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We introduce a machine-learning-based coarse-grained molecular dynamics (CGMD) model that
faithfully retains the many-body nature of the inter-molecular dissipative interactions. Unlike the
common empirical CG models, the present model is constructed based on the Mori-Zwanzig formal-
ism and naturally inherits the heterogeneous state-dependent memory term rather than matching
the mean-field metrics such as the velocity auto-correlation function. Numerical results show that
preserving the many-body nature of the memory term is crucial for predicting the collective trans-
port and diffusion processes, where empirical forms generally show limitations.

Accurately predicting the collective behavior of multi-
scale physical systems is a long-standing problem that re-
quires the integrated modeling of the molecular-level in-
teractions across multiple scales [1]. However, for systems
without clear scale separation, there often exists no such
a set of simple collective variables by which we can for-
mulate the evolution in an analytic and self-determined
way. One canonical example is coarse-grained molec-
ular dynamics (CGMD). While the reduced degrees of
freedom (DoFs) enable us to achieve a broader range of
the spatio-temporal scale, the construction of truly reli-
able CG models remains highly non-trivial. A significant
amount of work [2–13] (see also review [14]), including
recent machine learning (ML)-based approaches [15–21],
have been devoted to constructing the conservative CG
potential for retaining consistent static and thermody-
namic properties. However, accurate prediction of the
CG dynamics further relies on faithfully modeling a mem-
ory term that represents the energy-dissipation processes
arising from the unresolved DoFs; the governing equa-
tions generally become non-Markovian on the CG scale.
Moreover, such non-Markovian term often depends on
the resolved variables in a complex way [22–28] where
the analytic formulation is generally unknown. In par-
ticular, for extensive CGMD systems (i.e., the number
of CG particles can be proportionally changed accord-
ing to the simulation size), the memory term often ex-
hibits strong many-body effect and needs to satisfy vari-
ous physical symmetry constraints among the CG parti-
cles. Existing approaches often rely on empirical models
such as Brownian motion [29], Langevin dynamics [30],
and dissipative particle dynamics (DPD) [31, 32]. De-
spite their broad applications, studies [33–35] based on
direct construction from full MD show that the empiri-
cal (e.g., pairwise additive) forms can be insufficient to
capture the state-dependent energy-dissipation processes
due to the many-body and non-Markovian effects. Re-
cent efforts [36–51] model the memory term based on
the generalized Langevin equation (GLE) and its vari-
ants (see also review [52]). The velocity auto-correlation
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function (VACF) is often used as the target quantity for
model parameterization. While it may serve as an appro-
priate measure for certain non-extensive systems [53, 54],
the VACF is essentially a metric of the background dis-
sipation under mean-field approximation. For extensive
CGMD systems, the homogeneous kernel overlooks the
heterogeneity of the energy dissipation among the CG
particles stemming from the many-body nature of the
marginal probability density function of the CG vari-
ables. This limitation imposes a fundamental challenge
for accurately modeling the local irreversible responses
as well as the transport and diffusion processes on the
collective scale.

This work aims to fill the gap with a new CG
model that faithfully entails the state-dependent non-
Markovian memory and the coherent noise for exten-
sive MD systems. The model formulation can be loosely
viewed as an extended dynamics of the CG variables joint
with a set of non-Markovian features that embodies the
many-body nature of the energy dissipation among the
CG particles. Specifically, we treat each CG particle as
an agent and seek a set of symmetry-preserving neu-
ral network (NN) representations that directly map its
local environments to the non-Markovian friction inter-
actions, and thereby circumvent the exhausting efforts
of fitting the individual memory terms with a unified
empirical form. Different from the ML-based potential
model [21], the memory terms are represented by NNs
in form of second-order tensors that strictly preserve the
rotational symmetry and the positive-definite constraint.
Coherent noise can be introduced satisfying the second
fluctuation-dissipation theorem and retaining consistent
invariant distribution. Rather than matching the VACF,
the model is trained based on the Mori-Zwanzig (MZ)
projection formalism such that the effects of the unre-
solved interactions can be seamlessly inherited. We em-
phasize that the construction is not merely for mathe-
matical rigor. Numerical results of a polymer molecule
system show that the CG models with empirical memory
forms are generally insufficient to capture heterogeneous
inter-molecular dissipation that leads to inaccurate cross-
correlation functions among the particles. Fortunately,
the present model can reproduce both the auto- and
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cross-correlation functions. More importantly, it accu-
rately predicts the challenging collective dynamics char-
acterized by the hydrodynamic mode correlation and the
van Hove function [55] and shows the promise to predict
the meso-scale transport and diffusion processes encoded
with molecular-level fidelity.

