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We propose a new formula that extracts the quantum Hall conductance from a single (2+1)D
gapped wavefunction. The formula applies to general many-body systems that conserve particle
number, and is based on the concept of modular flow: i.e., unitary dynamics generated from the
entanglement structure of the wavefunction. The formula is shown to satisfy all formal properties of
the Hall conductance: it is odd under time-reversal and reflection, even under charge conjugation,
universal and topologically rigid in the thermodynamic limit. Further evidence for relating the
formula to the Hall conductance is obtained from conformal field theory arguments. Finally, we
numerically check the formula by applying it to a non-interacting Chern band where excellent
agreement is obtained.

Since the discovery of the quantum Hall effect, the
investigation of gapped topological phases has been at
the forefront of quantum many-body physics [1–3]. Such
phases cannot be characterized by any local order pa-
rameters and all of their unusual properties emerge from
the entanglement of the ground state wavefunction [4].
Quantifying this connection has been a persistent and
interesting challenge for the past few decades.

For example, entanglement entropy in a ground state
wavefunction reveals the total quantum dimension of
anyons [5–7] while access to multiple ground states on
a torus allows for a determination of modular matri-
ces characterizing the anyons [8, 9]. Further informa-
tion, such as the entanglement spectrum, reveals the pro-
tected edge states [6, 7, 10–16]. Yet, how to extract the
quantum Hall conductance, the first discovered topologi-
cal quantity, from the entanglement pattern of a gapped
wavefunction alone remains an open question. Here, by
gapped wavefunction, we mean the ground state wave-
function of a gapped, local Hamiltonian. Solving this
question also provides an entanglement characterization
of the boundary chiral anomaly via the bulk-edge cor-
respondence. Besides its foundational interest, evaluat-
ing such a formula in various variational ansatz of wave
functions could help characterize limits to the efficient
representations of quantum states especially by tensor
networks or stabilizers [17–21].

There are several approaches to extracting Hall con-
ductance that do not invoke entanglement. For free
fermion systems, there are the TKNN formula [22] and
Fredholm index formula [23–25]. While the latter idea
has been generalized to the interacting case, its formal-
ism uses quasi-adiabatic evolution and is more convenient
to work with if the actual Hamiltonian, rather than a sin-
gle wavefunction, is known [26, 27]. We also note earlier
works on extracting the many-body Chern number from a
single wavefunction based on connections to topological
quantum field theory and surgery [28, 29]. This quan-
tity coincides with the Hall conductance in free-fermion
systems but is a distinct quantity in generic interacting
systems (see [29] for details).

In this letter, we conjecture a new formula, with ana-

lytical and numerical support, which uses entanglement
to compute the Hall conductance from a single wave-
function directly. The formula is proposed for generic
interacting systems without assuming translational in-
variance [30].
The Hall conductance relies on charge conservation,

which the entanglement spectrum of a state is blind
to [31]. Therefore, more data is necessary, motivating our
use of the modular Hamiltonian and modular flow in the
formula presented here. In a recent advance, the modu-
lar Hamiltonian has appeared in a proposed formula for
the chiral central charge [32, 33], which can be viewed
as entanglement transport under the modular flow [34].
(See also [20, 21] for related works.) Here we are inter-
ested in the Hall conductance σxy, a distinct topological
invariant, which requires an additional conserved U(1)
charge Q.
Proposed Formula for Hall Conductance— Consider a

lattice system on the plane with a U(1) symmetry that
is generated by the total charge operator Q =

∑
i ni,

where i labels the lattice sites. Let |ψ⟩ be a U(1) sym-
metric gapped wavefunction, ρD = TrD |ψ⟩ ⟨ψ| the re-
duced density matrix of any given region D. The modu-
lar Hamiltonian is defined as KD := − ln ρD, which is a
Hermitian operator with a lower-bounded spectrum and
conserves the total number of charges QD in that region,
i.e., [QD,KD] = 0. The modular Hamiltonian gener-
ates a unitary evolution UD(s) := e−isKD , called modu-
lar flow, where the modular time s is dimensionless [35].
The Hall conductance is encoded in a charge response
under modular flow at the linear order in s.
Specifically, divide the plane into four regions A,B,C

and D, whose linear sizes are larger than the correlation
length, and every three regions meet at a point once and
only once [25, 32]. Let K• and Q• denote the modular
Hamiltonian and charge of the corresponding region. The
response function we focus on is:

