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Abstract 

Higher-order topological band theory has transformed the landscape of topological phases in quantum and 

classical systems. Here, we experimentally demonstrate a two-dimensional (2D) higher-order topological 

phase (HOTP), referred to as the multiple chiral topological phase (MCTP), which is protected by a 

multipole chiral number (MCN). Our realization differs from previous HOTPs in that it possesses a larger-

than-unity MCN, which arises when the nearest-neighbor couplings (NNCs) are weaker than long-range 

couplings (LRCs). Our phase has an MCN of 4, protecting the existence of 4 mid-gap topological corner 

modes (TCMs) at each corner. The multiple TCMs demonstrated here could lead to enhanced quantum-

inspired devices for sensing and computing. Our study also highlights the rich and untapped potential of 

LRC manipulation for future research in topological phases.  

 

Recent theoretical advancements in HOTPs  [1–8] have substantially expanded the scope of the 

bulk-boundary correspondence, leading to the observation of TCMs  [9–18] and topological defect 

modes  [19–23]. TCMs are zero-dimensional bound states localized at the corners of a HOTP 

specimen, which have inspired novel applications such as topological lasers [24], thermal 

engineering [25], and quantum optics [26]. In 2D, one can obtain HOTPs by either engineering the 

Wannier center configuration of the lattice or the existence of boundary-localized mass domains. Both 

approaches give rise to only one TCM at each corner. Yet, the presence of multiple TCMs at a single 

corner confers several advantages, notably including the possibility of realizing multi-mode 

topological lasers. Furthermore, the existence of multiple degenerate or nearly degenerate TCMs 

holds the potential for investigating the dynamics of non-Abelian characteristics [27,28]. As a result, 
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the pursuit of an efficient method to create the desired quantity of in-gap TCMs remains a highly 

coveted objective. 

The band topology of a standard one-dimensional Su-Schrieffer-Heeger (SSH) model can be 

characterized by a winding number that is either zero or one [29]. However, by the introduction of 

proper long-range couplings, the winding number can be increased. Such systems, therefore, belong 

to a ℤ -classified topological phase (See  [30] for more details). In fact, topological phases that protect 

multiple states at each 0D boundary exist in odd-dimensional chiral-symmetric systems, protected by the 

winding number of their Bloch Hamiltonians across the Brillouin zone. A recent theoretical study found a 

ℤ-classification of 2 HOTP in class AIII by an unconventional generalization of the “winding number” to 

higher dimensions  [31–34]. The topological invariants are referred to as the “multipole chiral numbers” 

(MCN), as they are built from sublattice multipole moment operators. A lattice with MCNs greater than 

one can safeguard multiple zero-energy states per corner, all of which are pinned at midgap (zero energy) 

due to chiral symmetry. This phenomenon manifests itself in a tight-binding model wherein the LRCs are 

greater than NNCs in magnitude. This condition, which we call “coupling inversion,” is hard to obtain in 

natural materials because it goes against the general decay rule of bound electronic wavefunctions. Thus, 

the experimental realization of chiral-symmetric HOTP with MCN>1 is unlikely in condensed matter 

systems.  

We thus turn our attention to classical-wave systems, which have become versatile testbeds for 

topological models  [35–37]. For example, acoustic crystals built from coupled acoustic cavities offer a 

powerful platform for studying HOTPs with advanced designs  [10,11,16,17,22,38]. In addition, it has been 

systematically established that chiral symmetry can be precisely emulated in such systems  [38], which 

makes it possible to realize topological modes pinned at zero energy.  

In this letter, we leverage the salient features of coupled acoustic cavities to experimentally realize 

a chiral-symmetric acoustic MCTP with an MCN of 4. By using judiciously designed space-coiling 

channels, we show that NNC and LRC coefficients are precisely implemented while preserving chiral 

symmetry. More importantly, the lattice features coupling inversion by having LRCs stronger than NNCs. 

Our work demonstrates experimentally the existence of a chiral-symmetric HOTP with MCN>1 for the first 
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time and highlights the important role of LRCs in realizing novel topological phases; it also exemplifies 

the great potential of acoustic platforms for studying novel topological models. 