Let us consider a full MD system consisting of M
molecules with a total number of N atoms. The phase
space vector is denoted by z = [q,p], where q,p ∈ R3N

represent the position and momentum vector, respec-
tively. Given z(0) = z0, the evolution follows z(t) =
eLtz0, where L is the Liouville operator determined by
the Hamiltonian H(z). The CG variables are defined
by representing each molecule as a CG particle, i.e.,
ϕ(z) =

[
ϕQ(z), ϕP (z)

]
, where ϕQ(z) = [Q1,Q2, · · · ,QM ]

and ϕP (z) = [P1,P2, · · · ,PM ] represent the center of
mass and the total momentum of individual molecules,
respectively. Z(t) = [Q(t),P(t)] denote the map ϕ(z(t))
with z(0) = z0. To construct the reduced model,
we define the Zwanzig projection operator as the con-
ditional expectation with a fixed CG vector Z, i.e.,
PZf(z) := E[f(z)|ϕ(z) = Z] under conditional density
proportional to δ(ϕ(z) − Z)e−βH(z) and its orthogonal
operator QZ = I− PZ . Using Zwanzig’s formalism [56],
the dynamics of Z(t) [see Ref. [57] and Supplemental
Material (SM) [58]] can be written as

Q̇ = M−1P

Ṗ = −∇U(Q) +

∫ t

0

K(Q(s), t− s)V(s) ds+R(t),
(1)

where M is the mass matrix and V = M−1P is the
velocity. U(Q) is the free energy under ϕQ(z) ≡ Q.
K(Q, t) = PZ[(e

QZLtQZLP)(QZLP)T ] is the memory
representing the coupling between the CG and unresolved
variables, and R(t) is the fluctuation force which can be
modeled as a Gaussian random process satisfying the sec-
ond fluctuation-dissipation theorem [57].

Eq. (1) provides the starting point to derive the var-
ious CG models. Direct evaluation of K(Q, t) imposes
a challenge as it relies on solving the full-dimensional
orthogonal dynamics eQZLt. Further simplification
K(Q, t) ≈ θ(t) leads to the common GLE with a ho-
mogeneous kernel. Alternatively, the pairwise approxi-
mation [K(Q, t)]ij ≈ γ(Qij)δ(t) or γ(Qij)θ(t) leads to
the standard DPD (M-DPD) and non-Markovian vari-
ants (NM-DPD), respectively. However, as shown below,
such empirical forms are limited to capturing the state-
dependence that turns out to be crucial for the dynamics
on the collective scale, and motivates the present model
retaining the many-body nature of K(Q, t).

To elaborate the essential idea, let us start with the
Markovian approximation K(Q, t) ≈ −Γ(Q)δ(t), where
Γ(Q) = Ξ(Q)Ξ(Q)T is the friction tensor preserving
the semi-positive definite condition, and Ξ(Q) needs to
retain the translational, rotational, and permutational

symmetry, i.e.,

Ξij(Q1 + b, · · · ,QM + b) = Ξij(Q1, · · · ,QM )

Ξij(UQ1, · · · ,UQM ) = UΞij(Q1, · · · ,QM )UT

Ξσ(i)σ(j)(Qσ(1), · · · ,Qσ(M)) = Ξij(Q1, · · · ,QM ),

(2)

where Ξij ∈ R3×3 represents the friction contribution
of j-th particle on i-th particle, b ∈ R3 is a translation
vector, U is a unitary matrix, and σ(·) is a permutation
function.
To inherit the many-body interactions, we map the

local environment of each CG particle into a set of gen-
eralized coordinates, i.e., Q̂k

i = Qi +
∑

l∈Ni
fk(Qil)Qil,

where f : R → RK is an encoder function to be learned,
and Ni = {l|Qil < rc} is the neighboring index set of the
i-th particle within a cut-off distance rc. Accordingly,
Q̂ij ∈ R3×K represents a set of features that encode the
inter-molecular configurations beyond the pairwise ap-
proximation. The k-th column Q̂k

ij = Q̂k
i − Q̂k

j preserves
the translational and permutational invariance, by which
we represent Ξij by

