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Entanglement entropies of two-dimensional gapped ground states are expected to satisfy an area
law, with a constant correction term known as the topological entanglement entropy (TEE). In
many models, the TEE takes a universal value that characterizes the underlying topological phase.
However, the TEE is not truly universal: it can differ even for two states related by constant-depth
circuits, which are necessarily in the same phase. The difference between the TEE and the value
predicted by the anyon theory is often called the spurious topological entanglement entropy. We
show that this spurious contribution is always nonnegative, thus the value predicted by the anyon
theory provides a universal lower bound. This observation also leads to a definition of TEE which
is invariant under constant-depth quantum circuits.

Ground states of 2D gapped Hamiltonians are believed
to satisfy an area law: the entanglement entropy of a
region cannot increase faster than its perimeter. In many
examples, the entropy of the reduced density matrix on
a disk A takes the form

S(σA) = α|∂A| − γ + · · · (1)

where α|∂A| is the leading “area law” term proportional
to the boundary length, γ is a constant term, and the
ellipsis represents terms that vanish for large regions.

The constant term γ, under natural assumptions, was
argued to be universal, i.e. the same for all gapped ground
states in a given phase [1, 2]. In particular, γ takes a form
determined solely by the underlying anyon theory of the
phase, γ = logD, where D =

√∑
a d

2
a is the total quan-

tum dimension of the anyons and da is the quantum di-
mension of the anyon a. Given its connection to anyons,
the constant γ has been termed the “topological entan-
glement entropy” (TEE). The TEE can be computed in
both non-solvable [3, 4] and solvable models [5–9], and it
is often used as a smoking gun signature of topological
order, or to distinguish two phases.

A common way to extract the TEE is to use a judicious
linear combination of entropies of adjacent regions. We
focus on the definition in Ref. [2], where the TEE γ is
defined using the conditional mutual information I(A :
C|B)σ := S(σAB)+S(σBC)−S(σB)−S(σABC) of regions
A,B, and C forming an annulus as in Fig. 1(a):

I(A : C|B)σ ≡ 2γ, (2)

where σ is a ground state.
While the TEE is a useful diagnostic of topological or-

der, it was soon observed [10] that it is not a genuine in-
variant of the topological phase, unlike e.g. [11, 12]. Two
ground states are in the same phase if they are connected
by a constant-depth circuit consisting of local gates. But
γ as defined by Eq. (2) can change under such a cir-
cuit. In fact, a shallow circuit acting on a product state

may achieve a nonzero value of I(A : C|B) for arbitrarily
large regions [13–15]. Deviations of γ from the purport-
edly universal value logD have been called “spurious”
contributions, or the spurious TEE. States with spuri-
ous TEE exist in both trivial and non-trivial topologi-
cal phases. These examples often arise from symmetry-
protected topological phases (SPTs) [14–18] but perhaps
not always [19].
Our main result partially restores the universality of

the TEE by showing the spurious contribution is always
nonnegative. Thus logD provides a universal lower bound
for the TEE γ:

γ ≥ logD. (3)

This observation leads directly to a definition of TEE on
infinite systems which is invariant under constant-depth
circuits, by minimizing the ordinary TEE over such cir-
cuits. More specifically, for a state ρ defined on the infi-
nite 2D plane, the following quantity

γmin = lim
R→∞

min
U

1

2
I(AR : CR|BR)UρU† , (4)

yields logD (for a class of states elaborated below), where
the regions AR, BR, CR have a radius and thickness of
order R, and the minimum is taken over circuits U of
depth d < cR for some fixed constant c ∈ (0, 1).
Our result in Eq. (3) helps restore the TEE as a rig-

orous diagnostic to distinguish topological phases, al-
beit with limitations. For instance, if a state has I(A :
C|B) = log 2 for some large regions, it may still be in the
trivial phase (where 2 logD = 0), and indeed such ex-
amples exist. But it cannot be in the same phase as the
toric code, which has 2 logD = 2 log 2; the latter would
require a negative spurious TEE, which we rule out.
Setup — We now explain our main result more pre-

cisely. We consider a special class of bosonic quantum
many-body states, defined on infinite two-dimensional
lattices, which we refer to as “reference states,”closely
related to the states considered in Ref. [20].
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Definition 1. A state σ is a reference state if (i) the
TEE calculated as γ0 = 1

2I(A : C|B)σ is the same for
any choice of regions topologically equivalent to Fig. 1(a)
and (ii) the mutual information between two subsystems
is zero for any two non-adjacent subsystems.

