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Stabilizer operations are at the heart of quantum error correction and are typically implemented
in software-controlled entangling gates and measurements of groups of qubits. Alternatively, qubits
can be designed so that the Hamiltonian corresponds directly to a stabilizer for protecting quantum
information. We demonstrate such a hardware implementation of stabilizers in a superconducting
circuit composed of chains of π-periodic Josephson elements. With local on-chip flux- and charge-
biasing, we observe a progressive softening of the energy band dispersion with respect to flux as
the number of frustrated plaquette elements is increased, in close agreement with our numerical
modeling.

Protecting fragile information in quantum processors
requires some form of quantum error correction (QEC).
With typical “software” QEC techniques such as the sur-
face code [1], stabilizing a single logical qubit requires
many physical qubits, each of which is typically imple-
mented as a weakly nonlinear oscillator. Error correction
and computation is achieved by a string of operations
and measurements that allow identification of bit-flip and
phase-flip errors. An alternative is to implement quan-
tum stabilizers directly in hardware. Here, error correc-
tion arises from the natural quantum dynamics, reducing
the need for repeated entangling gates, measurements,
and a multitude of control lines and complex classical
control hardware. In this approach, the highly non-trivial
Hamiltonian results in a tiny protected subspace within
a huge Hilbert space.

Both approaches can be characterized by the error
suppression factor Λ, the rate at which the logical er-
ror decreases with system size. The long time required
by each round of software error correction for current
transmon qubit arrays implies that Λ is only marginally
greater than one [2]. In this work, we experimentally
demonstrate the potential to achieve much larger Λ ≳100
with the Hamiltonian approach. The price that one pays
is the appearance of relatively low energy modes with
gaps ≲ 1 GHz that make initialization challenging; these
gaps can be made higher through parameter optimiza-
tion. Before building a scalable logical qubit with hard-
ware QEC, it is crucial to demonstrate the effectiveness
of protection based on Hamiltonian engineering as sys-
tem size increases. In this manuscript, we observe and
quantify the stabilizing interaction Hamiltonian between
unprotected elements. We perform spectroscopic mea-
surements with local flux control and observe signatures
of stabilizer terms in the Hamiltonian. Specifically, we
find a progressive flattening of the energy bands with
respect to flux as system size increases, consistent with
linear flux dispersion for a system size of one, quadratic
for two, and cubic for three. In addition, we observe a

characteristic periodic modulation with offset charge as
we tune between regimes with different levels of protec-
tion.

A variety of qubit designs with intrinsic protection
against decoherence have been studied previously [3, 4],
including the 0−π qubit [5–7], the two-Cooper-pair tun-
neling qubit [8], the bifluxon qubit [9], and rhombi arrays
[10–12]. In this last work, previous devices had limited
symmetry due to the inability to tune each element to
the optimum flux independently; in addition, the devices
were sensitive to offset charge fluctuations on internal
nodes in each element, and the suppression of tunnel-
ing between the logical states was limited. Similar to
previous protected qubit designs, our device is based on
π-periodic Josephson elements [13], for which the Joseph-
son energy is proportional to cos 2φ, where φ is the su-
perconducting phase difference across the element. Here,
charge transport consists of coherent tunneling of 4e, as
opposed to 2e for a conventional junction. We imple-
ment each element as a plaquette formed from a dc Su-
perconducting QUantum Interference Device (SQUID),
consisting of two conventional Josephson junctions and
a non-negligible loop inductance. When flux-biased at
frustration, Φ0/2 (Φ0 ≡ h/2e), the first harmonic of
the Josephson energy (proportional to cosφ) vanishes.
This leaves a second order term E2 cos 2φ, with sequen-
tial minima separated by π; E2 depends on the Josephson
energy of the individual junctions EJ and the energy of
the SQUID inductance EL (Supplement [19], Sec. XI);
φ is thus a compact variable residing on a circle. Biasing
below (above) Φ0/2 raises (lowers) the π wells relative to
the 0 wells; for flux bias at 0modΦ0, the potential be-
comes proportional to cosφ. A small asymmetry between
the two junctions has a similar but less severe effect on
the cos 2φ potential compared to a small flux deviation
from frustration (Supplement [19], Sec. I).

