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We propose a method to extract the mutual exchange statistics of the anyonic excitations of
a general Abelian fractional quantum Hall state, by comparing the tunneling characteristics of a
quantum point contact in two different experimental conditions. In the first, the tunneling current
between two edges at different chemical potentials is measured. In the second, one of these edges is
strongly diluted by an earlier point contact. We describe the case of the dilute beam in terms of a
time-domain interferometer between the anyons flowing along the edge and quasiparticle-quasihole
excitations created at the tunneling quantum point contact. In both cases, temperature is kept
large, such that the measured current is given to linear response. Remarkably, our proposal does
not require the measurement of current correlations, and allows us to carefully separate effects of
the fractional charge and statistics from effects of intra- and inter-edge interactions.

Introduction.— It has been almost four decades since
the initial proposal that the elementary quasiparticles
of fractional quantum Hall (FQH) systems obey anyonic
statistics [1]. Despite the apparent maturity of the field,
the pursuit to definitively observe the physical quanti-
ties and quantum numbers characterizing anyons [2, 3] is
constantly being reinvigorated [4–21]. In particular, early
2020 saw two major experimental steps forward: the ob-
servation of anyonic braiding in a Fabry-Perot interfer-
ometer [22], and demonstration of a so-called “anyon col-
lider” [23, 24] using cross-correlation measurements.

Here we show that anyonic statistics can be inferred di-
rectly from conductance measurements, without requir-
ing current correlation measurements or explicitly build-
ing an interferometer. The configuration we propose to
obtain this result consists of a quantum point contact
(QPC) between two edges of a general Abelian FQH
state at filling factor ν. The edges may be driven off-
equilibrium by one of three methods: injecting a single
quasiparticle into one of the edges; injecting a Poisso-
nian, dilute beam of quasiparticles into one of the edges;
and placing a finite bias voltage between the edges.

Our proposed setup, shown in Fig. 1(a), allows a
smooth transition between the dilute Poissonian beam
and a full beam at finite bias voltage. This is ob-
tained by tuning a second, injection QPC from fully open
(a differential conductance, Ginj ≡ dIinj/dV , satisfying
Ginj/σxy → 0) to fully closed (Ginj/σxy → 1). We hence-
forth refer to these as the dilute and full limits, respec-
tively.

We propose sweeping Ginj through this range, and
measuring the ratio I/Iinj, where I is the measured cur-
rent after the tunneling QPC, and Iinj is the injected inci-
dent current, as defined in Fig. 1(a). Comparing the val-
ues at the dilute and full limits cancels out non-universal
constants, yielding the relation,[

I(T )

Iinj(T )

]
dilute

=
νe2

2πe∗1e
∗
2

sin 2θ12

[
I(T )

Iinj(T )

]
full

+
Gdirect

Ginj
. (1)

Here, e∗1/2 is the tunneling/injected quasiparticle charge,
θ12 is the mutual statistics phase between the injected
and tunneling quasiparticles, T is temperature, and
Gdirect is a residual conductance corresponding to direct
tunneling [25–27] through both QPCs. A comparison be-
tween these two limits is shown schematically in Fig. 1(b).

The mechanism leading to this result is a time-domain
interferometer at the tunneling QPC, created by the di-
lute incident beam. The interference is between two pro-
cesses, in which a quasiparticle-quasihole excitation oc-
curs at the tunneling QPC either before or after the ar-
rival of an injected quasiparticle (see Fig. 2). A similar
physical picture has been shown in Refs. [26, 28, 29]. We
further find that this interference is sensitive to the mu-
tual statistics phase between the injected and the tunnel-
ing quasiparticles, θ12. We emphasize that these quasi-
particles are not necessarily of the same type, although
they must be supported by the same FQH liquid.