D

AB

C

Σ(ψ;A,B,C)

=
i

2
⟨ψ|[KAB , Q

2
BC ]|ψ⟩ ,

(1)
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i.e., the charge response in BC under the modular flow
on AB. The modular Hamiltonian itself is non-universal
and ultraviolet divergent, but the expectation value of
the commutator will be argued to be topological and in-
sensitive to details of the wavefunction. Our proposal for
Hall conductance σxy is:

Σ(ψ;A,B,C) = σxy . (2)

Note that the left-hand side containing Q2
BC is consistent

with the fact that the unit of Hall conductance is e2/ℏ.
The rest of the letter presents evidence for this for-

mula from various angles. We first show that the for-
mula shares the same general properties as the Hall con-
ductance. We then establish their quantitative connec-
tion via the bulk-edge correspondence and conformal field
theory (CFT) arguments. Our discussion, which uses the
defect operator, provides a unifying viewpoint on the two
different formulas for the chiral central charge and Hall
conductance. Finally, we provide numerical evidence us-
ing both lattice and continuum free-fermion models.

General properties— Any formula for the Hall conduc-
tance needs to meet the following minimal requirements.
First of all, Σ(ψ;A,B,C) should be real and additive
under stacking, i.e., on combining independent systems:

Σ(ψ1 ⊗ ψ2;A,B,C) =

Σ(ψ1;A,B,C) + Σ(ψ2;A,B,C) ,
(3)

which are clear from its definition. Although additiv-
ity may seem trivial, other topological quantities e.g.,
the many-body Chern number do not possess this prop-
erty [29]. We now show that Σ(ψ;A,B,C) also satisfies
other requirements that are not manifest in the construc-
tion. It has the same CRT transformation rules as the
Hall conductance, namely, it (i) is even under charge con-
jugation:

C : Σ(ψ;A,B,C) = Σ(Cψ;A,B,C) , (4)

and (ii) is odd under the reflection [36]

R : Σ(ψ;A,B,C) = −Σ(ψ;B,A,C) , (5)

and (iii) is also odd under the time-reversal

T : Σ(ψ;A,B,C) = −Σ(T ψ;A,B,C) . (6)

Furthermore, (iv) it is topological, in the sense that:

Σ(ψ;A,B,C) = Σ(ψ;A′, B′, C ′) , (7)

where A′, B′, C ′ are smoothly deformed subregions with
the same topology as A, B, C. Finally, (v) it is universal

Σ(ψ;A,B,C) = Σ(ψ′;A,B,C) , (8)

where ψ′ is equal to ψ deformed by a U(1) symmetric
local operator.

The justification of these properties uses three ingre-
dients. The first one is a conversion formula that follows
the Schmidt decomposition

KD |ψ⟩ = KD |ψ⟩ , (9)

where KD and KD are the modular Hamiltonians of the
state |ψ⟩ for an arbitrary region D and the complement
D, respectively. The second is the clustering property,
the correlation function of two operators Ox and Oy fac-
torizes when their distance |x− y| is larger than the cor-
relation length ξ

⟨OxOy⟩ψ = ⟨Ox⟩ψ ⟨Oy⟩ψ +O(e−|x−y|/ξ) ,

where ⟨·⟩ψ is the expectation value in the state |ψ⟩. The
third one is an assumption on the decomposition of mod-
ular Hamiltonians when they act on the state:

A B C

(KAB +KBC) |ψ⟩
≈ (KABC +KB) |ψ⟩ ,

where A and C do not meet directly [37]. We expect
the decomposition to hold when the linear sizes of the
subregions are larger than the correlation length. The
proof of the CRT transformation rules only uses Eq. (9).
The argument of the topological rigidity and universal
nature uses the other two ingredients as well. The third
assumption was also used in [32] to argue the rigidity of
the modular commutator formula for the chiral central
charge as well.
Charge conjugation The charge conjugation sends the

charge operator from QD to ND −QD, where ND is the
maximal number charge of the region D. Here, we have
assumed a finite Hilbert space per site. Thus, the right-
hand side of Eq. (4) is essentially

⟨[KAB ,(NBC −QBC)
2]⟩ψ

= ⟨[KAB ,−2NBCQBC +Q2
BC ]⟩ψ ,

which can be shown to equal to the left-hand side by
using ⟨[KAB , QBC ]⟩ψ = 0 [36].