For a single frustrated plaquette with a large capaci-
tive shunt Csh [Fig. 1(a)], tunneling between the ground
states in the 0, π wells is suppressed. In the phase basis,
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FIG. 1. Concatenation of π-periodic plaquettes. (a) Schematic of single plaquette shunted by Csh. (b) cos 2φ potential
at frustration (∆Φ = Φ − Φ0/2 = 0) with localized wavefunctions in 0 and π wells, drawn in the 0, π basis for vanishingly
small tunneling. (c) Sketch of CW and CCW tunneling paths for φ going between 0,π wells indicated by blue/red dots. (d)
Linear flux dispersion of 0 and π levels for vanishing tunnel splitting. (e) Schematic of two plaquettes shunted by Csh with
small capacitance Cisl from intermediate island to ground. Potential with respect to phase across each plaquette displayed on
(f) contour plot, and (g) surface of torus; blue (red) lines correspond to hybridized even (odd) parity states; arrows indicate
CW/CCW tunneling paths between wells of same parity. (h) 1D cut of effective potential at double frustration. (i) Quadratic
dispersion of even (odd)-parity levels and flat dispersion of odd (even)-parity levels near double frustration for simultaneous
scan of plaquette fluxes along ∆Φ1 = ∆Φ2 (∆Φ1 = −∆Φ2) on left (right) (sketches do not include higher levels within a well).

wavefunctions localized in the 0, π wells are thus disjoint
and well protected against bit-flip errors. At the same
time, the wavefunctions are spread out in the charge ba-
sis, corresponding for the 0(π) states to superpositions of
even (odd) multiples of Cooper pairs on the logical island
where the plaquette connects to Csh. For bias away from
frustration, the energy levels disperse linearly [Fig. 1(d)],
with no protection against phase flips due to flux noise.

We next consider concatenation of multiple plaquettes
while maintaining the large shunt Csh across the array.
At double frustration, when two plaquettes are simulta-
neously biased to Φ0/2, there are four minima in the two-
dimensional surface defined by the phase drops across
each plaquette: 00, ππ, 0π, π0. For the two-plaquette
circuit this has the topology of a torus, since φ for
each plaquette is a compact variable with 2π periodicity
[Fig. 1(f,g)]. If the capacitance of the intermediate island
between plaquettes to ground Cisl is sufficiently small,
with charging energy Eisl

C = (2e)2/2Cisl > EJ , quantum
fluctuations of the island phase cause hybridization along
the direction between wells of the same parity; that is,
00 will hybridize with ππ and 0π with π0. Levels with
the same parity develop a splitting near double frustra-
tion, with ground states corresponding to the symmetric
superpositions 00 + ππ (0π + π0) for even (odd) parity.
Excited states are given by the antisymmetric superposi-
tions 00-ππ (0π-π0) for even (odd) parity; these states are
separated by an energy ∆SA from the symmetric ground
state of the same parity. The hybridized ground state
wavefunctions of opposite parity are the logical states
for the device [Fig. 1(h)] and form interlocking rings on
the torus [Fig. 1(g)]. Due to delocalization and inter-
twining of the hybridized ground state wavefunctions, lo-
cal perturbations affect the logical states symmetrically.
Larger Eisl

C increases ∆SA and further flattens the bands
[Fig. 1(i)], thus protecting against dephasing from flux
noise.

Treating each plaquette as a spin-1/2 particle, the
∆SA splitting corresponds to an XX stabilizer term in

the Hamiltonian of frustrated plaquettes i, j: HXX =

−(∆
(ij)
SA /2)XiXj , where Xi is the Pauli σx matrix for

plaquette i. The error suppression factor Λ can be ap-

proximated as the ratio of ∆
(ij)
SA to twice the scale hZ

of dephasing fluctuations for single plaquette i, δH(t) =
hZ(t)Zi, which, for this device, will be dominated by flux
noise (Supplement [19], Sec. XII). Csh still suppresses
tunneling between logical states of opposite parity, pro-
tecting against bit-flip errors.

In our experiments, we target a three-plaquette circuit
with EJ ∼ EL ∼ 1.5K (kB=1), where EL is the energy

(Φ0/2π)
2
/L of the inductance L on each plaquette arm.

