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Dispersion relations govern wave behaviors, and tailoring them is a grand challenge in wave
manipulation. We demonstrate the inverse design of phononic dispersion using non-local interac-
tions on one-dimensional spring-mass chains. For both single-band and double-band cases, we can
achieve any valid dispersion curves with analytical precision. We further employ our method to de-
sign phononic crystals with multiple ordinary (roton/maxon) and higher-order (undulation) critical

points and investigate their wave packet dynamics.

Phononic crystals and vibro-elastic metamaterials are
architected heterogeneous solids for the manipulation
of mechanical waves. They can exhibit many uncon-
ventional properties, such as frequency band gaps [1-
7], negative refraction [8-11], and topologically pro-
tected modes [12-15]. They also have a wide range
of applications in cloaking [16-20], signal manipu-
lation [21, 22], focusing [23, 24] and energy trap-
ping [25-27].  Recently, by incorporating non-local
(i.e., farther than nearest-neighbor) interactions [28],
Rosa & Ruzzene [29-32] demonstrated diffusive trans-
port, and Wu & Huang [33, 34] investigated active con-
trol, while Chenetal. [35] showed roton-like disper-
sion [36—42], where the local minimum of the dispersion
curve resembles the roton behavior [43-45] of the helium-
4 superfluid [46-50] at low temperature. All these exotic
and desirable dynamic behaviors hinge on the dispersion
relation — how frequency depends on wave vector — that is
intrinsic to each particular design. However, most studies
so far have been focused on the forward problem from a
given design to a set of band structures. It is a long-
standing goal in the research community to solve the
inverse problem from given dispersion bands to actual
metamaterial designs so that exotic behaviors and func-
tionalities can be realized on demand. Prior efforts to
tailor specific dispersions [51-55] or band gaps [56—59]
typically relied on iterative searches with high computa-
tional costs, and they had only very limited success.

In this Letter, we demonstrate a design methodology
that uses non-local interactions to customize dispersion
relations. First, we present an analytical protocol to solve
the inverse problem, achieving any arbitrarily defined
single-band dispersion on mono-atomic non-local chains.
Then, we use this design protocol to obtain dispersion
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curves with ordinary and higher-order critical points. Us-
ing time-domain simulations, we illustrate their uncon-
ventional wave dynamics, especially at the undulation
point (a.k.a. stationary inflection point), where both the
first and second derivatives of the dispersion curve van-
ish. This results in highly concentrated vibration energy
since the wave mode is simultaneously non-propagating
and non-spreading. Finally, we also investigate the di-
atomic non-local chain and develop the design protocol
to customize its two dispersion bands.

We start with a one-dimensional “mono-atomic”
phonon chain of identical masses, m, and linear springs.
A schematic of the model is depicted in Fig.1(a). Each
mass is connected with its two nearest neighbors by lo-
cal interactions with the spring constant k;. In addition,
each mass is also connected on both sides to its two nth-
nearest neighbors with non-local interactions specified by
the spring constants k,, for n = 2,3,4,..., N, where N
is the longest-range non-local interaction in the system.
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FIG. 1. (a) An infinite chain of identical masses. Each mass
is connected to its nth-nearest neighbors with spring constant
kn. (b) The design space with fundamental constraints at the
center (¢ = 0) and edge (¢ = m/a) of the 1°* Brillouin zone.



The governing equation of motion for the j** mass is

N
muj = Z kn(ujJrn — 2Uj + ’U,j,n). (].)

n=1

Based on the Bloch theorem [60], we obtain the following
dispersion relation:

9 N N
w(q) = - ( Z kpn — Z ky cos(nqa)), (2)

where w is the frequency, ¢ is the wavenumber, and a is
the spatial period of the lattice. For conventional chains
with local springs k1 only, Eq. (2) reduces to the classical
result of w?(q) = (4ky/m)sin? (ga/2), which is always
monotonic and reaches its maximum at the Brillouin zone
boundary [61]. The non-local interactions, on the other
hand, may give rise to local minima and maxima at the
interior of the Brillouin zone, as recently demonstrated
by Chenet al. [35] and earlier by Farzbod & Leamy [62].