Reflection For a symmetric choice of A,B and C, re-
flection effectively interchanges A and B. In fact, Eq. (5)
holds more generally even when A,B,C have unequal
sizes and different shapes. Nevertheless, we still call
Eq. (5) the reflection transformation. Proving it is equiv-
alent to showing the vanishing of the following quantity

⟨[KAB ,Q
2
BC +Q2

AC ]⟩ψ
= ⟨[KAB , Q

2
BC +Q2

AC −Q2
ABC ]⟩ψ ,

where we have used ⟨[KAB , Q
2
ABC ]⟩ψ = 0 in the second

step, i.e., modular flow in AB does not change the charge
in ABC. Expanding the charge operators in terms of
QA, QB and QC gives ⟨[KAB , Q

2
C − 2QAQB ]⟩ψ, which

vanishes by using Eq. (9).
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FIG. 1. Geometric deformation. Undeformed regions A,B,C
with: (a) Deformation ”b” is away from the triple contact
points. (b) Deformation is close to one triple contact point.

Time reversal The time reversal keeps the charge op-
erator invariant. Eq. (6) follows from ⟨T ψ|T ϕ⟩ = ⟨ϕ|ψ⟩
and the hermiticity of KAB and QBC .
Topological There are two types of deformation that

should be considered: deformations of the boundary be-
tween regions that are (1) far from any triple contact
point or (2) close to one of them. Typical examples are
show in Fig. 1 (a) and (b), respectively, where a small
blob b is removed from D and attached to B. One can
check that Σ(ψ;A,B,C) does not change under either of
these two deformations when the size of b is larger than
the correlation length [36].

Universal We deform the state |ψ⟩ to |ψ′
x⟩ ∝ |ψ⟩ +

Ox |ψ⟩ by a U(1) symmetric local operator at position x,
and show Eq. (8). IfOx is inside a region and far from any
boundary, it follows from the clustering property, which
implies that the reduced density matrices and thus modu-
lar Hamiltonians of other regions do not change [36]. The
case where Ox is close to a boundary can be justified by
exploiting the topological rigidity of Σ(ψ;A,B,C), simi-
lar to the argument in [7].

Although the results thus far are compatible with iden-
tifying Σ ∝ σxy in Eq. (2), the constant of proportionality
must be determined. In particular we need to eliminate
the trivial possibility that (2) always vanishes. We turn
to this task next.

Connection to Hall conductance— The universal prop-
erty Eq. (8) allows us to deform the state to a nicer form.
Therefore, without loss of generality, we can consider
gapped states whose edge can be described by a (1+1)D
conformal field theory (CFT) with the central charge c
and c that quantifies the number of chiral and anti-chiral
edge modes. The modular Hamiltonian of a simply con-
nected region D with a smooth boundary can be approx-
imated by the same CFT Hamiltonian supported on the
boundary ∂D [7, 10]

ρD =
1

ZD
e−KD , KD = βHCFT , (10)

where β is a non-universal constant. HCFT is defined
by the Virasoro generators L0 and L̃0 that governs the
dynamics of the chiral and anti-chiral modes respectively

HCFT =
2π

ℓD
(L0 + L̃0 −

c+ c

24
) ,

where ℓD is the circumference of the region D. Thus,
KD only generates non-trivial modular flow along ∂D,
where the excitation moves with the speed v = β. In the
case with U(1) symmetry, the CFT is augmented by a
holomorphic and anti-holomorphic current J, J̃ at level
kL, kR, which characterizes the U(1) current associated
to the chiral and anti-chiral modes. The Hall conduc-
tance is σxy = (kL − kR)/2π.
It is more instructive to consider the U(1) defect op-

erator eiµQD and obtain Q2
D via Taylor expansion in µ.