The key point of our analysis is the identification of
the phase differences in the two interfering of two ampli-
tudes, which differ from one another by the orderings
of events. These are determined by the quasiparticle
charge e∗, which is a fraction of the electron charge for
non-integer values of ν [4–6]; the scaling dimension δ,
which defines the zero-temperature time correlations of
the quasiparticle via the relation ⟨ψ†(τ)ψ(0)⟩ ∼ τ−2δ

[30–33]; and the exchange statistics phase θ, which for
anyons take special values beyond the fermionic π and
the bosonic 2π [1–3].

We are interested here in isolating the effect of θ. In
particular, we would like to separate it from the effect
of δ. For non-interacting, fully chiral edges, 2πδ = θ;
however, in general δ is affected by non-universal factors,
such as intra-edge and inter-edge interactions, 1/f noise
or neutral modes [34–39]. This in stark contrast to the
charge, exchange statistics phase, or filling factor, which
are universal.

We separate the effect of θ from that of δ by tuning
the system to a regime where δ only affects observables
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FIG. 1. (a) Two counter-propagating edge modes (u/d) of
a fractional quantum Hall droplet at filling factor ν are con-
nected by a quantum point contact, through which quasipar-
ticles of charge e∗1 and scaling dimension δ1 can tunnel. Cur-
rent is measured at the lower edge’s drain, denoted by I. A
current of Iinj is injected into the upper edge via a second, in-
jection QPC, e.g. from a third auxiliary edge mode (a). The
injection QPC is placed at a bias voltage of V , and allows
tunneling of quasiparticles of charge e∗2 and scaling dimension
δ2. All other sources and drains are grounded. (b) The ratio
between I/Iinj in the dilute case and I/Iinj in the full case,
as a function of temperature, for ν = e∗1/e = e∗2/e = 1/3,
and for different scaling dimensions δ1. For the dilute case,
we use Iinj = 10pA, and assume kBT ≪ eV for all rele-
vant temperatures, such that the contribution from Gdirect

to Eq. (1) is negligible. In the full case, we use V = 10µV .
Both cases use ξ = 72mK, τc = 10−13s. When the dilute case
satisfies ℏIinj/e ≪ kBT ≪ eV ≪ ℏ/τc, and the full case sat-
isfies ℏIinj/e = νeV/2π ≪ kBT ≪ ℏ/τc, the ratio approaches
an asymptote that does not depend on scaling dimension, al-
lowing extraction of the mutual statistics θ12. Inset: I/Iinj
for the dilute and full cases as a function of temperature for
δ1 = 1/6, the canonical value for a Laughlin 1/3 state.

through a non-universal prefactor, which then cancels out
in the ratio of currents given in Eq. (1). This is done via a
careful ordering of the energy scales in the system, such
that ℏIinj/e ≪ kBT at both the dilute and full limits.
This ensures that the current I is given to linear response
in Iinj. As the dominant energy scale in the system is

now the temperature, any renormalization that the edges
and the scaling dimension undergo will be cut off by the
same energy scale. Thus, even if the scaling dimension
deviates from predictions [40, 41], it will do so in the same
manner at both limits, and the cancellation described
holds. We present an analytic expression generalizing
Eq. (1) outside of this regime [42].

While in the full limit the edge that enters the tunnel-
ing QPC is in equilibrium at chemical potential e∗V , at
the dilute limit we need the injection current to be Pois-
sonian and rare. Said differently, this limit must satisfy
Iinj ≪ σxyV . The beam must remain dilute when arriv-
ing at the tunneling QPC. Hence, the distance between
the QPCs must be sufficiently small that no equilibra-
tion or dephasing occurs along the way. Finally, we as-
sume tuning the injection QPC does not affect the trans-
parency of the tunneling QPC.

Easy extraction of θ12 requires Gdirect to be sub-
dominant (see Eq. (1)). Quantitatively, this is the case
if both kBT ≪ eV and 4δ1 < 2 are satisfied. These con-
straints result from the direct tunneling process being
dominated by short time scales. Naive theories describ-
ing quasiparticles may satisfy this condition even if the
aforementioned non-universal effects change the scaling
dimension quite significantly. For example, theory gives
δ = 1/2m for Laughlin quasiparticles.