Our main technical result is the following inequality,
which holds for any reference state σ, and for any cir-
cuit U whose depth is small compared to the radius and
thickness of the annulus ABC:

I(A : C|B)UσU† ≥ I(A : C|B)σ ≡ 2γ0. (5)

In other words, we show that constant-depth circuits can
never decrease the TEE, when acting on a reference state.
To understand the implications of this result, note

that the set of reference states includes all ground states
of string-net [7–9] and quantum double models [6], and
more generally any state satisfying the entanglement
bootstrap axioms [20]. For all of these examples, the RHS
of Eq. (5) is known to equal 2 logD [1, 2, 20]. Therefore,
(5) implies the claimed lower bound (3) for any state
obtained by a constant-depth circuit acting on a string-
net, quantum double, or entanglement bootstrap state.
(We discuss a generalization of (3) to general 2D gapped
ground states in the SM, Appendix G.) Similarly, we de-
duce (4) with γmin = logD for any state ρ given by a
finite-depth circuit V applied to a reference state, where
the minimum is achieved by the circuit U = V −1.
While we work in the plane for concreteness, our proof

also applies to the TEE defined on any disk-like region
embedded in an arbitrary manifold.

Example: Toric code — To explain the key idea be-
hind our proof, it is instructive to first focus on a concrete
reference state σ, namely the toric code ground state [6]
on a plane. (Our argument here will rely on special prop-
erties of the toric code state, but later we will generalize
the proof to all states satisfying Definition 1.) For this
state, I(A : C|B)σ = 2 log 2 so that γ0 = log 2 [5]. If we
now apply a constant-depth quantum circuit U , defining
σ̃ = UσU†, in general I(A : C|B)σ̃ ̸= 2 log 2. Never-
theless, we will show that for a sufficiently large annulus
ABC, we still have the lower bound

I(A : C|B)σ̃ ≥ 2 log 2. (6)

We first prove the bound (6) for a special class of
constant-depth circuits U , namely those that are sup-
ported within a constant distance of BC [Fig. 1(b)].
Later we will extend this result to general constant-depth
circuits.

Our basic strategy is to construct a state λ̃ that is
“locally indistinguishable” from σ̃. More precisely, we

will construct a state λ̃ that is indistinguishable from σ̃

over AB and BC: that is, λ̃AB = σ̃AB and λ̃BC = σ̃BC .
We can then express I(A : C|B)σ̃ in terms of I(A : C|B)λ̃
using the identity

I(A : C|B)σ̃ = I(A : C|B)λ̃ +S(λ̃ABC)−S(σ̃ABC). (7)
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FIG. 1. (a) The partition used to calculate the TEE. (b)
Support of the unitary U considered. (c) String operator Va

creates an anyon a in the interior of the annulus and its an-
tiparticle in the exterior.

By the strong subadditivity of the entropy (SSA) [21],
I(A : C|B)λ̃ ≥ 0, so

I(A : C|B)σ̃ ≥ S(λ̃ABC)− S(σ̃ABC). (8)

We will obtain the desired lower bound (6) from a judi-

cious choice of λ̃.
The easiest way to construct an appropriate λ̃ is to

first find a state λ that is locally indistinguishable from
the toric code ground state σ. More precisely, we need
a λ that is indistinguishable from σ over the past light
cone of AB and BC (with respect to U). Once we find

such a λ, we can then set λ̃ = UλU†.
We construct such a λ using a probabilistic mixture of

toric code excited states. (Later, we use a more general
approach.) For each anyon type a ∈ C = {1, e,m, ϵ},
we define a corresponding excited state ρ(a) by ρ(a) =
VaσV