This operator creates a line defect along the boundary of
D, and thus its expectation value ZD(µ) := ⟨ψ|eiµQD |ψ⟩
satisfies an area-law

lnZD(µ) = −αℓD + γ + · · · (11)

where α is the line tension, γ is universal, and the ellipsis
represents terms that vanish in the limit ℓD → ∞ [38].
Our focus is the area-law coefficient, which is dictated by
the charged Cardy formula [39]

α =
(kL + kR)µ

2

4πβ
. (12)

This result is related to the spectral flow of the CFT
ground state energy under a U(1) twist [40]. Its linearity
in kL + kR is because the levels physically quantify the
number of charged modes. The µ2 dependence will play
an important role in our following derivation.

We reinterpret the result with a quasi-particle picture.
There are chiral and anti-chiral modes sitting near the
boundary ∂D, the numbers of which are proportional
to kL and kR, respectively. Their correlation across the
boundary contributes to the line tension. We can then
separate α into two terms that account for the contribu-
tion from the two types of modes

αchiral =
kLµ

2

4πβ
, αanti-chiral =

kRµ
2

4πβ
. (13)

The idea is sketched in Fig. 2 (a), where the chiral and
anti-chiral modes are the red and blue dots respectively.
Under the modular flow generated by KD, the chiral and
anti-chiral modes inside the region D move in opposite
directions, as shown by the arrows.

Corresponding to Eq. (1), we apply this picture to com-
pute the response of eiµQBC under the modular flow gen-
erated by KAB

ZBC(µ; s) := ⟨ψ|eisKABeiµQBCe−isKAB |ψ⟩ .

It suffices to focus on the chiral modes, the contribution
from the anti-chiral ones is the opposite. See Fig. 2 (b).
Only the motion of chiral modes that are near the ABC
and ABD triple-contact points can affect ZBC(µ; s) at
the linear order in s. Near the ABC triple-contact point,
chiral modes in B that are correlated with C will enter
A and increase the line tension. The ABD triple-contact
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Version of (a)

FIG. 2. (a) Red and blue dots are the chiral and anti-chiral
modes, the bonds represent the correlation. The arrows des-
ignate their motion under the modular flow UD(s). (b) The
anti-chiral degrees of freedom are suppressed for the clarity of
the figure. The arrows designate the motion under the mod-
ular flow UAB(s). The yellow shaded disks emphasis modes
that make contribution to the change of ZBC(µ; s) at the lin-
ear order in s.
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FIG. 3. (a) Σ(ψ,A,B,C) across the phase diagram. Blue,
red and green curves correspond to the disk geometry at the
corresponding radii r. The dashed line is the value of the
quantized Hall conductance. (b) Finite size scaling. The blue
dots are the data points and the red line is the fitting result.
We choose Lx = Ly = 40. For the annulus geometry, the inner
and outer radius is 7 and 14. For (b), the inverse correlation
length is ξ−1 = 0.398.

point can be analyzed similarly. After summing up the
two contributions, we have

d

ds
lnZBC(µ; s)

∣∣
s=0

= −2(αchiral − αanti-chiral)v

where the velocity is v = β as introduced before. By
plugging in Eq. (13), we have

d

ds
lnZBC(µ; s)

∣∣
s=0

= −kL − kR
2π

µ2 = −σxyµ2 , (14)

Here the non-universal factor β is completely canceled,
which yields a universal answer. This is the main result
of this work. Expanding eiµQBC on the left-hand side
above to quadratic order in µ gives the right-hand side of
Eq. (1) which verifies our identification in Eq. (2). In [36],
we apply the same idea to purely 1+1D CFTs and show
that it detects the perturbative chiral anomaly, which
is consistent with the spirit of the bulk-edge correspon-
dence.

Numerics— We provide numerical support to our con-
jecture by simulating free fermion systems. In this
section we report on a lattice model and focus on

Σ(ψ;A,B,C) in different phases, its finite size scaling
and topological rigidity. The non-integer values are at-
tributed to either finite-size effect or the closing of the en-
ergy gap. [36] contains other aspects as well as results on
a continuum model. In particular, we numerically check
the remarkable µ2 dependence in the area-law coefficient
Eq. (12) in lattice systems and find excellent agreement.