Edge theory.— We now define the system’s Hamilto-
nian and derive the current. As shown by Wen, the edge
theory of a general Abelian FQH state can be described
by n-boson fields, ϕ(x, t) ≡ (ϕ1, ϕ2, · · ·ϕn)T [2]. These
define the theory in conjunction with a charge vector, q,
which determines the electric charge carried by each bo-
son field, and the so-called K-matrix, which determines
the commutation relations between the boson fields,

[ϕi(x), ∂x′ϕj(x
′)] = i2π(K−1)ijδ(x− x′). (2)

The filling factor is given by ν = qTK−1q, and the charge
density by ρ = − 1

2πq · ∂xϕ. In terms of these fields, the
Hamiltonian of a single FQH edge mode is given by

Hedge =
1

4π

n∑
i,j=1

ˆ
dx∂xϕiVij∂xϕj , (3)

where V̂ is a positive definite matrix describing the ve-
locities of the modes and intra-edge interactions. These
edges support quasiparticles of the form ψl ∼ eil·ϕ, where
l is a vector of integers. The charge of these quasiparti-
cles is then given by e∗l = qTK−1l.

The configuration of Fig. 1(a) involves two edges, u
and d, tunnel-coupled by a QPC. This is described by
two copies of the Hamiltonian Hedge, and a tunneling
term, HT , treated perturbatively. Assuming only one
type of quasiparticle, denoted by the vector l1 and car-
rying charge e∗1, tunnels between the edges, this is given
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by

HT = ξ
[
Â+ Â†

]
; Â(t) ≡ ei(l1·ϕ

(u)(0,t)−l1·ϕ(d)(0,t)). (4)

Here, ξ is a small tunneling amplitude, assumed to be
real, and ϕ(u/d) are the bosonic field operators on the
upper/lower edge. We project the auxiliary edge a out
of the Hamiltonian, as it is only used to “initialize” the
state of the edge u.

The current that tunnels from the upper edge to
the lower edge is then given by the operator, ÎT (t) =

iξe∗1

[
Â†(t)− Â(t)

]
. Since the lower edge is grounded,

we henceforth identify I = ⟨ÎT ⟩. Expanding to leading
order in ξ, the current is given by

I(t) = e∗1ξ
2

ˆ t

−∞
dt′

〈[
Â†(t), Â(t′)

]
+
[
Â†(t′), Â(t)

]〉
. (5)

Here, [·, ·] denotes commutation, and expectation values
are calculated with respect to the Hamiltonian in the
absence of tunneling.

Deviation from Equilibrium.— It is clear from Eq. (5)
that one needs to derive correlation functions such as
⟨Â†(t)Â(t′)⟩. In equilibrium, at temperature T , the sys-
tem is particle-hole symmetric, and the correlation func-
tions are given by [2, 43]

⟨Â†(t)Â(t′)⟩0 = ⟨Â(t)Â†(t′)⟩0 (6)

=

[
πTτc

sinh (πT |t− t′|)

]4δ1
e−i2πδ1sgn(t−t′),

where δ1 is the scaling dimension of the quasiparticle l1,
and τc > 0 is a short time cutoff.

We now consider two non-equibrium cases. In the first
we introduce a constant bias voltage V ≡ Vu − Vd be-
tween the edges. In the setup of Fig. 1(a), this corre-
sponds to a fully closed injection QPC, i.e. Iinj = σxyV .
This can be formally absorbed into the boson fields by a
simple gauge transformation, which maps ϕ(u/d)(x, t) 7→
ϕ(u/d)(x, t) + K−1qVu/d (t∓ x/v) /ℏ. The correlation
functions accordingly gain a phase factor