†
a , where Va is a unitary (open) string operator that

places an anyon excitation a in the interior of the an-
nulus and its antiparticle in the exterior [Fig. 1(c)]. We
then define λ =

∑
a paρ

(a) for some probability distribu-
tion {pa : a ∈ C}. Note that λ has the requisite indis-
tinguishability property as long as the endpoints of the
string operators Va (where the anyons are created) are
far enough away from the annulus to lie outside the past
light cones of AB and BC.

To proceed, we must evaluate the entropy difference

S(λ̃ABC)−S(σ̃ABC). Here it is convenient to choose the
path of the string operators Va so that they avoid the re-
gion of support of the constant-depth circuit U (which by
assumption is supported near BC). Then Va commutes

with U so λ̃ can be written as a probabilistic mixture of
the form

λ̃ =
∑
a

paρ̃
(a), ρ̃(a) = Vaσ̃V

†
a . (9)

Crucially, the ρ̃(a) states have two simplifying prop-

erties: (i) different ρ̃
(a)
ABC are orthogonal, and (ii)

S(ρ̃
(a)
ABC) = S(σ̃ABC). Intuitively, property (i) follows

from the fact that each ρ̃
(a)
ABC belongs to a different anyon

sector on the annulus. More formally, (i) follows from the
existence of a collection of (closed) string operators sup-
ported within ABC that take on different eigenvalues in

each state ρ̃
(a)
ABC . (These string operators are simply the
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FIG. 2. For any constant-depth circuit U , for any subsystem
S, we can obtain a circuit U ′ of same depth acting trivially
on S, by removing from U the “light cone” (white gates) of
S.

closed versions of UVaU
†; they can be drawn within ABC

whenever ABC is wider than twice the circuit depth of
U). Meanwhile, property (ii) follows from the fact that
the Va are products of single-site unitaries; in particular,
each Va can be written as a product of a unitary acting
entirely within ABC and a unitary acting entirely out-
side ABC, neither of which changes the entanglement
entropy of ABC.
Given properties (i) and (ii) of ρ̃(a), the entropy differ-

ence can be computed as

S(λ̃ABC)− S(σ̃ABC) = H({pa}), (10)

where H({pa}) = −∑
a pa log(pa) is the Shannon en-

tropy of the probability distribution {pa}. Substituting
(10) into (8), we obtain

I(A : C|B)σ̃ ≥ H({pa}). (11)

To get the best bound, we choose the probability dis-
tribution that maximizes H({pa}), namely the uniform
pa = 1

4 . Then H({pa}) = 2 log 2, yielding the desired
bound (6).

To complete the argument, we extend the bound (11)
to general constant-depth circuits U . First, recall the
entanglement entropy of a subsystem is invariant under
unitaries acting exclusively within the subsystem or its
complement. Thus we can make the replacement

I(A : C|B)UσU† = I(A : C|B)U ′σU ′† , (12)

where U ′ is a constant-depth quantum circuit that acts
trivially deep in the interior of A and also trivially far
outside ABC [Fig. 3(a)]. Here, we are using the fact
that U is a constant-depth quantum circuit, and there-
fore we can “cancel out” its action in a subsystem S by
multiplying by an appropriate unitary supported in the
light cone of S (Fig. 2).

By SSA, I(A : C|B) cannot increase when A shrinks.
Therefore

I(A : C|B)U ′σU ′† ≥ I(A′ : C|B)U ′σU ′† (13)

where A′ ⊂ A is shown in Fig. 3(b). Finally, applying
the same reasoning as in (12), we can replace

I(A′ : C|B)U ′σU ′† = I(A′ : C|B)U ′′σU ′′† (14)

where U ′′ is a constant-depth circuit acting on the region
shown in Fig. 3(c). Combining (12-14), we deduce that
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FIG. 3. (a) We first remove gates from U on a “hole” within
A; we call the new circuit U ′. (b) We then deform A to A′ ⊂ A
such that the boundary of the annulus A′BC is only partially
covered. (c) We then further remove some of the gates in the
vicinity of A′, obtaining U ′′.

