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We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism.
Such a transition exhibits scaling of the resistivity curves in the regime where Tτ > 1 or µτ > 1,
where τ is the scattering time and µ the chemical potential. At the critical value of the chemical
potential, the resistivity diverges as a power law, Rc ∼ 1/T . Consequently, on the metallic side
there is a regime with negative dR/dT , which is often misinterpreted as insulating. We show that
scaling and this ‘fake insulator’ regime is observed in a wide range of experimental systems. In
particular, we show that Mooij correlations in high-temperature metals with negative dR/dT can
be quantitatively understood with our scaling theory in the presence of T -linear scattering.

Thanks to the advent of highly tunable ‘twisted’ Van
der Waals heterostructures,[1–3] the field of quantum
matter physics is in a position to study continuous zero-
temperature phase transitions with an unprecedented ac-
curacy. Detailed (and smooth!) experimental results al-
low a systematic comparison between different theoreti-
cal predictions, which is particularly true for continuous
metal-to-insulator transitions (MITs).

Interaction-induced MITs, such as the Mott transi-
tions, display quantum critical behavior, including scal-
ing of the resistivity.[4, 5] A full theoretical understand-
ing of Mott criticality, which would include a precise cal-
culation of the scaling exponents, is still lacking.[6] One
of the main challenges lies in the fact that an MIT is, in
general, not a transition described by symmetry break-
ing, which makes it challenging to identify the source of
scaling.

Recently, scaling has been observed in a simple band-
tuned MIT in a MoTe2/WSe2 bilayer at full filling of
the first valence flat band.[7] By tuning the displacement
field, one can open a band gap to the second valence
band. The scaling behavior there has been analysed us-
ing a model with disorder and a bosonic field,[8] inspired
by earlier work on ‘Mooij’ correlations.[9, 10] However,
the observed scaling can also be interpreted in a much
simpler perspective.

From a theoretical viewpoint, calculating the conduc-
tivity is notoriously difficult. An exception is the classical

Drude formula, σ = ne2τ
m , which can also be derived with

fully quantum-mechanical advanced methods such as the
Kubo formula[11, 12]. A natural question is whether the
observed scaling at a metal-insulator transition can be
explained with the same set of assumptions that is used
to derive Drude theory.

Indeed, in this Letter we show that only a small num-
ber of very natural assumptions leads to scaling behavior
near a band-tuned MIT. The only assumptions are that
the scattering time τ is large, parametrized by Tτ > 1 or
µτ > 1 (with µ the chemical potential measured from the
band edges on the metallic side), and that the electron
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FIG. 1. In a band-tuned metal-insulator transition (MIT), the
system changes from having overlapping valence (blue) and
conduction (red) bands in the metallic side (right) to having
a gap on the insulating side (left). The tuning parameter is
the chemical potential µ. When either Tτ > 1 or µτ > 1, the
resistivity (in shades on the background) can be described
by a scaling form, as shown in Fig. 2. This scaling relation
breaks down very close to the transition, where localization
and interaction effects will change the picture.

self-energy is local and proportional to the electron den-
sity of states. These quantitative conditions are relevant
for weakly correlated, weakly disordered materials. Un-
der these assumptions, the critical resistivity at the MIT
is diverging as Rc(T ) ∼ 1/T , in contrast to oft-cited pic-
ture that the critical resistivity curve is independent of
temperature. We derive an explicit scaling form, show-
ing that in the scaling regime the resistivity is given by
a universal R(T, µ) = Rc(T )f(µ/T ). Contrary to the
physics of universality at continuous phase transitions,
the scaling of the resistivity breaks down very close to
the MIT.

Band-tuned MIT – Consider a weakly interacting elec-
tron system described by a band-structure. The system
is metallic if there is a nonzero density of charge carriers,
characterized by a nonzero chemical potential µ. The
system is an insulator if there is a gap towards excit-
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FIG. 2. Theoretical resistance curves close to a band-tuned metal-insulator transition. a. Resistance calculated using Eq. (3),
for a constant scattering time τ = 25 eV−1, and chemical potential µ ranging from −0.8 to +0.8 eV. The resistance at the
critical point µ = 0 diverges as Rc(T ) ∼ 1/T . On the metallic side, the resistance decreases as a function of temperature
(a ‘fake’ insulator), whereas on the insulating side the resistance is activated. b. Resistance for a temperature-dependent
scattering rate τ−1 = τ−1