⟨Â†(t)Â(t′)⟩full = ⟨Â†(t)Â(t′)⟩0ei
e∗1V

ℏ (t−t′),

⟨Â(t)Â†(t′)⟩full = ⟨Â(t)Â†(t′)⟩0e−i
e∗1V

ℏ (t−t′).
(7)

In the second non-equilibrium driving, we consider in-
jecting a single quasiparticle, denoted by the vector l2,
into the upper edge, at the location xinj < 0 and time
tinj. This is shown schematically in Fig. 2(a). From
the commutation relations (2), applying the quasiparticle

creation operator e−il2·ϕ(u)(xinj,tinj) on the edge creates a
soliton in each of the boson fields,

ϕ(u)(x, tinj) 7→ ϕ(u)(x, tinj)− 2πK−1l2Θ(x− xinj) . (8)

We assume here the injection happens instantaneously.
This assumption will be relaxed to find the subleading
term of Eq. (1).
The fields at general times are obtained using the equa-

tions of motion dictated by the Hamiltonian, Eq. (3).
If all modes are chiral with the same velocity v, this
amounts to replacing x − xinj → x − xinj − v (t− tinj).
The soliton thus arrives at the QPC, x = 0, at time
t0 ≡ tinj − xinj/v.
The c-number shift in the bosonic field of Eq. (8) leads

to a phase shift in the correlator Eq. (6). We see directly
from the definition of the operator Â in Eq. (4) that

⟨Â†(t)Â(t′)⟩qp = ⟨Â†(t)Â(t′)⟩0e2πil1K
−1l2[Θ(t−t0)−Θ(t′−t0)],

⟨Â(t)Â†(t′)⟩qp = ⟨Â(t)Â†(t′)⟩0e−2πil1K
−1l2[Θ(t−t0)−Θ(t′−t0)].

(9)
The phase we obtain is the standard definition of

mutual braiding statistics between two quasiparticles,
θ12 ≡ πl1K

−1l2 [2]. Eq. (9) shows that the product gains

a phase of e2iθ12sgn(t−t′) if the arrival time t0 is between
the times t′ and t, and a trivial phase of 1 otherwise. We
emphasize how naturally this result came from the under-
lying theory: the only assumptions necessary to obtain
this are the commutation relations, (2), and the existence
of quasiparticles in the edge’s excitation spectrum.

This result holds for different boson modes with differ-
ent velocities if all solitons arrive at the tunneling QPC
more or less concurrently, avoiding dephasing. This is the
case if |xinj|∆(v−1) ≪ ℏ/T , where ∆(v−1) is the inverse
velocity difference between the fastest and the slowest
modes.

Time-domain interferometry.— The appearance of the
phase, θ12, can be understood as time-domain interfer-
ometry of the two distinct ±e∗1 quasiparticle-quasihole
excitations, before and after the injected e∗2 quasiparticle
arrives at the QPC. A similar physical picture has been
shown in Ref. [26, 28, 29].

To show this we consider the configuration of a single
injected particle, as described in Fig. 2(a). In this case
the non-equilibrium correlation function takes the form,

⟨Â†(t)Â(t′)⟩qp = ⟨ψl2(t0)Â
†(t)Â(t′)ψ†

l2
(t0)⟩0, (10)

i.e., the expectation value is calculated with respect to
the state resulting from exciting the ground state |0⟩ with
a single quasiparticle. Here we omit the position variable
from the quasiparticle injection operator ψ†

l2
(t0), and as-

sume it arrives at the tunneling QPC x = 0 at time t0.
The current in Eq. (5) is then given by integration

