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We propose a computationally efficient method to derive the unitary evolution that a quantum
state is most sensitive to. This allows one to determine the optimal use of an entangled state
for quantum sensing, even in complex systems where intuition from canonical squeezing examples
breaks down. In this paper we show that the maximal obtainable sensitivity using a given quantum
state is determined by the largest eigenvalue of the quantum Fisher information matrix (QFIM) and
the corresponding evolution is uniquely determined by the coinciding eigenvector. Since we optimize
the process of parameter encoding rather than focusing on state preparation protocols, our scheme
is relevant for any quantum sensor. This procedure naturally optimizes multiparameter estimation
by determining, through the eigenvectors of the QFIM, the maximal set of commuting observables
with optimal sensitivity.

Introduction.— Advances in quantum sensing tech-
nologies including atomic clocks [1, 2], inertial sensors [3–
5], gravitational wave detectors [6–9], and biosensors and
tissue imaging devices [10] revolutionize the way we un-
derstand the world around us. The development of sens-
ing devices using parameter estimation is at the core of
the ever-growing field of quantum metrology [11]. More-
over, quantum sensors can make use of quantum entan-
glement to surpass the standard quantum limit (SQL)
and simultaneously have increased robustness against
fluctuations that harm the measurement process [12–14].
One of the greatest challenges in developing quantum
sensors is the generation of metrologically useful entan-
glement. Many schemes rely on dynamics in which the
quantum state evolution can be intuitively understood.
This provides insight about the final state so it may then
be manipulated to utilize its entanglement for a given
sensing purpose. For example, analytic solutions have
been developed for one-axis twisting (OAT) [11, 15–17]
to track the rotation axis the state is most sensitive to.

Many theoretical techniques have been developed to
determine the metrological usefulness of a state for a
given sensing purpose [11, 18]. In particular, the quan-
tum Fisher information (QFI) represents the maximum
achievable precision of measuring a specific parame-
ter [19] and is a sufficient entanglement witness [20, 21].
However, this assumes a particular evolution and thus
fails to shed light on what evolution is optimal when in-
tuition from canonical squeezing examples breaks down.
This is the case in higher dimensional systems where
the dynamics cannot be represented on a single collec-
tive Bloch sphere [22–27] and so the potential gain from
entanglement cannot be readily determined.

In this Letter, we develop a procedure that finds the
physical evolution that a prepared quantum state ρ̂ is
most sensitive to. We utilize the quantum Fisher infor-
mation matrix (QFIM) in which the diagonal elements

are the QFI for each single parameter [28, 29], while
the off-diagonal elements represent correlations between
two parameters [30]. More fundamentally, the QFIM
has a deep connection to distances between quantum
states in the language of quantum state geometry [31–
36]. We use this geometric formalization to show that
one can find the optimal evolution by diagonalizing the
QFIM. The largest eigenvalue of the QFIM is the maxi-
mum achievable QFI for single parameter estimation and
the corresponding eigenvector gives the evolution that
achieves this maximum sensitivity. Our procedure can
also be used for multiparameter estimation with the po-
tential to sense vector or tensorial quantities beyond the
SQL [5, 37–42].

To be clear, the purpose of our work is not to propose
protocols to create entangled states for quantum sensing.
Instead, we consider the state fixed and seek to quantify
its sensitivity to all possible evolutions, which allows us
to determine its full potential for quantum sensing. This
makes our method useful for any preparation scheme of
metrologically useful entangled states, assuming the sub-
sequent metrological application is a continuous process.
For practical purposes, this method means one could de-
termine the QFIM of a state, diagonalize it, and then
rotate the state until the optimal generator determined
here matches the Hamiltonian for a given sensing pur-
pose. This is a natural consideration because highly en-
tangled states are difficult to engineer while rotations of
entangled states are more easily controlled [43, 44].