Since Eq. (2) takes the form of a Fourier series, we can
use it to tailor the non-local interactions to achieve any
desirable dispersion behavior. Mathematically, this orig-
inates from the fact that the dynamic matrix / Hamil-
tonian takes the form of a circulant matrix. Before the
demonstration of customization procedures, it is neces-
sary to understand all constraints in possible dispersion
relations. Here, we consider the following physical and
symmetry principles as fundamental assumptions of the
designer non-local phononic crystals:

e Passive with no energy input or output.

e Free-standing with no grounded springs.

e Time-reversal symmetric with no gyroscopic effect.

e Stable with a finite static stiffness.
Combining the above, we arrive at the requirements that,
for any target dispersion relation §2(q) defined on the non-
negative half of the first Brillouin zone (¢ € [0, 7/a]) to be
valid, it needs to be a smooth curve with (See Fig. 1(b)):

Q0)=0, 0<Q(0) <400, and Q(r/a)=0. (3)

Given an arbitrarily specified dispersion relation, Q(q),
satisfying Eqgs. (3), we can design a non-local phononic
crystal using the following protocol: First, we find the
Fourier coefficients as

2a [7/°
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Ap Q?(q) cos(nga)dg, n=1,2,...,N. (4)

Then, the design can be obtained by:

kn/m=—A,/2, n=12,..N. (5)

Fig. 2 shows results of this protocol with several exam-
ples. Since Eq. (5) shows all k;,’s simply scale with m,
we can set m = 1 for all cases. In each case, we compare

the target dispersion with the actual one by examining
the normalized root mean square deviation (NRMSD)
between them. We purposefully choose the target curves
with various interesting features. In the implementation,
we use analytical functions as the targets for Figs.2(a)
and 2(b). For other cases, we use piece-wise spline func-
tions to construct target curves. The detailed procedures
are given in the Supplemental Materials [63]. For each
target curve, the stiffness design variables are obtained
using Egs. (4) and (5). The total number of stiffness types
is N=10 for Figs. 2(a)-2(d), N=20 for Figs. 2(e)-2(g), and
N=25 for Fig.2(h), respectively. The NRMSD is less
than one percent in all cases, and the details are given
in the Supplemental Materials [63]. We show that it is
possible to achieve a flat band top [Fig.2(a)] as well as
non-monotonic dispersion at relatively short [Fig.2(b)],
medium - [Fig.2(c)], and long - [Fig.2(d)] wavelength
regimes. In addition, for critical points on the dispersion,
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FIG. 2. Customized dispersion curves with special features:
(a) a flat top; (b)-(d) Non-monotonic behaviors at large,
medium, and small wave number ¢ (i.e., at short, medium,
and long wavelength as compared to unit cell size), respec-
tively; (e) - (f) maxons (triangles), rotons (circles), and undu-
lation points (squares) occurring at the same frequency.
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FIG. 3. (a) Schematics of two non-local phononic crys-

tals with the first and third nearest neighbor interac-
tions only - top: ks3=3ki1, bottom: ks=k1/3. (b) Dispersion
curves: For k3=3ki, a local maximum (maxon) appears at
(w, ga/m)=(3.61,0.344), and a local minimum (roton) appears
at (w,qa/m)=(1.72,0.656). For ks=k1/3, a stationary in-
flection point (undulation) appears at (w,qga/m)=(1.63,0.5),
where both the first and second derivatives vanish. (c)- (e)
Time domain results for the 3 critical points in (b): maxon,
roton, and undulation, respectively. The left column lists the
time-space plots, while the right column shows wave ampli-
tude snap-shots.

we can design systems where local maxima - maxons, lo-
cal minima - rotons, and stationary inflection points -
undulations can occur at the same frequency, as illus-
trated in Figs. 2(e) and 2(f).

Next, we investigate these critical points that exhibit
exotic dynamics by considering two specific instances
of non-local phononic crystals with the third-nearest-
neighbor (k3) interactions as the only non-local effect.
When, k3 = 3k; (Fig.3(a)-top), the dispersion curve is
non-monotonic (blue solid curve in Fig.3(b)), exhibit-
ing one local maximum (maxon-like) and one local mini-

3

mum (roton-like [35]) at ga = 2tan"'(y/ L + \f) Both

of them represent critical-point wave modeb with zero
group velocity (ZGV), and they are analogous to the
van Hove singularities [64] in electronic band structures.
These ZGV modes also have promising applications in
many wave-related engineering technologies such as non-
invasive structural health monitoring [65-68] since the
highly localized wave modes can enhance both the vi-
bration energy concentration and the signal-to-noise ra-
tio in ultrasonic probing. In contrast, when ks = k1/3
(Fig. 3(a)-bottom), the dispersion curve is monotonic
(black dotted curve in Fig. 3(b)) with an undulation point
in the middle at ga = 7/2, where both the first and sec-
ond derivatives vanish. While roton-like dispersions were
recently demonstrated [35—41], and undulation points of
electromagnetic waves in optical waveguides were studied
as frozen modes [69-71], we show here, for the first time,
a second-order-critical undulation point for vibro-elastic
waves in phononic crystals.