over multiple terms of the form in Eq. (10). Defining

|t, t0⟩− ≡ Â(t)ψ†
l2
(t0) |0⟩ and |t, t0⟩+ ≡ Â†(t)ψ†

l2
(t0) |0⟩,

Eq. (5) can be re-written as

I ∝ −
ˆ t

−∞
dt′

∑
b=±

b
∣∣ |t, t0⟩b + |t′, t0⟩b

∣∣2. (11)
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This expression involves two interference terms. The
b = − term involves interference between creation of −e∗1
quasiholes on the upper edge at the QPC at times t and
t′. The two interfering processes are shown schemati-
cally in Fig. 2(b). From Eq. (9), these two processes
are distinguished by a non-trivial phase of ei2θ12 if the
arrival time t0 is in between the quasiholes’ creation
times, t′ < t0 < t. Combined with the equilibrium
correlation function Eq. (6), this gives an interference
term proportional to cos (2θ12 − 2πδ). Using similar ar-
guments, the b = + term gives an interference term
proportional to cos (2θ12 + 2πδ). The total contribution
from the two terms in Eq. (11) is thus proportional to
sin (2θ12) sin (2πδ). A full derivation of the contributions
from all processes, as well as processes in which a −e∗2
quasihole is injected into the upper edge, is given in App.
A of [42].

This interference happens entirely in the time domain,
and along only one edge. It is however crucial that this
edge be part of a two-dimensional bulk. This is important
both because the second edge is required to absorb the
leftover quasiparticle or quasihole resulting from the pair
creation at the QPC, and because the injected quasiparti-
cle must be created within a bulk FQH droplet. Further-
more, the bulk is intimately related to the edge through
bulk-edge correspondence [2]. This dictates that the sta-
tistical phase contributing to time-domain interference
along a single edge, which our setup measures, is the
same as the phase obtained from spatial exchange. In-
deed, gauge invariance dictates that the same K-matrix
defines both the quasi-particles statistics on the edge and
the Topological Quantum Field Theory in the bulk. The
latter determines the statistics in the bulk.

It is easy to generalize this to injection of multiple
quasiparticles: as long as all injected quasiparticles are
mutually independent, each injected quasiparticle con-
tributes a phase of e2iθ12 if and only if the arrival time at
the point contact was between t′ and t. If this process is
Poissonian, with a quasiparticle injection rate of Iinj/e

∗
2,

we obtain for t > 0

⟨Â†(t)Â(0)⟩dilute
⟨Â†(t)Â(0)⟩0

=

∞∑
n=0

(tIinj/e
∗
2)

ne−tIinj/e
∗
2

n!
e2inθ12

= e−tIinj/e
∗
2(1−e2iθ12),

(12)

cf. Refs. [24, 26]. Adding injected quasiparticles to the
lower edge and generalizing for t < 0 are straightforward
using the same arguments.

Currents.— The effect of driving the system out of
equilibrium is completely encapsulated in the correlation
functions obtained above. These can then be used to
derive any observable of interest. We present the results
of such a calculation for the charge current at the lower
drain, denoted as I in Fig. 1, and how they can be used
to obtain the mutual statistics θ12.

We focus on the regime where the temperature is large

𝜈
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𝑒2
∗
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III Pair
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FIG. 2. Time-domain interferometry. (a) I A quasiparticle
is injected from the sourced, left edge, through the injection
QPC, and into the upper edge. II The injected quasiparti-
cle, by virtue of its chiral motion along the edge, arrives at
the tunneling QPC. III A quasiparticle-quasihole pair is cre-
ated at the tunneling QPC. (b) The two processes by which
charge carriers may ultimately arrive at the drain. The in-
jected quasiparticle arrives at the tunneling QPC either before
(upper panel) or after (lower panel) the creation quasiparticle-
quasihole pair. These two processes interfere, with a relative
phase dictated by the mutual statistics phase, ei2θ12 .

compared to the injected current, ℏIinj/e ≪ kBT . For
the full limit, this assumption guarantees linear response
in the voltage and in the injected current, which in this
limit is Iinj = σxyV . For the dilute limit, the exponen-
tial suppression of the equilibrium correlation function at
times larger than ℏ/T , guarantees that the exponent in
Eq. (12) may be expanded to first order in Iinj. Conse-
quently,