The utility of optimization via QFIM diagonalization
becomes clear when one considers the dimensionality of
group structures that are often used as the basis for quan-
tum metrological interactions [45–47]. For the case of
SU(n) systems, one has dim[su(n)] = n2 − 1 where su(n)
is the algebra that generates the group SU(n) under ex-
ponentiation. To find the optimal generator of evolution,
one would have to optimize over the span of n2 − 1 op-
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erators which is equivalent to searching an entire Sn2−2

hypersphere. Instead, the QFIM procedure only requires
one to find the eigenvector with the largest eigenvalue of
an (n2 − 1)× (n2 − 1) matrix.
Formalism.— We start now by introducing the general

formalism. To work out a procedure to find the optimal
generator, we adopt the language of quantum state ge-
ometry [see Supplemental Material (SM) [48]]. Consider
a Hilbert space H of dimension d, with a set of quan-
tum states ρ(x). Here, the states are parameterized by
some ordered list of n coordinates, x = (x1, . . . , xn), that
are associated with physical parameters. The set of ρ(x)
forms a state-manifold which may be equipped with a
Riemannian metric in the form of the QFIM,

ds2 = Fµν dx
µdxν , (1)

with the definitions

Fµν =
1

2
Tr

[
ρ{L̂µ, L̂ν}

]
, ∂µρ =

1

2

(
ρL̂µ + L̂µρ

)
. (2)

Here, {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator,
∂µ = ∂/∂xµ, and L̂µ is the symmetric logarithmic deriva-
tive [35] with respect to the coordinate xµ.
The set of tangent vector fields on the state-manifold

represent all potential quantum operations under which
the state may evolve. This is physically equivalent to
a set of derivatives, such that any tangent vector may
be expanded as V⃗ = V µ∂µ. From Eq. (1), we can then
understand the QFI metric Fµν as the inner product be-

tween vectors at the point x [48]: ⟨V⃗ , W⃗ ⟩x = FµνV
µW ν .

In other words, when the QFIM is used to define the
interval ds2, it can be intuitively understood as a differ-
ential path length across the quantum state space.

A natural consequence of this interpretation of the
QFIM is that the vector whose magnitude is maximized
under the QFIM’s inner product, labeled O⃗, uniquely
determines the infinitesimal rotation which changes the
state most rapidly. The magnitude of O⃗ is then in-
versely proportional to the quantum Crámer-Rao bound
(QCRB), and thus determines the evolution in which

the quantum state is most sensitive to. Calculating O⃗
and its magnitude is equivalent to finding the eigenvec-
tor with the largest eigenvalue of Fµν when treated as a
matrix [48],

FO⃗µ = λmaxO⃗µ, (3)

where O⃗µ is the column vector representation of Oµ.
In the case that the parameterization of a state may

be described unitarily, ρ(x) ≡ U(x)ρ(0)U†(x), we may
further simplify this process since the geometric struc-
ture is inherited from the unitary group U(H) [48–50]. If
ρ(0) = |Ψ⟩⟨Ψ | for some prepared state |Ψ⟩, we can study
pure states U(x) |Ψ⟩ belonging to the state-manifold.
Here, the expression for Fµν simplifies to

Fµν = 2⟨{Ĝµ, Ĝν}⟩Ψ − 4⟨Ĝµ⟩Ψ ⟨Ĝν⟩Ψ , (4)

which matches the Fubini-Study metric [51]. We can
further understand derivatives at x as

∂µU(x) |Ψ⟩ = −iĜµU(x) |Ψ⟩ , ∂µ ≡ −iĜµ, (5)

where −iĜµ ∈ u(H) belongs to the Lie algebra. There-

fore, any vector V⃗ naturally defines a generator on the
Hilbert space according to Eq. (5), where V µ is a set
of coefficients associated with the observables Ĝµ in a

Hamiltonian. The determination of O⃗ = −iOµĜµ is thus

equivalent to finding the optimal generator Ĝ = OµĜµ.
Here, the QCRB may be artificially lowered by choos-
ing larger coefficients Õµ and claiming this leads to a
metrological advantage. As a result, we enforce that
O⃗ is normalized with respect to the operator basis,∑

µ (Oµ)
2
= 1. By further defining a suitable norm C

such that Tr
[
ĜµĜν

]
= Cδµν [48], the SQL is formally de-

fined for SU(n) systems at the particle number N . This
also defines the Heisenberg limit (HL), which is the fun-
damental sensitivity bound originating from the Heisen-
berg uncertainty principle [18, 52], at N2.