To demonstrate wave behaviors at these critical points,
we also perform two types of time-domain simulations on
finite chains.

First, we apply a force excitation on the left most mass
of a chain with 5000 unit cells. The forcing function is a
Gaussian envelope in time:

f(t) = exp [—(t — tm)?/7%] cos (wet), (6)

where w, is the carrier frequency corresponding to the
critical point, t,, is the peak time of the envelope, and
7 = 100/w,. characterizes the time duration of the enve-
lope. Figs.3(c) and 3(d) show the results for maxon-like
and roton-like dynamics, respectively, in the chain with
ks = 3k1. In each case, two modes of the same frequency
but different wavelengths are observed: One is the trav-
eling mode (hollow triangle and circle in Fig. 3(b)) with
finite group velocity, as indicated by the black dashed
line, while the other is the ZGV mode (filled triangle and
circle in Fig. 3(b)) localized at the source. Although the
maxon-like and roton-like ZGV modes are not traveling
waves, the results show they do diffuse and spread out
in space over time. In contrast, Fig.3(e) shows the re-
sult at the undulation-point frequency on the chain with
k3 = k1/3. Only one wave mode is observed. More im-
portantly, not only is this mode non-propagating, but it
is also non-spreading, as both the group velocity, w’(q),
and the diffusion rate, w’(q), vanish. This is a unique
feature that does not exist in ordinary ZGV modes.

Second, to further investigate the diffusion phenomena,
we look into the time evolution of a localized Gaussian
spatial wave packet,

u(z,t) = exp [—(x — 20)? /o (t)] cos ge, (7)

where ¢, is the carrier wavenumber corresponding to the
critical point, zg denotes the center of the wave packet,
and o(t) characterizes the width of the envelope. We
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FIG. 4. Diffusion at the critical points: Evolution of an ini-
tially prescribed Gaussian packet with different carrier wave
number ¢ (i.e., different carrier wavelength) corresponding
to the critical points in Fig.3(b): (a) Maxon mode with
ga/m = 0.656; (b) Roton mode with ga/m = 0.344; (c¢) Undu-
lation mode with ga/m = 0.5. The Gaussian envelope at time
trinal (blue dotted curve) is compared to the initial envelope
at to (black solid curve). (d)-(f) Theoretical and numerical
values of o(t) vs. t, for each of the cases in (a)-(c) respec-
tively, showing the spreading of wave envelopes.

prescribe an initial Gaussian packet with o(t=0)=0¢. In
each case, there is only one wave mode associated with
the prescribed wavenumber g. corresponding to the criti-
cal point, and it is a ZGV mode. As such, the wave packet
does not propagate. However, the wave packet can still
spread out or diffuse in space, i.e. while maintaining the
same mean xg, the envelope width o(t) changes, and its
evolution over time is governed by [72]

o(t) = o0y/1 + (tw"/ag)z. (8)

Numerically, we can determine the diffusion rate of the
wave packet by tracking o(t) in time-domain simulations
on finite chains. Figs.4(a)-(c) show the comparison of
wave packet diffusion for the 3 critical points: local max-
imum (maxon-like), local minimum (roton-like), and the
undulation point (2nd order), respectively. In each case,
the initial (¢t = 0) wave envelope is represented by a black
solid line. After evolving for sufficient time (¢ = tpinal)
the resulting wave envelope is shown as a blue dotted line.
Figs. 4(d)-(f) show, for each of the cases in Figs. 4(a)-(c),
respectively, the evolution of the packet width, o(t), at
several time instances. Broadening of the envelope is ob-
served for both maxon and roton packets, where w’ = 0
but w” # 0. In contrast, the wave envelope preserves its
initial shape without diffusion in the case of the undula-
tion point, where w” = w’ = 0.