We aim for a charging energy of each plaquette junction
EC = (2e)2/2Cj ∼ 3.5K, where Cj is the junction capac-
itance. These values can be achieved with conventional
Al-AlOx-Al junctions. We implement the inductors with
chains of large-area junctions, similar to fluxonium [22],
thus eliminating charge fluctuations on the internal nodes
between each small junction and inductor within a pla-
quette. The shunt capacitor Csh=1.2 pF is capacitively
coupled to a resonator. There are four flux-bias lines,
each of which couples strongly to one or two plaquettes.
There are three charge-bias lines: one to the logical is-
land that forms Csh, and one to each intermediate island
between plaquettes (Supplement [19], Sec. II-V).

For device tune-up, we scan various pairs of flux-bias
lines while monitoring the dispersive shift of the read-
out resonator. Each blue line in Fig. 2(a,b) corresponds
to one plaquette passing through frustration. A cross-
ing of two (three) lines indicates double (triple) frustra-
tion. The spacing between parallel sets of lines defines
the period Φ0. We fit the slopes and spacing of the lines
to extract the inductance matrix mapping bias levels on
each flux line to net flux coupled to each plaquette (Sup-
plement [19], Sec. VI). By inverting this matrix, we de-
termine bias parameters for moving along arbitrary flux
vectors.

We next map out the flux dispersion of the level tran-
sitions for different frustration conditions. With our abil-
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FIG. 2. Multi-plaquette flux biasing. 2D flux-modulation
scans of readout cavity dispersive shift for (a) PB23 vs.
PB12, (b) PB30 vs. PB01. (c) Optical micrograph of de-
vice.

ity to adjust the various plaquette fluxes independently
using local flux-biasing, we maintain some plaquettes at
unfrustration (0modΦ0), where the plaquette behaves
like a conventional Josephson element, while we scan the
flux of other plaquettes near frustration. In Fig. 3, we
consider the expected level structure and define the types
of possible transitions. We refer to transitions between
levels in the same well as plasmons; transitions between
different wells are referred to as heavy fluxons because
of the vanishingly small gap associated with the corre-
sponding anticrossing, a consequence of the large effective
mass from Csh. Transitions between hybridized levels
of the same parity but opposite symmetry, for example,
00+ππ to 00-ππ, disperse sharply with flux; these are
known as light fluxons due to the low effective mass in
the φ2 = −φ1 direction from the smallness of Cisl.

To perform spectroscopy, we drive a microwave probe
tone into the charge bias line coupled to Csh while moni-
toring the cavity dispersive shift. Near single frustration,
we initialize in the π well prior to each spectroscopy pulse
by setting the bias to 0.1Φ0 from frustration, thus mov-
ing out of the protected space; we then quickly ramp the
bias to the measurement point and apply spectroscopy
and readout pulses (Supplement [19], Sec. VII). In
Fig. 4(a), we show single-frustration measurements for
plaquette 2. Features that disperse gradually correspond
to plasmons within the π well where the qubit is ini-
tialized. We continue to observe transitions out of the
π well even when the device is biased past frustration,
where the π well is higher in energy than the 0 well, due
to suppressed tunneling between states of opposite par-
ity. In addition to the 0-1, 0-2, and 0-3 transitions, we
observe transitions out of excited states in the well, such
as 1-2, 1-3, and 1-4, and even 2-3 and 2-4, due to insuffi-
cient cooling into the ground state of the π well. Because
of the spurious excitations to multiple levels, we are un-
able to apply initialization techniques that are commonly
used for other low-gap qubits, such as heavy fluxonium
[15, 16]. Nevertheless, we observe only weak transitions
out of the 0 well, indicating that we are predominantly
preparing the circuit in the π well. In addition to the
plasmons, we also observe heavy fluxons that disperse
linearly with flux, which arise from transitions between
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FIG. 3. Level transitions. Simulated level diagrams near
(a) single and (b) double frustration; lines indicate example
plasmons (red), heavy fluxons (blue), light fluxons (magenta).

various levels in the π and 0 wells, where the barrier to
tunneling is small because the initial state is an excited
level or the wells are tilted by the flux bias; note that we
do not observe the heavy fluxon between the protected
ground states in the 0 and π wells, which are the logical
levels. We observe similar behavior for plaquettes 1 and
3 (Supplement [19], Sec. X).