We simulate the π-flux model on a square lattice.
The Hamiltonian, H =

∑
ij tijc

†
i cj , consists of nearest-

neighbor hopping terms that implement π-flux per pla-
quette and next-nearest-neighbor hoppings that open up
a gap and give rise to various phases. We choose a 1-
dimensional path inside the entire phase diagram that
is parameterized by η ∈ R. The system is time-reversal
symmetric for η ⩽ 0 and breaks the symmetry for η > 0.
There is a topological phase at 0 < η < 2 with a Chern
number C = 1 and two trivial phases elsewhere. In the
numerics, we also add weak on-site disorders to make the
situation more general.

The result of Σ(ψ;A,B,C) across the phase diagram
is shown in Fig. 3 (a), where we obtain the correct Hall
conductance of each phase. Our formula indeed van-
ishes identically in the time-reversal symmetric region
η < 0. Near the two phase boundaries, the curve becomes
steeper for larger subsystem sizes. In the topological
phase, we perform a more detailed finite size scaling. Let
∆ := 1 − 2πΣ(ψ;A,B,C) be the difference between the
theoretical and numerical value, and the result is shown
in Fig. 3 (b). The deviation decays exponentially with
the linear size of the subsystem and the decaying expo-
nent is twice of the correlation length. As a sanity check,
if A,B,C form an annulus (replace a disk neighborhood
of the ABC triple-contact point by region D) we find
a null result. This is consistent with our quasi-particle
picture.

We also provide numerical evidence on the topologi-
cal rigidity as independent support from our analytical
argument. For example, we deform the boundaries near
the triple-contact points, depicted in Fig. 4 (a1)-(a3),
and compute Σ(ψ) for the deformed geometry. As shown
in Fig. 4 (b), its value remains the same across the en-
tire phase diagram even though the added blobs are not
much larger than the correlation length. The results are
the same for other deformations.

Discussion—The present results can be understood as
linear response extensions that go beyond ‘static’ entan-
glement features by utilizing the dynamics generated by
the modular (or entanglement) Hamiltonian. Here, the
charged Cardy formula evaluates the ‘static’ features of
the U(1) twist operator eiµQ [38], and its linear response
under the modular flow is shown to give the Hall con-
ductance. We would like to note that the dynamical per-
spective presented here is distinct from the one discussed
in [32] which assumes the equivalence of the modular and
physical Hamiltonians. It is important to highlight that
our perspective is not only crucial in deriving the main
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FIG. 4. Topological rigidity against deformation near the
triple-contact points. (a1)-(a3) Attach a blob to region A,B
and C near the triple-contact point, respectively. (b) Evalu-
ate Σ(ψ,A,B,C) for the deformed geometry across the phase
diagram. We choose Lx = Ly = 30 and the radius of the disk
ABC to be r = 10. The blob has a linear size of 4.

result stated in Eq. (1), but it also also points to new po-
tential connections between conventional responses and
quantum entanglement. For instance, in free fermion
systems with single-charge fermion, we may anticipate
an entanglement version of the Wiedemann–Franz (WF)
law, which indeed can be obtained by combining the re-
sult in [32] and our formula:

⟨[KAB ,KBC − π2

3
Q2
BC ]⟩

ψ
= 0 . (15)

Understanding the violation of this entanglement WF law
and finding other such relations can shed new light on the
study of entanglement of many-body systems.

In addition to connecting entanglement and topologi-
cal response, our formula also shows how it encodes the
boundary ’t Hooft anomaly, which is a natural, albeit
less explored, question. Furthermore, it is interesting to
generalize our argument to other symmetries and higher
dimensions.

Moreover, both the previous work [32] and our for-
mula could aid in understanding the “expressability” of
different variational ansatz wavefunctions, which is im-
portant for numerical simulation of strongly correlated
quantum many-body systems. There is a long-standing
puzzle whether the projected entangled pair state (PEPs)
is able to represent interacting chiral states [41]. Evalu-
ating these two formulas in PEPs provide a path forward
towards solving this question and may shed light on de-
veloping new tensor network architecture.

Entanglement entropy suffers from UV divergence in
generic Lorentz invariant quantum field theories (QFTs).
Distilling universal information from entanglement re-
quires a careful definition of entanglement in QFTs. Our
formula, shown to be universal, is an interesting quantity
to compute especially in topological quantum field the-
ories. Formulating the calculation in a meaningful way
requires a better understanding of multipartite entan-
glement in QFTs, which is an interesting and nontrivial
question in its own right [42].
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