The system of interest is a square lattice of 4-site unit cells, described by the tight binding 

Hamiltonian 

𝐻(𝒌) = [
0 ℎ(𝒌) + 𝑔(𝒌)

ℎϯ(𝒌) + 𝑔ϯ(𝒌) 0
],                                               (1) 

where  

ℎ(𝒌) = ( 𝑢 + 𝑣𝑒−𝑖𝑘𝑥 −𝑢 − 𝑣𝑒−𝑖𝑘𝑦

−𝑢 − 𝑣𝑒𝑖𝑘𝑦 −𝑢 − 𝑣𝑒𝑖𝑘𝑥
),  𝑔(𝒌) = ( 𝑤𝑒−2𝑖𝑘𝑥 −𝑤𝑒−2𝑖𝑘𝑦

−𝑤𝑒2𝑖𝑘𝑦 −𝑤𝑒2𝑖𝑘𝑥
),           (2) 

with 𝑢, 𝑣, being the magnitudes of the intracell and intercell nearest-neighbor couplings, respectively, and 

w being the magnitude of the LRCs in x and y directions. Omitting the matrix 𝑔(𝑘) momentarily, the 

Hamiltonian describes a quadrupole topological insulator (QTI) when 𝑣 > 𝑢, which is characterized by a 

non-trivial quadrupole moment 𝑞𝑥𝑦 =
1

2
  [1,3]. Due to its chiral symmetry, it also possesses an MCN. In 

2D, the MCN is defined as  𝑁𝑥𝑦 =
1

2𝜋𝑖
Tr[log(𝑄̅𝑥𝑦

𝐴 𝑄̅𝑥𝑦
𝐵†)] , where 𝑄̅𝑥𝑦

𝐴  and 𝑄̅𝑥𝑦
𝐵†

 are multipole moment 

operators for sublattices A and B  [31]. The MCN is 𝑁𝑥𝑦 = 1 in this case, resulting in one zero-energy 

topological mid-gap state per corner of a finite-size rectangular lattice.  

 Reintroducing 𝑔(𝑘), which contains only LRCs, the lattice takes the form shown in Fig. 1 (a). The 

LRCs are arranged in a way that an additional synthetic magnetic field with π-flux threads each plaquette 

in the lattice. The system becomes an MCTP with an MCN of 𝑁𝑥𝑦 = 4 when coupling inversion occurs, 

i.e., when 𝑤 > 𝑣 (see Supplemental Material [30]  for further analysis, which includes Refs.  [31,39]). 

Figure 1(b) shows the spectrum of a 𝟏𝟔 × 𝟏𝟔-site square lattice. A bulk gap is opened near the zero 

energy, wherein sixteen near-degenerate in-gap modes are observed. These are bound states localized 

around the four corners (four per corner), as shown in Fig. 1(c). These are the TCMs protected by 

the non-zero MCN. Due to the presence of the LRCs, some TCMs are localized several sites away 

from the extreme corner. We note that the energies of the TCMs are not exactly degenerate but 

remain symmetric about zero energy, which is due to the finite-size effect. The TCMs are robust 
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against reasonable disorders (see  [30]  for details), providing tolerance for fabrication and 

experiment errors. Finally, the phase diagram of the MCTP is plotted and can be found in [30]. 

 

FIG. 1 A schematic and the corresponding theoretical results regarding the topological corner modes (TCMs) 

obtained from the tight-binding model. (a) The schematic shows the lattice model and the configuration near a 

corner. The solid (dashed) lines represent positive (negative) couplings, and their thickness indicates the coupling 

strength. Colors are also used to denote different couplings, including intracell NNCs (green), intercell NNCs (blue), 

and LRCs (orange). Not all the LRCs are shown for the sake of clarity. (b) Sixteen mid-gap TCMs. (c) The 

wavefunction amplitudes of the four TCMs in one of the four corners (bottom left corner) of the lattice. Here, 

𝒖, 𝒗, 𝒘 = 𝟏, 𝟐, 𝟑. 