Ξij =

K∑
k=1

hk(Q̂
T
ijQ̂ij)Q̂

k
ij ⊗ Q̂k

ij + h0(Q̂
T
ijQ̂ij)I (3)

where h : RK×K → RK+1 are encoder functions which
will be represented by NNs. For i = j, we have Ξii =
−
∑

j∈Ni
Ξij based on the Newton’s third law. We refer

to SM [58] for the proof of the symmetry constraint (2).
Eq. (3) entails the state-dependency of the memory

termK(Z, t) under the Markovian approximation. To in-
corporate the non-Markovian effect, we embed the mem-
ory term within an extended Markovian dynamics [38]
(see also Ref. [50]). Specifically, we seek a set of non-
Markovian features ζ := [ζ1, ζ2, · · · , ζn], and construct
the joint dynamics of [Z, ζ] by imposing the many-body
form of the friction tensor between P and ζ, i.e.,

Q̇ = M−1P

Ṗ = −∇U(Q) +Ξ(Q)ζ

ζ̇ = −Ξ(Q)TV −Λζ + ξ(t),

(4)

where Ξ =
[
Ξ1Ξ2 · · ·Ξn

]
and each sub-matrix takes

the form (3) constructed by {f i(·),hi(·)}ni=1 respectively.

Λ = Λ̂ ⊗ I represents the coupling among n features,
where I ∈ R3M×3M is the identity matrix and Λ̂ ∈
Rn×nneeds to satisfy the Lyapunov stability condition
Λ̂+ Λ̂T ≥ 0. Therefore, we write Λ̂ = L̂L̂T + L̂a, where
L̂ is a lower triangular matrix and L̂a is an anti-symmetry
matrix which will be determined later. By choosing the
white noise ξ(t) following

⟨ξ(t)ξ(t′)⟩ = β−1(Λ+ΛT )δ(t− t′), (5)

Eq. (4) retains the consistent invariant distribution
ρ(Q,P, ξ) ∝ exp[−β(U(Q) +PTM−1P/2 + ζT ζ/2)]
(see proof in SM [58]).
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Eq. (4) departs from the common CG models by re-
taining both the heterogeneity and non-Markovianity of
the energy dissipation process. Rather than matching the
mean-field metrics such as the homogeneous VACF, we
learn the embedded memory Ξ(Q(t))eΛ(t−s)Ξ(Q(s))T

based on the MZ form. However, directly solving the or-
thogonal dynamics eQZLt is computationally intractable.
Alternatively, we introduce the constrained dynamics
z̃(t) = eRtz(0) following Ref. [34]. Based on the ob-
servation PQ = PR ≡ 0, we sample the MZ form from
z̃(t), i.e., KMZ(Z, t) = PZ [(e

RtQZLP)(QZLP)T ] and
the memory of the CG model reduces to KCG(Z, t) =
Ξ(Q)eΛtΞ(Q)T . This enables us to train the CG models

in terms of the encoders {f i(·),hi(·)}ni=1 and matrices L̂

and L̂a by minimizing the empirical loss

L =

Ns∑
l=1

Nt∑
j=1

∥∥∥KCG(Z
(l), tj)−KMZ(Z

(l), tj)
∥∥∥2 , (6)

where l represents the different CG configurations (see
SM [58] for details in training).

To demonstrate the accuracy of the present model, we
consider a full micro-scale model of a star-shaped poly-
mer melt system similar to Ref. [34], where each molecule
consists of 73 atoms. The atomistic interactions are mod-
eled by the Weeks-Chandler-Anderse potential and the
Hookean bond potential. The full system consists of
486 molecules in a cubic domain 90 × 90 × 90 with pe-
riodic boundary conditions. The Nosé-Hoover thermo-
stat [59, 60] is employed to equilibrate the system with
kBT = 4.0 and micro-canonical ensemble simulation is
conducted during the production stage (see SM [58] for
details). Below we compare different dynamic properties
predicted by the full MD and the various CG models. For
fair comparisons, we use the same CG potential U(Q)
constructed by the DeePCG scheme [21] for all the CG
models; the differences in dynamic properties solely arise
from the different formulations of the memory term.
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FIG. 1. The VACF of the full MD and CG models with
various memory formulations in (a) semi-log scale (b) orig-
inal scale. “M” and “NM” represent Markovian and Non-
Markovian; GLE, DPD, and MB represent state-independent,
pairwise, and the present (NM-MB) model retaining the
many-body effects, respectively. See SM [58] for the details
of M-DPD, NM-GLE and NM-DPD models.