0 + bT with τ0 = 25 eV−1 and b = 0.1. On the metallic side, a resistivity maximum arises at a
temperature dependent on the distance from the transition. At high temperatures, this gives rise to Mooij correlations (see
Fig. 4). c. When Tτ > 1 or µτ > 1, the resistance curves follow a simple scaling law R(T, µ) = Rc(T )f(µ/T ). This can be
verified by plotting R/Rc versus T/|µ|. All data points collapse onto one of the two curves, associated with either metallic or
insulating behavior.

ing charge carriers. By continuously changing the band-
structure we can induce a band-tuned MIT. This can be
achieved with pressure, displacement field, or even due to
spontaneous symmetry breaking such as ferromagnetic
polarization. Without loss of generality, the dispersion
at a band edge is parabolic, with the dispersion set by

ξk = k2

2m − µ where m is the effective mass. With this
notation, µ > 0 corresponds to the metal, µ < 0 to an
insulator, and µ = 0 is the critical point. The chemical
potential µ is thus the tuning parameter of the MIT, as
shown in Fig. 1.

In general, the conductivity is determined by disor-
der, electron-electron interactions and electron-phonon
coupling. Nonzero resistivity from electron-electron in-
teractions requires Umklapp scattering, which becomes
asymptotically irrelevant at low carrier densities (though
there might be nontrivial vertex corrections)[13]. Simi-
larly, at zero temperature there is no thermal occupation
of phonons, and therefore no electron-phonon contribu-
tion to the resistivity. The zero-temperature behavior of
a band-tuned MIT is therefore completely dominated by
disorder. In principle strong disorder might push the sys-
tem into Anderson insulation. However, in d = 2, 3 it is
considered that the combination of weak disorder and
weak interactions generally precludes true localization
[14–17]. Moreover, even in the absence of interactions,
quantum corrections to the conductivity are not relevant
in the regimes µτ > 1 and Tτ > 1 considered here, and
will therefore be neglected throughout this work.

Conductivity – With these natural assumptions, the
conductivity close to the MIT is calculated using the

Kubo formula for local self-energies [11, 21], which reads

σxx = π

Nb∑
n

∫
dξΦx,n(ξ)

∫
dzA2

n(ξ, z) (−f ′(z)) , (1)

where An(ξ, z) is the one-particle spectral function for
the n-th band, and f is the Fermi function. The details
of the following derivation are presented in [18]. The en-
tire momentum-dependence is contained in the transport

function Φx,n(ξ) =
∫

ddp
(2π)d

δ(ξ− ξp) j
2
x(p). The transport

function itself displays universal behavior in the vicinity
of a band-tuned MIT: given a parabolic band dispersion
for either hole or electron-like bands, the current opera-
tor equals j(p) = e

mp. Consequently the transport func-
tion for each band is proportional to the density of states

N(ξ) =
∫

ddp
(2π)d

δ(ξ − ξp) times a linear function,

Φx(ξ) =
2e2

dm
(ξ + µ)N(ξ). (2)

This universal shape stems from the fact that the current-
squared is proportional to the dispersion, j2 ∝ ξ. Fo-
cusing for now on d = 2, we assume a constant, energy-
independent scattering rate τ , so that the imaginary part
of the self-energy is ImΣ(z) = −Θ(z + µ)(2τ)−1. This
scattering time is typically of the order τ ∼ 10−12−10−14

s ∼ 10 − 103 eV−1. When µτ > 1 or Tτ > 1, the Kubo
formula radically simplifies, and we find the conductivity

σ(T, µ) =
e2

h
τT log

[
1 + eµ/T

]
(3)

per conduction or valence band. This is our central re-
sult for the conductivity close to the band-tuned MIT.
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FIG. 3. Scaling near the band-tuned MIT is observed in a range of materials. Here, we apply our scaling analysis to three
material systems[18]: (a) the moiré heterobilayer MoTe2/WSe2[5], (b) the heterostructure WSe2/bilayer graphene/WSe2[19],
and (c) GST amorphous phase change materials [20]. The measured resistivities are shown in insets. In panels a and c we see
a genuine MIT, with data collapse on both an insulating and conducting branch. The theoretical scaling curve of Eq. (4) is
shown as a dashed black line, and shows remarkable agreement with the experimental results.

Surprisingly, it contrasts a few commonly held convic-
tions on metal-insulator transitions. First, at the crit-
ical point, the conductivity is linear in temperature,

σc(T ) ≡ σ(0, T ) = e2

h τT log 2, rather than temperature-
independent. Furthermore, on the metallic side of the
transition (µ > 0), the temperature derivative of the re-
sistivity can be negative: a ‘fake insulator’ regime that
is commonly misinterpreted as insulating. Furthermore,
Eq. (3) satisfies a universal scaling form

σ(µ, T ) = σc(T )F (µ/T ), (4)

which allows the collapse of many resistivity curves onto
a simple scaling function F (x) = log2 [1 + ex]. The the-
oretical resistance curves near the band-tuned MIT, in-
cluding the scaling properties, are shown in Fig. 2.