 

Next, we design an acoustic crystal to realize the model [Eq. (1)]. Our starting point is a 2D array 

of coupled acoustic cavities [31]. The cavities are identical air-filled cuboids with a square cross-section 

(in the xy plane) and a relatively large height (along the z axis). The cavity mode of interest is the first-order 
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resonance mode, whose natural frequency is  𝑓0 =
𝑐0

2𝐿0
= 2858 Hz, and corresponds to a modal profile 

𝑃(𝑥, 𝑦, 𝑧) = 𝑃0 cos (
2𝜋𝑧

𝐿0
) , where 𝑐0 = 343 𝑚/𝑠 is the speed of sound in air, 𝑃0 is the pressure amplitude, 

and 𝐿0 = 60 𝑚𝑚 is the cavity height. The coupling among cavities is facilitated using air channels, which 

are acoustic waveguides with subwavelength cross-sectional areas. A two-cavity setup is used to identify 

the conditions needed to build the model [Fig. 2(a)], which is described by a two-state Hamiltonian 𝐻2𝑠 =

(
2𝜋𝑓0 𝑡

𝑡 2𝜋𝑓0
), where 𝑡 ∈ ℝ  is the coupling term. This Hamiltonian possesses an even mode and an odd 

mode, with eigenfrequencis 2𝜋𝑓𝑒  and 2𝜋𝑓𝑜 , respectively. Their normalized splitting, defined as 𝛥𝑓 =

𝑓𝑒−𝑓𝑜

𝑓0

, indicates the coupling strength and coupling sign. From the parity of the modes, it is straightforward 

that  sgn(𝑡) = sgn(Δ𝑓). On the other hand, when the channel produces no perturbation to the natural 

frequency of the cavities, chiral symmetry is respected, and 𝑓𝑒 and 𝑓𝑜 are symmetric about 𝑓0. This 𝑓0 is 

regarded as the “zero energy.” We use the normalized eigenvalue mean, 𝑓̅ =
𝑓𝑒+𝑓𝑜

2𝑓0
, to quantify the breaking 

of chiral symmetry. Chiral symmetry is strictly respected when 𝑓̅ = 1 . We compute 𝛥𝑓  and 𝑓̅  using 

COMSOL Multiphysics. The tuned parameters are channel length 𝐿𝑐, width 𝐷𝑐, and connecting position 𝑧𝑐 

on the cavity. The results are shown in Fig. 2(b, c). According to the configuration of the unit cell [Fig. 1], 

we need six different coupling coefficients, four for NNCs, and two for LRCs (see Supplemental 
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Material [30] for details of coupling channel design, which includes Refs.  [16,40]). The chosen 

parameters are correspondingly indicated by colored markers (diamonds and stars) in Fig. 2(b, c). 

 

FIG. 2. (a) The eigenmodes of the two acoustic cavities coupled with an air channel. The normalized eigenvalue mean 

𝑓 ̅ (b) and eigenvalue splitting Δ𝑓 (c) as functions of 𝐿𝑐 and 𝑧𝑐, and for different 𝐷𝑐 . The diamonds and stars mark the 

geometric values chosen for our acoustic HOTP design.  

 

Using these geometric parameters, the acoustic crystal design is shown in Fig. 3(a). The key 

requirement, coupling inversion, is achieved by using LRC channels connected at the top and bottom of the 

cavities where the pressure amplitude (and therefore the coupling) is maximum, while their NNC 

counterparts are connected at ¼ height of the cavities (leading to weaker coupling). The lengths of the LRC 

channels are ~2.5𝐿0 and ~3.5𝐿0 for negative and positive coupling, respectively, which are longer than the 

spatial separation of the relevant cavities. The coupling channels are essentially 1D acoustic waveguides 

with subwavelength cross-sectional dimensions. Space-coiling design  [41,42], which is widely used in 

acoustic metamaterials and metasurfaces  [43,44], is employed to bend the waveguides into 

meandering shapes so that the coupling channels can fit the cavity array. The detailed geometric 

parameters are presented in  [30]. We then perform finite-element simulations on the design, and the results 

are shown in Fig. 3(b, c), which can be directly compared with the theoretical results shown in Fig. 1(b, c). 

Sixteen mid-gap TCMs can be identified, all of which localize at corners, which is compatible with a crystal 

in the MCN=4 phase. In addition, both the bulk bands and the TCMs are nearly symmetric about 2858 Hz, 

and the TCMs are safely separated from the bulk bands. The splitting of the TCMs away from mid-gap is 

attributed to hybridization due to mode overlap across opposite corners and intrinsic deviations away from 

perfect chiral symmetry. For the practical purposes of topological protection, all the TCMs are robustly 
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protected by approximate chiral symmetry. Furthermore, since the hybridization due to mode overlap is a 

finite-size effect, it will decrease with increasing system size.  
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FIG. 3. (a) The schematic drawing of the acoustic lattice design. The colors of the air channels are in one-to-one 

correspondence with those in Fig. 1. (b) The simulated eigenfrequencies of the acoustic lattice. (c) Sixteen mid-gap 

TCMs are identified. They are separated into four groups based on their spatial profiles.  