Squeezing in a SU(2) system.— To demonstrate the
validity of our QFIM diagonalization procedure, we first
consider states created by nonlinear interactions between
N two-level particles with an underlying SU(2) structure.
Each particle’s states are labeled with ground state |d⟩
and excited state |u⟩. We use the Schwinger boson rep-

resentation [53] for two modes with creation operators d̂†

and û† representing the “creation” of a particle in the
states |d⟩ and |u⟩, respectively. As shown in Ref. [15],
squeezing a coherent spin state (CSS),

|θ, ϕ⟩ = 1√
N !

[
cos

(
θ

2

)
û† + sin

(
θ

2

)
eiϕd̂†

]N
|0⟩ , (6)

about a single axis may be accomplished with a nonlinear
interaction. In particular, the OAT Hamiltonian

ĤOAT = ℏχĴ2
z =

ℏχ
4

(
û†û− d̂†d̂

)2

, (7)

correlates quantum fluctuations by twisting the northern
and southern hemispheres of the collective Bloch sphere
in opposite directions, leading to a squeezed state with
particle-particle entanglement. We demonstrate squeez-
ing of a CSS initially oriented along Ĵx = (û†d̂+ d̂†û)/2,
shown in Fig. 1(a), which reaches an optimally squeezed

state at time t = 1/(χN
2
3 ), shown in Fig. 1(b).

We now examine this well-known squeezing example
through the lens of QFIM diagonalization. The opera-
tor basis of the SU(2) group is the collective operators

Ĝµ ∈ {Ĵx, Ĵy, Ĵz}, where Ĵy = i(d̂†û − û†d̂)/2. There-
fore, Eq. (3) requires the diagonalization of a 3 × 3 ma-
trix F . Figure 1(c) shows the three eigenvalues of F
during the squeezing process. At t = 0, the eigenvec-
tors Y⃗ µ = (0, 1, 0)T and Z⃗µ = (0, 0, 1)T have degenerate
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FIG. 1. One-axis twisting with N = 20. (a) and (b) Collec-

tive Bloch sphere at t = 0 and t = 1/(χN
2
3 ), respectively.

The color represents |⟨θ, ϕ|ψ(t)⟩|2 at each point. (c) The
three eigenvalues λi of F . Also plotted as a black dotted-
dashed line is FOAT from Eq. (8). (d) Location of the opti-
mal generator during the squeezing process. The color rep-
resents the QFI for the given generator. The time axis for
t ≲ π/(2χ)−2/(χ

√
N) is shown with a black arrow, while the

discontinuous jump at t ∼ π/(2χ)− 2/(χ
√
N) is shown with

a purple arrow. The eigenvalue then grows at this final axis
for the remainder of the process.

eigenvalues at the SQL, λmax = N . The third eigenvec-
tor X⃗µ = (1, 0, 0)T has a zero eigenvalue, showing the
underlying symmetry of the initial CSS. The degener-
ate eigenvalues split as squeezing begins. As shown in
Fig. 1(c), we find perfect agreement between the largest
eigenvalue of F and the analytical solution [11, 16] dur-
ing the initial squeezing t ≲ 1/(χ

√
N),

FOAT = N +
N(N − 1)

4

(
A+

√
A2 +B2

)
, (8)

with A = 1− cosN−2(2χt) and B = 4 sin(χt) cosN−2(χt).
We emphasize that this analytical result is found using
the exact solution of the squeezing dynamics which allows
one to extract the maximum QFI. Instead, with the help
of the QFIM, we do not require any such insight into the
state and yet can still efficiently find the maximum QFI
numerically, deriving the eigenvector visible in Fig. 1(d)
displaying the optimal generator Ĝ. However, we will see
that the QFIM eigendecomposition offers its own insights
into symmetries at points of a given system’s dynamics.