I(A : C|B)UσU† ≥ I(A′ : C|B)U ′′σU ′′† . (15)

The lower bound (15) is useful because it allows us to
leverage our results from the first part of the proof. In
particular, U ′′ is precisely the kind of constant-depth
quantum circuit that we analyzed above, so I(A′ :
C|B)U ′′σU ′′† ≥ 2 log 2 for any sufficiently large annulus
A′BC. Substituting this inequality into (15), we obtain
the desired bound (6).
General case — Our proof for the toric code pro-

ceeded in three steps. First, we derived a lower bound
(8) for I(A : C|B)σ̃ in terms of the entropy difference

S(λ̃ABC) − S(σ̃ABC) where λ̃ is any state that is in-
distinguishable from σ̃ over AB and BC. Second, we

constructed an appropriate λ̃ and computed the desired
entropy difference (10) in the special case where U is a
constant-depth circuit supported within a constant dis-
tance of BC [Fig. 1(b)]. Combining these two results,
we obtained the desired lower bound, but only for this
special class of circuits U . In the third and final step, we
extended this bound to arbitrary constant-depth circuits
U using the inequality (15).
Conveniently, the first and third steps of our proof im-

mediately generalize to any reference state σ since they
do not use any properties of the toric code. On the
other hand, in the second step, we used the specific struc-
ture of the toric code string operators [22], so we need
a different argument for this step in the general case.

In particular, instead of defining λ̃ in terms of a mix-
ture of excited states, we will now define it in terms of
the maximum-entropy state (“max-entropy state”). Con-
sider a larger annulus Y = ABC∪Supp(U), with U again
as in Fig. 1(b). Define a density matrix λ to be the
maximum-entropy state consistent with the reduced den-
sity matrices of σ over the past light cones of AB and BC.

We then define λ̃ = UλU†.
By construction, λ̃ is indistinguishable from σ̃ over AB

and BC and therefore the lower bound (8) still holds.
The only remaining question is the value of the entropy
difference on the right-hand side. We claim that

S(λ̃ABC)− S(σ̃ABC) = S(λY )− S(σY ) (16)
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FIG. 4. Using the procedure in Fig. 2, we remove the gates in
U that act deep in the interior of the annulus without chang-
ing the entropy; starting from U , whose support is depicted
as the blue region in (a), we obtain a unitary U , whose sup-
port is shown in (b). Then the support of U becomes a union
of two disks, which is topologically equivalent to (c) after re-
grouping sites.

and in turn

S(λY )− S(σY ) = 2γ0 (17)

provided that A,B, and C are sufficiently large compared
to the circuit depth. See Eq. (E1) in the Supplemen-
tal Material (SM) [23] for a self-contained derivation of
Eq. (17) starting from Definition 1. We are finished once
we prove Eq. (16).

We now present the proof of (16). Our main tool is
the following lemma about entropy differences under re-
versible channels, proven in the SM.

Lemma 1. Let ρ and ρ′ be density matrices over PQ
such that ρ′Q = ρQ and ρ′P = ρP . Let R, T be a pair of

quantum channels R : Q → Q̂ and T : Q̂ → Q. If

T ◦ R(ρPQ) = ρPQ (18)

T ◦ R(ρ′PQ) = ρ′PQ

then

S(ρPQ)− S(ρ′PQ) = S(R(ρPQ))− S(R(ρ′PQ)). (19)

To apply Lemma 1 to our setup, we let ρ = λ and

ρ′ = σ where λ = UλU
†
and σ = UσU

†
and where U is

a unitary obtained by removing the gates in U that are
deep in the interior of the annulus ABC [Fig. 4(a-b)].
We then let P,Q be a partition of the annulus ABC of
the form shown in Fig. 4, such that P ⊂ A is sufficiently
far away from the support of U .[24] By construction, λ
and σ are indistinguishable on P . In Supplemental Ma-
terial, Appendix E, we show that the two states are in-
distinguishable on Q as well [Eq. (E2)], thus fulfilling the
premise of Lemma 1.