Lastly, we also establish the customization protocol
for the double-band system of a one-dimensional “di-
atomic” non-local phononic chain consisting of two differ-
ent masses my and my. This model leads to the following

dispersion relations:

1 1
wi:KO(f-i-f)
mi mo (9)
1 1
K2(— + —/)2 K2 —4K?
¢\/ o 1+m2 +m1m2( 1 )

where — and + in the F sign denote the first and second
bands (historically referred to as “acoustic” and “optical”
branches), respectively. Here, Ky and K are

N N
Ko(q) = Z k, — Z ky, cos(nga),
n=1

n=2
N (10)
Ki(q) =2 Z kyn cos (nqa),
n=1

n odd

which are defined on the non-negative half of the first
Brillouin zone, ¢ € [0,7/(2a)]. Given two arbitrarily
specified smooth curves as the targets, Q_(¢q) and Q4 (q),
satisfying all fundamental and symmetry requirements
detailed in the Supplemental Materials [63], we can de-
sign a non-local chain using the following protocol:
First, we calculate

a=mafmi =9 (50)/92 (50
Alg) = [ (a) + 22 (9)]/2, (11)

D(q) = [9% (q) — Q2 ()]/2.

Then, we can get

Ko(q) = aA(q)/(a + 1),

(12)
K3 (q) = 4K§(q) — aA*(q) + aD*(q),
Lastly, we obtain the stiffness values as
2 b
k, = 4 /2 K cos(nag)dg, n=1,3,5,..
e (13)

4a [a
ky = —— Kycos(naq)dgq, n=2,4,6,...
T Jo

We note that the above protocol is capable of customiz-
ing each individual band without affecting the other since
it can work for two independently defined targets, Q_(q)
and Q4 (q). Figs.5(a)-(d) show the results of this proto-
col by setting m; = 1. The target curves are purposefully
chosen with various features: Fig.5(a) demonstrates a
rising first band with a flat second band; Fig. 5(b) shows
two bands with changing but always opposite convex-
ity; Fig.5(c) has a constant-curvature first band and an
arched second band; and Fig. 5(d) has both bands mono-
tonically increasing. These examples show that both
localized and traveling wave modes can be designed at
any arbitrarily desirable frequency and wavelength by
our protocol on either band. In the implementation,
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FIG. 5. (a)-(d) Customized double-band dispersion rela-
tions. (e) and (f) show examples with linear (Dirac-like) and
quadratic band crossings, respectively.

we set the total number of stiffness types as N=20 for
Fig.5. We also examine NRMSD values between the
target and actual dispersion curves. The results show
that, in most cases, a good match can be achieved with
just a small number of non-local springs. Furthermore,
we also demonstrate the protocol’s capability of realiz-
ing linear (Dirac-cone-like) and quadratic band crossings
in Fig.5(e) and 5(f), respectively. Detailed information
and additional examples are presented in the Supplemen-
tal Materials [63)].

In conclusion, we can completely and analytically cus-
tomize the dispersion relations in phononic crystals by in-
corporating non-local springs. We show dispersion curves
with multiple critical points of the first (maxon/roton)
and second order (undulation). We further study the
wave packet dynamics at each of the critical points and
illustrate how we can use them to create novel behav-
iors of localized modes. This enables future research on
higher-order critical points of elastic waves in terms of
topology, scaling, and symmetry [73, 74] in 2D and 3D
systems. Finally, we can also solve the inverse problem
for arbitrary two-band dispersion relations.

For practical considerations, physical samples of
phononic metamaterials with a small number of non-
local springs can be fabricated in relatively simple de-

1

signs [38, 41, 75]. In fact, one-dimensional chains with
any number of non-local connections are, at least in prin-
ciple, feasible by the following reasoning: There are in-
finitely many planes that contain the line of masses.
Hence, each non-local interaction can exist in a sepa-
rate plane without interfering with others, similar to the
design illustrations shown in Figs. 1(a) and 3(a), and in
more detail in the Supplemental Materials [63]. During
the review process, we became aware of recent exper-
imental efforts demonstrating non-local effects [76-79].
They provide further evidence supporting feasibility in
design and fabrication. We are confident that future re-
search efforts will enable more sophisticated experimental
setups with many more non-local interactions in 2D and
3D phononic crystals and vibro-elastic metamaterials.

At the continuum limit of the lattice constant a — 0,
wave mechanics in non-local continuum media can be de-
scribed by higher-order strain-gradient models [80-82] as
well as peridynamics [83, 84]. In contrast to those pop-
ular phenomenological and semi-phenomenological ap-
proaches, our method has the advantage of prescribing
system parameters to achieve desirable dynamic behav-
iors. Homogenizing our design methodology could poten-
tially provide a route to design the micro-modulus elas-
ticity kernel for target dispersion relations in continuum
vibro-elastic metamaterials.
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