⟨Â†(t)Â(t′)⟩full/dilute
⟨Â†(t)Â(t′)⟩0

≈ 1 + iωf/d (t− t′) , (13)

where the frequencies ωf/d are given by

ωf =
e∗1V

ℏ
=
e∗1
ℏ
Iinj
σxy

; ωd = i
Iinj
e∗2

(
1− e2iθ12

)
. (14)

The zeroth order term corresponds to the equilibrium
state and does not contribute to the current. The ratio
of the two first order contributions is Eq. (1).
Explicit calculation of the resulting current in Eq. (5),

given in App. A [42], finds that

Ifull/dilute = 2πe∗1(ξτc)
2(2πTτc)

4δ1−2B (2δ1, 2δ1)Re
[
ωf/d

]
,

(15)
where B(x, y) is the Euler Beta function. Thus, by fo-
cusing on the ratio between the full and dilute beams,
all dependence on δ1, T and ξ drops out. Examining the
ratio I/Iinj, we thus obtain Eq. (1).
For general temperatures, we are no longer in the lin-

ear response regime, and we obtain the typical power
laws characterizing tunneling in Luttinger liquids [2, 35,
44, 45]. Comparing measurements of the full and di-
lute limits can still give a quantity related to the mutual
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statistics θ12, but will explicitly depend on the value of
δ1. We present general expressions for the current in this
case in App. A [42].

For a fermionic θ12 = π, Eq. (15) gives no current at all
for a dilute electron beam. However, Landauer-Buttiker-
Imry scattering theory [46] tells us the current is given
by the product of the transparencies of the two QPCs
along the electron’s path, regardless of whether they are
close to full transmission or full reflection. This requires
accounting for the direct tunneling term in Eq. (1), which
now becomes the leading contribution.

We do this by accounting for the finite width of the
soliton. This leads to the expected result of Idilute =
4π2τ2c ξ

2Iinj. The intuition behind this solution is that
tunneling without time-domain interferometry, dubbed
the direct tunneling process in [25, 26], is dominated
by short times. Performing these calculations explic-
itly in App. B [42], we show that the ratio between

the first term in Eq. (1) and Gdirect is ∝ (Tτs)
4δ1−2

,
where τs is the soliton width. It has been shown [25, 26]
that τ−1

s ∝ max{eV, kBT}; as such, to ensure Gdirect is
sub-dominant, the dilute limit must be measured when
kBT ≪ eV and 4δ1 < 2.
Several contemporary experimental setups use the

equivalent of non-interacting fermionic formulae to rea-
sonable success [47], corresponding to the limiting value
of 2δ1 = 1. In this case, the second term of Eq. (1) is
a numerical coefficient of order one, which may depend
solely on e∗, δ1 and θ12. For non-interacting fermions,
this coefficient is easily found by comparing to known
Landauer-Buttiker-Imry scattering theory [46], but it is
straightforward to generalize. We discuss this coefficient
further in App. B [42].

Discussion.— Both the exchange statistics θ11 of the
tunneling quasiparticle, and θ22 of the injection quasi-
particle, do not appear in our derivation. Rather, it is
the two particles’ mutual statistics, θ12 that affect the
modified correlation functions, and hence, the physical
observables. Likewise, only δ1 and e∗1 directly effect ob-
servables, although properties of the injected quasiparti-
cles may implicitly enter through the injection rate.

Exchange statistics for a single quasiparticle type are
only obtained if the injected and tunneling quasiparti-
cles are identical, l1 = l2. This is indeed the case in
the experiment of Ref. [23], where all quasiparticles are
Laughlin e∗ = e/3 anyons, and subsequent recreations
for the ν = 1/3 and ν = 2/5 cases [27, 48, 49]. Another
recent experiment employing a similar setup, where the
injected quasiparticle was a e/3 anyon and the tunneling
quasiparticle was an electron, observed Andreev-like re-
flection [50]. This is consistent with a mutual statistics
phase of θ12 = π, for which Eq. (1) gives no time-domain
interferometry signal.
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