Below we will construct quantum channels R : Q → Q̂

and T : Q̂ → Q, with Q̂ ≡ Q ∪ u where u is the sup-
port of U . These will obey (18) with R(λPQ) = λPQ∪u

and R(σPQ) = σPQ∪u. Because PQ∪u = Y and also

S(λPQ) = S(λ̃PQ) and S(σPQ) = S(σ̃PQ), once we
construct these channels, we can immediately deduce
Eq. (16) from Lemma 1. This will then complete our
proof of the bound (5), as explained earlier.

P Q P Q\u
TrQ∩u

P Q\uv1 u1

v2 u2

P Q∪u
Φσ

v→vu

FIG. 5. The construction of R. The first step is the partial
trace Tru over the support of U , and the second step applies
the Petz map Φσ

v→vu where v = v1v2 and u = u1u2. The blue
subsystem is u, the support of U .

Now let us discuss our construction of R and T . These
maps are constructed from compositions of U , partial
trace, and the Petz map [25].
To clearly render the construction of R and T , we

depict u as two disks of smaller sizes, as in Fig. 4(c).
Loosely speaking, R removes the circuits in the disks
and T restores them.
The map R is constructed by applying a partial trace

followed by a Petz map, best described by Fig. 5. In
the first step, we trace out the region Q ∩ u. This step
effectively removes the circuit U , mapping λPQ to λPQ\u
and σPQ to σPQ\u. In the second step, we apply the Petz
map Φσ

v→vu. We show in the Supplemental Material,
Eq. (E3), that this step extends λPQ\u to λPQ∪u and
σPQ\u to σPQ∪u:

λPQ∪u = Φσ
v→vu(λPQ\u), σPQ∪u = Φσ

v→vu(σPQ\u).
(20)

Combining the two steps we see that R maps λPQ to
λPQ∪u and σPQ to σPQ∪u, as required. As for the map

T , this can be constructed by simply applying U and
tracing out u \ Q. Clearly these operations map λPQ∪u

to λPQ and σPQ∪u to σPQ, as required.
Discussion — The lower bound (5) can be general-

ized to the case that σ contains an anyon in the interior
of the annulus, because the proof only required the in-
variance of the TEE under deformations of the annulus.
The lower bound then becomes γ0 = log(D/da) [20] for
anyon a in the interior. We expect similar lower bounds
can be derived in a variety of setups, including systems
with defects or higher dimensional systems.
Although we have only proven the lower bound (3) for

states obtained by constant-depth circuits acting on ref-
erence states, we expect that (3) holds more generally.
In fact, we argue heuristically in the SM, Appendix G,
that (3) holds for any 2D gapped bosonic ground state.
The key idea is to use the fact that reference states can
already realize all “doubled” 2D topological phases ob-
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tained by stacking a bosonic topological phase onto its
time-reversed partner [2, 8, 9].

Our Definition 1 and bound (5) actually apply beyond
area law states. For instance, coupling an area law refer-
ence state to a hot surface (modeled by an identity den-
sity matrix) for a short period of time cannot decrease
the TEE of the joint system. We speculate that simi-
lar arguments may apply to the 3D toric code at finite
temperature [26].

An interesting open question is whether our bounds
apply to the TEE defined using the alternative parti-
tion in Ref. [1]. It would also be interesting to know
whether similar results hold for a TEE defined via Rényi
entropies, which are easier to measure in quantum simu-
lators [27].

A final question is to understand how generically our

bound (3) is saturated. How much fine-tuning is required
to obtain a spurious TEE that does not decay with dis-
tance? Despite hints in this direction [14, 15, 18, 28], the
general question remains open.
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