The curves included in Fig. 4(a) are generated from
detailed numerical modeling of the device energy levels
(Supplement [19], Sec. IX). With the ability to calcu-
late the level spectrum, we adjust the circuit parame-
ters to fit the measured transitions from the spectro-
scopic data (Supplement [19], Sec. X). We observe ex-
cellent agreement, even capturing splittings that result
when a fluxon crosses a plasmon due to resonant tunnel
coupling between aligned levels in the 0 and π wells. In
addition, these splittings depend on the offset charge on
the Csh island [Fig. 4(e)] due to Aharonov-Casher (A-C)
interference [17, 18] between tunneling paths clockwise
(CW) or counterclockwise (CCW) in the cos 2φ poten-
tial [Fig. 1(c)] (Supplement [19], Sec. VIII). At single
frustration, as expected, the heavy fluxon dispersion is
linear down to zero energy, thus offering no protection
against flux noise.

Upon tuning to double frustration, we observe a quali-
tatively different behavior. We initialize in the ππ well of
the two-plaquette potential, then quickly ramp near dou-
ble frustration. We scan both plaquette fluxes in tandem
along the direction between the regimes with a global
potential minimum at ππ and 00 and passing through
double frustration. Spectroscopy at plaquette (12) dou-
ble frustration shows plasmons similar to the single frus-
tration measurements [Fig. 4(b)]. However, unlike sin-
gle frustration, where suppressed tunneling between the
0, π wells allows the device to remain in the π well even
after the flux is ramped well past frustration, at double

frustration, the large symmetric-antisymmetric gap ∆
(12)
SA

causes an adiabatic transition from ππ to 00 upon pass-
ing through double frustration. At higher frequencies, we
observe steeply dispersing light fluxons, with the mini-

mum at double frustration corresponding to ∆
(12)
SA from

hybridization of the 00 and ππ wells. For scans along the
odd-parity flux direction, or if the circuit is initialized in
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FIG. 4. Spectroscopy at different frustration points. Spectroscopy at (a) plaquette 2 single frustration, (b) plaquette (12)
double frustration, and (c) triple frustration. Lines indicate modeled transitions with: red = plasmons, blue = heavy fluxons,
purple = light fluxons, dotted = transitions out of 0 level, dash-dotted = transitions out of 1 level, dashed = transitions out
of 2 level, solid red line = plasmon transition between antisymmetric levels in even-parity well, orange = light fluxon plus
cavity photon (Supplement [19], Sec. X). (d) Comparison of dispersion of lowest heavy fluxon from modeled levels with linear,
quadratic, and cubic fits for single (black circle), double (blue triangle), and triple (red square) frustration; frequency axis
inverted for single and triple frustration for ∆Φ < 0. (e) Repeated scans of cavity response vs. offset charge bias to Csh island
at plaquette 2 single frustration. 2D scan of spectroscopy at 0-1 transition frequency while scanning bias voltages to gate
electrodes coupled to both intermediate islands for (f) plaquette (12) double frustration and (g) triple frustration. (h) Plot of

∆
(ij)
SA and curvature of fluxon transition between even/odd-parity ground states vs. Eisl

C showing measured values for plaquette
(12), (23), and (13) double frustration (solid triangles) plus modeled values for a range of Cisl (open circles).

an odd-parity well and scanned in the even-parity flux di-
rection, the spectral features become swapped [Fig. 1(i),
Supplement [19], Sec. X.C].

As with spectroscopy at single frustration, we include
curves for the various transitions from numerical model-
ing and fitting for double frustration [Fig. 4(b)]. Here,
the larger Hilbert space requires a significant increase in
computational resources. Our modeled transition curves
agree well with the measured spectroscopy, capturing
both the plasmons and heavy fluxons. We are unable to
directly drive a microwave transition between the logical
states in the 00+ππ and 0π+π0 wells due to the van-
ishing matrix element, the basis of protection. However,
the increasing flatness of the higher fluxon transitions as
one moves lower in the spectrum indicates that the logical
levels will be the flattest. This can also be seen in the blue
modeled curves near the bottom of the figure highlight-
ing the dispersion of the logical level transition, which
exhibits quadratic curvature. Additionally, our modeling
captures the light fluxons to the antisymmetric levels.