After t = 0, the symmetry of the CSS is broken, and
the optimal generator jumps to Ĝ = sin(δ)Ĵz + cos(δ)Ĵy,
where we find perfect agreement with the expression
δ = arctan(B/A)/2 given in Ref. [15]. As squeezing
progresses, the optimal generator then rotates towards
the equator. At t ∼ 2/(χ

√
N), the first two eigenval-

ues become degenerate with the associated eigenvectors
X⃗µ and Y⃗ µ, once again showing an underlying symme-
try of the state [17]. This symmetry is then broken at
t ∼ π/(2χ) − 2/(χ

√
N), causing the two largest eigen-

values to split and a discontinuous jump of the optimal
rotation axis from Y⃗ µ to X⃗µ [purple arrow in Fig. 1(d)].
Therefore, Eq. (8) no longer calculates the maximum
QFI because it corresponds to rotations about Ĵy when

t ≳ 2/(χ
√
N). We find that FOAT follows the second

eigenvalue down to the SQL while the largest eigenvalue
grows to the HL, λmax = N2. The final three eigenvalues,
one at HL and two at SQL, are only possible in SU(2)
systems with a NOON state, which matches the analysis
of Ref. [17]. Having demonstrated that the well-known
results of OAT follow naturally from the diagonalization
of the QFIM, we now turn to a higher dimensional sys-
tem in which analytical results for the maximum QFI
and optimal generator cannot readily be obtained.
Squeezing in higher dimensonal systems.— We con-

sider a N -body system in which the constitute parti-
cles now have four states |u⟩, |d⟩, |s⟩, and |c⟩. We
again utilize Schwinger bosons with corresponding cre-
ation operators û†, d̂†, ŝ†, and ĉ†. Here, the linear dy-
namics are described by the SU(4) group with six su(2)
sub-algebras. Each sub-algebra has the associated rais-
ing operators [54] Q̂+ = û†d̂, Σ̂+ = ŝ†ĉ, M̂+ = û†ĉ,

N̂+ = ŝ†d̂, Û+ = û†ŝ, and V̂+ = ĉ†d̂. These operators
define the Hermitian components of each algebra accord-
ing to Ôx = (Ô+ + Ô−)/2, Ôy = −i(Ô+ − Ô−)/2, and

Ôz = [Ô+, Ô−]/2. We can then create an operator ba-
sis that spans su(4) with 15 operators that satisfy the
orthonormality property [48]:

Ĝµ ∈ {Q̂x, Q̂y, Q̂z, Σ̂x, Σ̂y, Σ̂z,M̂x,M̂y,

N̂x, N̂y, P̂z, Ûx, Ûy, V̂x, V̂y},
(9)

where P̂z = (M̂z − N̂z)/
√
2.

We prepare the state via the nonlinear interaction

ĤTAT = ℏχ
(
Q̂+ + Σ̂+

)(
Q̂− + Σ̂−

)
= 2ℏχÊ+Ê−,

(10)
which causes twisting about three of the axes of a 15-
dimensional collective hypersphere [27]. Here, we have
introduced three SU(2) subgroups J, K, and E generated
by algebras with raising operators Ĵ+ = (M̂++N̂+)/