Hidden in plain view is the fact that Eq. (3) is, at
zero temperature on the metallic side, equivalent to
Drude theory. Explicitly, its low-temperature limit for
µ = EF > 0 yields σ = Φ(EF )τ , with Φ(EF ) = ne2/m
in any dimension d yielding σ = ne2τ/m.
At finite temperature the scaling regime persists, even

with a temperature-dependent scattering time τ(T ), pro-
vided that τ−1 is still proportional to the density of
states. When τ is temperature-independent, in fact, all
resistivity curves on the metallic side are ‘fake insulators’
with dρ/dT ≤ 0 (cf. Fig. 2). Only when the scatter-
ing rate increases with temperature, for example from
electron-phonon interactions shown in Fig. 2b or from
Umklapp scattering, we find traditional metallic behavior
with dρ/dT > 0. In this case, inside the metallic regime
there exists a point where the temperature-derivative of
the resistivity dρ/dT changes sign. We will discuss uni-
versal properties around this point later in the context of
Mooij correlations.[9, 22]

It is important to emphasize that the scaling form of
Eq. (4) is limited to regions not too close to the transi-
tion. This limitation is similar to the one proposed by
Mott-Ioffe-Regel (MIR) [23]. A common formulation of
the MIR limit in metals is kF ℓ ∼ 1 where ℓ is the mean-
free path. This can be rewritten as µτ ∼ 1; we there-
fore find that, upon approaching the transition from the
metallic side, the scaling hypothesis breaks down pre-
cisely at the MIR boundary. What happens close to the
transition is non-universal, and depending on model pa-
rameters one can find various different violations of scal-
ing (see [18]).

Band-tuned MIT in moiré bilayers – We are now in a
position to verify our universal scaling result of Eq. (3) in
experimental results on real physical systems. Inspired
by the recent developments in moiré materials, let us first
focus on the MIT in MoTe2/WSe2 at full filling of the first
valence flat band (f = 2).[7] By tuning the perpendicular
displacement field, a gap is opened up, yielding a band-
tuned MIT. In Fig. 3 we fit the observed resistance curves
as a function of displacement field using our theory. In-
deed, the critical resistance diverges as Rc ∼ 1/T , and
the resistance curves obey scaling. As shown in Fig. 3a,
the scaling curve itself quantitatively matches the ana-
lytical form derived in Eq. (3). A similar scaling plot
for these data has been reported in Ref. [8], inspired
by earlier work in Ref. [10], which describes disorder-
induced polaron formation. While such polaronic effects
have been shown to drive the MIT at large metallic den-
sities, the scaling derived here analytically applies near
band edges without the need of any polaronic effects.

There are many claims of MITs in graphene-based
Moiré materials, that upon closer inspection seem to ex-
hibit ”fake insulator” behavior. Consider, for example,
the WSe2/bilayer graphene (BLG)/WSe2 heterostruc-
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ture measured in Ref. [19]. At filling ν = 0, the resistivity
turns up at low temperatures reminiscent of an insulating
gap. However, at around T = 20K, the resistivity seems
to saturate, to a displacement-field dependent value. The
absence of a true diverging resistance at low temperature
suggests that these systems retain a nonzero density of
charge carriers, either from a band overlap or induced by
potential inhomogeneities that are common in graphene
systems. Indeed, when performing the scaling analysis,
we can collapse all the curves of this system to the metal-
lic branch of our scaling form, as shown in Fig. 3b.

Disordered metallic alloys – While Eq. (3) was de-
rived for weak disorder scattering and d = 2, it is in
fact far more universal. Often a momentum-independent
self-energy arises even beyond perturbation theory and
in any dimensions d. In realistic situations one can apply
iterated schemes such as the self-consistent Born approx-
imation for both disorder scattering and electron-phonon
scattering in the adiabatic limit. This scheme obeys the
equation Σ(z) = s2G(z), with s a (possibly tempera-
ture dependent) parameter quantifying the energy fluc-
tuations involved in the scattering process. This implies
that the inverse scattering time is proportional to the
density of states ImΣ(z) ∝ N(z) ∼ ImG(z), leading to

a conductivity of the form σ(T ) = e2

dπms2T log
[
1 + eµ/T

]
in general dimensions d, consistent with Eq. (3).[18]

The universal scaling is indeed also observed in three-
dimensional compounds away from the weak disorder
limit, since the condition ImΣ(z) ∼ N(z) implies that
µτ > 1 is always satisfied sufficiently close to the transi-
tion. In particular, we look at GST[20], a phase-change
compound where the annealing history affects the effec-
tive number of charge carriers.[24] Here, in the high-
temperature range T = 300 – 600 K, a smooth evolution
from positive dR/dT to negative dR/dT is observed de-
pending on the precise composition and history of the
sample. Since the main effect of these compositional
changes is in fact a shift of the chemical potential, we
show in Fig. 3c that the experimental data on GST can
be accurately described by our scaling theory.