The effectiveness of concatenation depends on Cisl of
the intermediate island between the two frustrated pla-

quettes. For plaquette (12) double frustration, ∆
(12)
SA is

2.7 GHz. At plaquette (23) double frustration, which
involves a significantly larger Cisl because of the orien-
tation of the plaquette 2 inductors, we observe a smaller

∆
(23)
SA and a correspondingly larger curvature of the heavy

fluxon transition. ∆
(13)
SA is even smaller because of the

excess capacitance to ground of the unfrustrated plaque-
tte 2 (Supplement [19], Sec. X). Figure 4(h) shows the
variation of ∆SA with Eisl

C , including measured values of

∆
(ij)
SA for each combination of double frustration, as well

as numerically modeled values. For a typical flux noise
level, hZ for these plaquettes will be ∼2 MHz, which,

when combined with the measured ∆
(12)
SA , is consistent

with Λ ∼ 700. Note that this is an extracted parame-
ter characterizing protection in one channel: dephasing.
The complete Λ-parameter for a logical qubit must be
derived from the scaling of T1 and T2 with system size,
which is beyond the scope of this manuscript. Nonethe-
less, Λ can also be expressed as the ratio of T2 for a higher
degree of frustration relative to T2 at single frustration
(Supplement [19], Sec. XII).

In addition to the symmetric/antisymmetric gap, an-
other characteristic of the stabilizer term is the periodic

modulation of ∆
(ij)
SA with offset charge on the interme-

diate island between plaquettes i and j. Destructive A-
C interference of tunneling paths in the CW and CCW
directions on the constant-parity circles for double frus-

tration [Fig. 1(g)] causes ∆
(ij)
SA to vanish for island offset

charge near emod2e. We observe periodic modulation
with charge bias to the islands with a spectroscopy pulse
on the 0-1 transition [Fig. 4(f)]. While the island offset
charge is stable on timescales up to one hour, it is criti-
cal there are no jumps to near emod2e. Thus, it is im-
portant to actively stabilize these offset charges through
periodic calibrations (Supplement [19], Sec. VIII, IX).

By simultaneously frustrating all plaquettes, we mea-
sure spectroscopy near triple frustration [Fig. 4(c)]. In
this case, we are unable to numerically fit the level spec-
trum since the Hilbert space size becomes prohibitively
large. Nonetheless, we are able to compute the spec-
trum using parameter values from previous fits to double
and single frustration, although the calculation takes sev-



5

eral weeks to complete. We obtain reasonable agreement
with the measurements, although the spectral features
are more challenging to resolve compared to other de-
grees of frustration; the higher transitions are off by ∼5-
10%, which is not unreasonable considering the circuit
complexity and intertwined wavefunctions, given limi-
tations on the number of quantum states needed for
the computation to converge. Around 1.5 GHz, we ob-
serve a prominent central flat feature of width ∼7 mΦ0

around the 0-3 transition, which is uncharacteristic for
parabolic, let alone linear, dispersion; below this, the 0-1
transition around 0.6 GHz is similarly flat. The tran-
sition between the logical states, which cannot be di-
rectly driven due to protection of these states from the
environment, will be comparably flat (Supplement [19],
Sec. X.D). Also, the light fluxon transitions are quali-
tatively different compared to double frustration. We
additionally observe charge modulation with two differ-
ent periods and slopes corresponding to separate tuning
of offset charge on each intermediate island [Fig. 4(g)],
characteristic of a Hamiltonian with two stabilizer terms:
HXX = −(∆

(12)
SA /2)X1X2 − (∆

(23)
SA /2)X2X3. For our

present device ∆
(23)
SA is smaller than ∆

(12)
SA due to ex-

cess ground capacitance from plaquette 2, resulting in
the logical level dispersion at triple frustration being only
marginally flatter than at double frustration [Fig. 4(d)]
(Supplement [19], Sec. XI).

While our present device successfully demonstrates the
implementation of stabilizer terms in hardware, devel-
opment of protected qubits based on hybridized ground
states of opposite parity requires larger gaps to the ex-
cited states. This, in conjunction with weaker radia-
tive coupling to parasitic high-frequency modes from a
more compact Csh, perhaps achieved using a parallel-
plate rather than planar design, will avoid spurious exci-
tations to multiple excited levels that complicate the ini-
tialization process for our present device. A device with
higher excited-state energies that can be operated in the
qubit regime requires larger EJ , ideally at least 3 K. We
must also maintain even larger EC to have large ∆SA at
double frustration with the resulting flat dispersion. For
a qubit with these improved parameters subject to typ-
ical flux- and charge-noise levels, optimistic but feasible
junction asymmetries, and dielectric loss from a parallel-
plate Csh, we project Λ ≳100, corresponding to T1 ≫ 1 s
and T2 ∼ 60ms (Supplement [19], Sec. XI), well beyond
current state-of-the-art superconducting qubits.
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