Let us start with the VACF which has been broadly
used in CG model parameterization and validation. As
shown in Fig. 1, the predictions from the present model
(NM-MB) show good agreement with the full MD results.
In contrast, the CG model with the memory term rep-
resented by the pairwise decomposition and Markovian
approximation (i.e., the standard M-DPD form) yields
apparent deviations. The form of the pairwise decom-
position with non-Markovian approximation (NM-DPD)
shows improvement at a short time scale but exhibits
large deviations at an intermediate scale. Such limita-
tions indicate pronounced many-body effects in the en-
ergy dissipation among the CG particles. Alternatively, if
we set the VACF as the target quantity, we can param-
eterize the empirical model such as GLE by matching
the VACF predicted by the full MD. Indeed, the predic-
tion from the constructed GLE recovers the MD results.
However, as shown below, this form over-simplifies the
heterogeneity of the memory term and leads to inaccu-
rate predictions on the collective scales.
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FIG. 2. The VCCF Cxx(t; r0) predicted by the full MD and
different CG models with initial distance (a) 10 < r0 < 11
and (b) 14 < r0 < 15. Same line legend as Fig. 1.

Fig. 2 shows the velocity cross-correlation function
(VCCF) between two CG particles, i.e., Cxx(t; r0) =
E[Vi(0) ·Vj(t)|Qij(0) = r0], where r0 represents the ini-
tial distance. Similar to VACF, the present model (NM-
MB) yields good agreement with the full MD results.
However, the predictions from other empirical models,
including the GLE form, show apparent deviations. Such
limitations arise from the inconsistent representation of
the local energy dissipation and can be understood as fol-
lowing. The VACF represents the energy dissipation on
each particle as a homogeneous background heat bath; it
is essentially a mean-field metric and can not characterize
the dissipative interactions among the particles. Hence,
the reduced models that only recover the VACF could
be insufficient to retain the consistent local momentum
transport and the correlations among the particles.
Furthermore, the various empirical models for local

energy dissipations can lead to fundamentally different
transport processes on the collective scale. Fig. 3
shows the normalized correlations of the longitudinal
and transverse hydrodynamic modes [61], i.e., CL(t) =
⟨ũ1(t)ũ1(0)⟩ and CT (t) = ⟨ũ2(t)ũ2(0)⟩, where ũ =
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FIG. 3. (a) Longitudinal and (b) Transverse hydrodynamic
modes predicted by MD and different CG models. Same line
legend as Fig. 1.

1/M
∑M

j=1 Vje
ik·Qj , k is the wave vector, and the sub-

scripts 1 and 2 represent the direction parallel and per-
pendicular to k, respectively. Similar to the VCCF, the
prediction from the present model (NM-MB) agrees well
with the MD results while other models show apparent
deviations. In particular, the prediction from the GLE
model shows strong over-damping due to the ignorance
of the inter-molecule dissipations.
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FIG. 4. The van Hove function G(r, t) predicted by (a) full
MD (b) the present NM-MB model (c) NM-DPD model (d)
GLE model. It depicts the diffusive process of the radius
distribution function (x-axis) over time (y-axis).

Finally, we examine the diffusion process on the col-
lective scale. Fig. 4 shows the van Hove function that
characterizes the evolution of the inter-particle structural

correlation defined by G(r, t) ∝ 1
M2

∑M
j ̸=i δ(∥Qi(t) −

Qj(0)∥ − r). At t = 0, G(r, t) reduces to the standard
radial distribution function where all the CG models can
recover such initial conditions. However, for t > 0, pre-
dictions from the models with the pairwise decomposition
(NM-DPD) and the GLE form show apparent deviations.
Specifically, at an early stage near t = 50, the neighbor-
ing particles begin to artificially jump into the region near
the reference particle, violating the fluid-structure there-
after. In contrast, the present model (NM-MB) shows
consistent predictions of the structure evolution over a
long period until t = 1000, when the initial fluid struc-
ture ultimately diffuses into a homogeneous state.

To conclude, this work reports a caveat in constructing
reliable CGMD models that retain consistent collective
dynamics. Unlike the empirical forms, we developed a
CG model that faithfully accounts for the broadly over-
looked many-body nature of the non-Markovian memory
term for extensive MD systems. While the significance
of preserving the many-body nature of the conservative
force field on static properties has been gradually rec-
ognized, the caveat on the memory term seems to re-
main under-explored. We show that retaining the het-
erogeneity and the strong correlation of the local energy
dissipation is crucial for accurately predicting the cross-
correlation among the CG particles, which, however, can
not be fully characterized by the mean-field metrics such
as VACF. More importantly, the memory form repre-
senting the inter-molecule energy dissipations may play a
profound role in the transport and diffusion processes on
the collective scale. In particular, the present model ac-
curately predicts the hydrodynamic mode correlation and
the van Hove function where empirical forms show lim-
itations, and therefore, shows the promise to accurately
predict the emergent phenomena relevant to hydrody-
namic transport and diffusive processes on the collective
scale.
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