Mooij correlations – Universal scaling implies the ex-
istence of a ‘fake insulator’ regime: a metal characterized
by a (dimensionless) negative temperature coefficient of
the resistance α = (T/R)dR/dT < 0. Historically,
the observation of a negative α in various disordered
metals, including binary alloys (NixCr1−x, TixAl1−x,
FexSi1−x, etc.)[9, 10] was considered a ‘high temperature
anomaly’.[22] In a seminal paper, Mooij[9] discovered a
correlation between the temperature coefficient α and the
resistivity ρ itself. There is currently no consensus on the
origin of these Mooij correlations, though they have been
interpreted in terms of quantum localization corrections
to the conductivity [22, 31] or the disorder-driven forma-
tion of polarons[10].

Interestingly, the scaling theory proposed in this Letter
allows to quantitatively describe Mooij correlations. To
do so, we assume that at high temperature the scattering
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● TiAl (Mooij 1973)

△ MoTe2/WSe2 (Li 2021)

■ Co2Mn1-xCrxSi (Aftab 2013)
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▼ Fe2VAl (Feng 2001)
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FIG. 4. The dimensionless temperature coefficient of the re-
sistance versus the dimensionless resistance, for a variety of
materials[5, 9, 20, 25–30] (for details see [18]), compared to
our theoretical result of Eq. (6) (solid black line). For the
experimental data the only fitting parameter is R∞, the limit
of the critical resistance at high temperature. We find an ex-
cellent agreement of the experimental Mooij correlations and
our theory.

time τ is linear in T :

τ−1 = τ−1
0 + bT. (5)

This form occurs in many metals, where b is either pro-
portional to the electron-phonon coupling strength, or
a more complex, ”Planckian” quantum scattering.[32]
With this assumption, the critical curve becomes flat at
high temperature, Rc(T ) → R∞ ∝ b. This allows us to
introduce a dimensionless resistivity R/R∞. By taking
the derivative of the scaling relation Eq. (3), and invert-
ing it with respect to the tuning parameter µ at a fixed
temperature T , we find that the temperature coefficient
α only depends on R/R∞,

α(R) =
R

R∞

(
1− 2R

∞/R
)
log2

[
2R

∞/R − 1
]
. (6)

In Fig. 4 we compare our analytical result with the orig-
inal data presented by Mooij[9] and those collected in
[10], finding a good agreement between the experimental
results on binary alloys and Eq. (6). The recent data on
Moiré bilayers shows an even more striking quantitative
equivalence between the resistivity data in the high tem-
perature range T = 26−60 K: without a fitting parameter
the experimental results of Ref. [5] match Eq. (6).
Outlook – In this Letter we have shown that a sim-

ple theory of conductivity predicts universal scaling near
band-tuned MITs consistent with experimental results in
a wide range of materials, from recent Moiré materials to
decades old data on binary alloys.
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The predicted scaling regime does not extend arbitrar-
ily close to the MIT: when Tτ < 1 and µτ < 1 de-
viations from or a full breakdown of scaling can appear.
Note that the difference between scaling close and further
away from the transition has been discussed in Ref. [6].
The scaling described in this Letter is thus not due to
the divergence of a length scale, and is not related to
Landau order parameters, the renormalization group, or
any other theory of universality in symmetry-breaking
(quantum) phase transitions. The universal behavior of
resistivity scaling near the MIT throughout many materi-
als is just the consequence of a generic weakly interacting
electrons with weak disorder, in spirit similar to the sta-
bility of the Fermi liquid. The properties of Anderson
and weak localization as well as Wigner crystallization
and the Mott MIT[6] are phenomena that, on the other

hand, are outside the scaling regime discussed here. It
is an interesting open question whether the scaling de-
scribed in this Letter can extend, under certain condi-
tions, arbitrarily close to the MIT, thus connecting to
the standard theoretical framework of continuous phase
transitions.[33]
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Mak, Péter Makk and Bálint Szentpéteri for sharing their
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