 

 

FIG. 4. The fabricated acoustic lattice used in our experiments. (a) A schematic showing the design. Different sets of 

air channels are machined on three different sides, as shown in (b, c, d), respectively. 
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The fabricated acoustic crystal is shown in Fig. 4. It is composed of two aluminum blocks and two 

cover plates [Fig. 4(a)]. The lattice has 16 × 16 cavities, and the air channels are etched on different 

surfaces of the aluminum blocks using CNC machining [Fig. 4(b-d)]. Holes are opened on the top cover 

plates for excitation and measurement. They are sealed with silastic plugs when not in use. For the acoustic 

measurement, a short pulse covering 2200–3500 Hz is sent using a 16-channel sound card (MOTU 16A) 

through a power amplifier to drive a loudspeaker placed at the positions illustrated in Fig. 5(b) for the 

excitation of the bulk mode and TCMs. The response signals are detected by 16 identical microphones and 

recorded by the sound card. The results are shown in Fig. 5(a, b). A bulk gap is clearly observed in the 

frequency range of 2800–2900 Hz. When the loudspeakers are placed at the designated positions around 

the corners [indicated by the red arrows in Fig. 5(b)], 16 response peaks are observed in the bulk gap (near 

centre frequency 𝑓0 = 2858 Hz) when excited at different positions marked 1~16 as shown in Fig. 5(b). 

We note that the responses peak at slightly different frequencies. This is attributed to fabrication and 

experiment error, yet the MCTP is robust against such disorders as mentioned in previous sections. 

The spatial profiles of these responses are mapped out across the entire lattice, as shown in Fig. 5(b). They 

are in good agreement with the numerically obtained eigenfunctions of TCMs [Fig. 3(c)]. The slight 

deviations in peak frequencies of the TCM responses are attributed to fabrication errors. The maximum 

deviation is ±16 Hz, which is about 0.56% for a base frequency of 2858 Hz. Overall, the successful 

realization of MCTP is collectively demonstrated by the observation of a total of 16 TCMs in the experiment, 

and the fact that, not only the number of the TCMs, but also their eigenfunctions are in excellent agreement 

with the predictions made by numerical simulations based on the same acoustic crystal. Discussion and 

results on the effect of thermoviscous losses are included in  [30]. 

In conclusion, we have experimentally demonstrated a coupling-inverted acoustic crystal 

possessing MCTP that is characterized by a ℤ topological invariant, the MCN, which is greater than one. 

Unlike most topological models, the existence of MCTP explicitly requires the presence of LRCs. Our work 

provides strong evidence that the manipulation of LRCs can be a fruitful route for accessing new topological 

phases. Because of the difficulty in finding LRC in natural materials, classical-wave platforms such as 

acoustic crystals may play an increasingly important role in future studies of topological phases, particularly 

in those that additionally require chiral symmetry. Meanwhile, it would be interesting to expand MCTP 

into other systems, such as photonic crystals and topoelectrical circuits, though it remains unclear whether 

chiral symmetry can be achieved in photonic crystals (periodic arrays of coupled waveguides do possess 

chiral symmetry  [14]). Having spatial and spectral coexistence of multiple TCMs, our MCTP may be 

beneficial for applications such as spatially multiplexed energy confinement  [45], multi-mode corner-

emitting topological lasers [24], and may open a route for the non-Abelian manipulation of TCMs  [46–48].  
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FIG. 5. Experimental results. (a) Response spectra of the bulk modes (grey curves, denoted B in the legends) and 

TCMs (colored curves) marked with numbers 1-16, corresponding to different excitation positions shown by the 

arrows in (b). Responses of the TCMs are presented in four subfigures on the right, each representing a specific 

category of TCMs determined by their positions relative to the exact corner site (e.g., exactly at the corner, two sites 

away from the corner on the x-axis, etc.). (b) The spatial response profiles with excitation and measurement positions 

at the corners (marked by the red arrows). The blue arrows and circles (right next to the blue arrows) mark the 

excitation and probing points for the bulk spectra in (a). 
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