√
2,

K̂+ = (Û+ + V̂+)/
√
2, and Ê+ = (Q̂+ + Σ̂+)/

√
2, re-

spectively. The J and K algebras might represent the
dynamics of the internal and external degrees of freedom
of atoms in a dispersive Kapitza-Dirac cavity, while the
E algebras represents the entanglement-generating pro-
cesses [27, 48].
When we begin in a simultaneous eigenstate of Ĵx and

K̂y, |ψ0⟩ = (N !)−
1
2 exp

[
−iĴyπ/

√
2
]
(û†)N |0⟩, the Hamil-

tonian Eq. (10) causes squeezing as well as non-trivial
entanglement between J and K. We display the dynam-
ics of the QFIM eigenvalues for N = 20 in Fig. 2(a)
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FIG. 2. Three-axis twisting of a SU(4) system with N = 20.
(a) The largest eight eigenvalues λi of F . Also shown as a
black dashed line is the largest QFI from an operator in the J,
K, and E subgroups. (b) Coefficients Oµ and corresponding

basis operator Ĝµ of the optimal generator Ĝ = OµĜµ.

and the eigenvector of the QFIM with the largest eigen-
value in Fig. 2(b). Figure 2(a) also displays the maxi-
mum QFI from operators in the J, K, and E subgroups,
which were the generators considered in Ref. [27]. At
t = 0, the largest six eigenvalues are degenerate at the
SQL, λi = N , indicating that the starting state is a gen-
eralized CSS [55]. This mirrors the symmetry between

Y⃗ µ and Z⃗µ initially in OAT, but now over three SU(2)
subgroups [56]. As the squeezing begins, the largest two
eigenvalues grow until t ∼ 1/(χ

√
N) where they reach a

maximum value of λmax ∼ 146 ≈ 0.366N2. This degen-
eracy can be seen in Fig. 2(b) as the optimal generator
jumps back and forth between two operators for the be-
ginning of the squeezing process. These two degenerate
eigenvalues subsequently fall until they cross the third
largest eigenvalue at t ∼ 5/(3χ

√
N), corresponding to

a discontinuous jump in Fig. 2(b). The eigenvalue cor-
responding to a rotation axis close to M̂x then grows
rapidly, eventually becoming the largest eigenvalue at
t ∼ π/(2χ) − 1/(χ

√
N). This analysis highlights that

the QFIM diagonalization unravels the complicated non-
linear dynamics of the high dimensional quantum system.
In fact, with its help, we find that at all times the state
has a higher sensitivity than what was shown in Ref. [27].

Multiparameter estimation.— So far, we have focused
on optimizing single parameter estimation. However, our
QFIM diagonalization scheme inherently optimizes mul-
tiparameter estimation as well by finding multiple eigen-
vectors of the QFIM whose complimentary generators
commute with one another. This, in turn, could be used
in quantum sensors that aim to infer multiple param-
eters beyond the SQL simultaneously. As an example,
at t = π/(4χ) in Fig. 2(a), the generators associated
with the eigenvalues λ1 = 0.307N2, λ3 = 0.189N2, and
λ8 = 0.117N2 all commute with one another, meaning
one could carry out simultaneous estimation beyond the
SQL for all three of the corresponding parameters. The
associated generators go as Ĝ1 = c1

√
2K̂z+c2(M̂x+M̂y),

Ĝ3 = c2
√
2K̂z − c1(M̂x + M̂y), and Ĝ8 = c3N̂x + c4N̂y,

with real coefficients ci that satisfy the normalization
condition. For the case of the spin-momentum SU(4)
system considered in Ref. [27], a portion of these genera-
tors may be found to correspond to interactions which
are more physically accessible than the whole genera-
tor is [see SM [48] for details]. In this physical exam-
ple, K̂z could correspond to a linear acceleration while
M̂x +M̂y and c3N̂x + c4N̂y may correspond to spatially
dependent rotations, thereby creating the opportunity for
many combinations of useful interferometry [37, 57, 58].
We thus consider (M̂x + M̂y)/

√
2, K̂z, and Ĝ8 which

still have QFIs of 0.300N2, 0.195N2, and 0.117N2, re-
spectively. Since these operators are in three commuting
sub-algebras, they can be independently rotated to any
arbitrary operator in the respective sub-algebra in order
to be made relevant for sensing vector quantities or net-
work node interferometry [58–60].

