.org/10.1103/PhysRevB.101.085117
https://arxiv.org/abs/2110.02020
https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1103/PhysRevA.101.032343
https://doi.org/10.1103/PhysRevA.101.032343
https://doi.org/10.1088/2399-6528/ac1df7
https://doi.org/10.48550/ARXIV.QUANT-PH/9705052
https://doi.org/10.48550/ARXIV.QUANT-PH/9705052
https://arxiv.org/abs/9705052
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevA.71.062313
https://doi.org/10.1103/PhysRevA.71.062313
https://doi.org/10.1103/PhysRevLett.101.260501
https://doi.org/10.1103/PhysRevLett.101.260501
https://doi.org/10.1088/1367-2630/11/5/053009
https://doi.org/10.1088/1367-2630/11/5/053009


6

ated Quantum Error-Correcting Codes, Phys. Rev. Lett. 117,
070501 (2016).

[18] L. Piroli, G. Styliaris, and J. I. Cirac, Quantum Circuits As-
sisted by Local Operations and Classical Communication:
Transformations and Phases of Matter, Phys. Rev. Lett. 127,
220503 (2021).

[19] A. J. Friedman, C. Yin, Y. Hong, and A. Lucas, Locality
and error correction in quantum dynamics with measurement,
arXiv:2206.09929.

[20] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in
an oscillator, Phys. Rev. A 64, 012310 (2001).

[21] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, Journal of Mathematical Physics 43, 4452
(2002).

[22] R. Verresen, N. Tantivasadakarn, and A. Vishwanath, Ef-
ficiently preparing Schrödinger’s cat, fractons and non-
Abelian topological order in quantum devices, (2021),
arXiv:2112.03061.

[23] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and R. Ver-
resen, Long-range entanglement from measuring symmetry-
protected topological phases, (2021), arXiv:2112.01519.

[24] S. Bravyi, I. Kim, A. Kliesch, and R. Koenig, Adaptive
constant-depth circuits for manipulating non-abelian anyons,
(2022), arXiv:2205.01933.

[25] T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, Measure-
ment as a shortcut to long-range entangled quantum matter,
(2022), arXiv:2206.13527.

[26] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Dem-
ler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson,
K.-M. C. Fu, M. Greiner, K. R. Hazzard, R. G. Hulet, A. J.
Kollár, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra,
C. Monroe, K. Murch, Z. Nazario, K.-K. Ni, A. C. Pot-
ter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi,
R. Simmonds, M. Singh, I. Spielman, K. Temme, D. S. Weiss,
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