More generally, within SU(n), one is guaranteed sets of
n−1 commuting generators [48, 61, 62], thereby guaran-
teeing sets of n− 1 eigenvectors of the QFIM which cor-
respond to simultaneously commuting generators. One
could thus select the eigenvector with the largest eigen-
value and search the remaining eigenvectors to find the
set of n − 1 generators which mutually commute and
have suitable eigenvalues that scale beyond the SQL. Fur-
thermore, the associated symmetric logarithmic deriva-
tives L̂µ are guaranteed to commute such that the opti-
mal measurement basis is the same for each parameter.
This ensures that the QCRB is always simultaneously
attainable for all n − 1 parameters as the elements of

the Uhlmann curvature matrix Uµν = −iTr
[
ρ[L̂µ, L̂ν ]

]
/2

will vanish [28, 63–65].

Conclusion and outlook.— We have demonstrated that
the optimal generator for quantum sensing is given by
the eigenvector associated with the largest eigenvalue of
the QFIM. This is a consequence of maximizing differen-
tial path lengths through quantum state space when the
QFIM is viewed as a Riemannian metric, generalizing
the work of Ref. [66] to any metrological process with an
underlying Lie group structure. For the examples we con-
sidered, unitary parameterization was assumed, but fu-
ture steps include examining a channel or hybrid param-
eterization scheme [28, 67, 68] using QFIM diagonaliza-
tion. Furthermore, our examples have used pure states,
but the procedure is equally valid with mixed states and
the properly defined tangent vectors. Here, one must
utilize the more general definition of the QFIM given in
Ref. [28]. The use of mixed states is then relevant to
experiments where a small amount of entanglement en-
tropy between the system and a bath can be generated
through either known or unknown dissipative processes.

The examples we considered had underlying SU(2) and
SU(4) group dynamics. Already in the case of SU(4),
one finds that more care must be taken compared to the
SU(2) case when considering larger group structures. For
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one, unitarily rotating the optimal generator to an ar-
bitrary operator is not always possible in larger group
structures [48]. We also outline in the SM [48] how to
extend our work to general SU(n) systems with an al-
gorithm to generate an orthogonal operator basis that
spans the quantum state space. Moreover, the underly-
ing formalism of this Letter extends to any dynamical
group structure. This makes our procedure relevant to
systems described by Sp(n,R) [69, 70], SU(m,n) [71], or
translational groups [72], for example.

Interestingly, there have been recent efforts to exper-
imentally infer the quantum geometric tensor [73–76],
which is related to the QFI metric through its real com-
ponent [48, 51]. This leads to the prospect of finding
the optimal generator for quantum sensing without the
need for a full theoretical model, only an understanding
of the underlying symmetries. This is necessary for com-
plex systems where such models are difficult to derive
or fully simulate. Our QFIM diagonalization procedure
thus opens an exciting avenue for experiments with com-
plex systems [24–26, 77–82], whose current interest is not
parameter estimation, to naturally test if the experiment
can be useful as a quantum sensor and how to use any
generated entanglement in an efficient manner. In addi-
tion, we can combine numerical approaches with QFIM
diagonalization for these complex systems, which is rel-
evant for quantum optical control and machine learning
methods that have been used effectively for quantum de-
sign tasks [83–89].
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Shaffer, Phys. Rev. Lett. 111, 063001 (2013).

[41] T. Baumgratz and A. Datta, Phys. Rev. Lett. 116,
030801 (2016).

[42] R. Kaubruegger, A. Shankar, D. V. Vasilyev, and
P. Zoller, PRX Quantum 4, 020333 (2023).

[43] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté,
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