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The pursuit of exotic phases of matter outside of the extreme conditions of a quantizing magnetic
field is a longstanding quest of solid state physics. Recent experiments have observed spontaneous
valley polarization and fractional Chern insulators (FCIs) in zero magnetic field in twisted bilay-
ers of MoTe2, at partial filling of the topological valence band (ν = −2/3 and −3/5). We study
the topological valence band at half filling, using exact diagonalization and density matrix renor-
malization group calculations. We discover a composite Fermi liquid (CFL) phase even at zero
magnetic field that covers a large portion of the phase diagram near twist angle ∼3.6◦. The CFL is
a non-Fermi liquid phase with metallic behavior despite the absence of Landau quasiparticles. We
discuss experimental implications including the competition between the CFL and a Fermi liquid,
which can be tuned with a displacement field. The topological valence band has excellent quantum
geometry over a wide range of twist angles and a small bandwidth that is, remarkably, reduced by
interactions. These key properties stablize the exotic zero field quantum Hall phases. Finally, we
present an optical signature involving “extinguished” optical responses that detects Chern bands
with ideal quantum geometry.

Strong interactions can lead to exotic phases of mat-
ter such as non-Fermi liquids. A remarkable example is
the composite Fermi liquid (CFL) that occurs in a half
or quarter filled lowest Landau level (LLL). The CFL
is a non-Fermi liquid with an emergent Fermi sea com-
posed of charge neutral “composite fermions” [1–4] and
has anomalous responses to a wide variety of experimen-
tal probes [5–10]. The gapless CFL state has provided
an elegant interpretation for various Abelian [1–4] and
non-Abelian gapped topological phases [11].

This work proposes an alternative route to realize
CFLs. Our proposal is based on twisted 2D transition
metal dichalcogenides (TMD), a family of platforms that
have realized a wealth of interesting phenomena [12–27],
and generated much theoretical interest for their topo-
logical properties [28–41]. A recent experiment [26] pro-
vided strong evidence for zero field fractional Chern in-
sulators (FCIs) [42–45] at fillings ν = −2/3 and −3/5
in twisted bilayer MoTe2 (tMoTe2). The ν = −2/3
FCI was separately found by Ref. [27]. These exper-
iments were preceded by theoretical models of Chern
bands in tMoTe2 [29], as well as numerical works that
found FCIs at partial fillings in MoTe2 [46] and in
WSe2 [47, 48]. More recently, theoretical studies combin-
ing ab-initio lattice relaxation and exact diagonalization
on tMoTe2 [49, 50] have also obtained FCIs.

FCIs were previously reported at high magnetic
fields [51] by partially filling Hofstadter bands [52] of a
substrate-induced moiré potential in graphene. Shortly
thereafter, with the discovery of correlated phenom-
ena [53, 54] and spontaneous Chern insulators [55–57]
in twisted bilayer graphene (TBG), FCIs in zero field
were theoretically anticipated in magic-angle TBG [58–
60]. Experimental observations of FCIs in this setting
soon appeared [61], albeit in a small magnetic field that

theory [62] found was needed to improve the bandwidth
and quantum geometry. These barriers are strikingly ab-
sent in tMoTe2, motivating us to go beyond zero field
FCIs to an exotic gapless state — the CFL.
We will focus on the gapless CFL phase, which presents

challenges [63–66] relative to the well-understood spec-
tral and entanglement signatures present in gapped FCI
phases [67–72]. Combining large scale exact diagonal-
ization (ED) with density matrix renormalization group
(DMRG) numerics, we find a broad CFL phase at exper-
imentally realistic parameters of tMoTe2. Furthermore,
we present an explicit trial wavefunction that captures
the essential features of the zero field CFL and its low
energy spectrum. Finally, we discuss experimental sig-
natures that distinguish the CFL from Fermi liquids, en-
abling experimental exploration.
Continuum model.—We consider a model [29] for the

valence bands of a twisted TMD with gate-screened [73]
Coulomb interactions

Ĥ = −ĥ+
1

2A

∑
q

Vq : ρ̂qρ̂−q :, Vq =
2π tanh(qd)

ϵrϵ0q
, (1)

where ρ̂q is the density operator, A is the sample area,
normal ordering is relative to filling ν = 0, d is gate
distance, and ϵr ≈ 8− 40 is the dielectric constant [49].
Due to spin-valley locking [29], the low energy holes of
the K (K ′) valley are locked to spin up (down). The
total kinetic term is h = hK + hK′ with [29]

hK =

[
hb(r) + V/2 T (r)

T †(r) ht(r)− V/2

]
, (2)

where hℓ(r) = −(p − ℏvFKℓ)2/2m∗ + ∆ℓ(r) and
hK′ is determined by time-reversal. Here the layer-
diagonal terms include the quadratic monolayer TMD
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FIG. 1. The top valence band has favorable conditions for
fractionalized topological phases. Bandstructure as seen from
(a) charge neutrality and (b) from ν = −1 computed from
self-consistent Hartree-Fock. (c) Quantum geometry in terms
of trace condition T and Berry curvature deviation σ[Ω]. (d)
Bare and SCHF bandwidths and (e) the many-body gap of
FCIs at ν = −1/3 and ν = −2/3 as a function of twist an-
gle. The FCI gaps are obtained from ED with Ne = 8 and
16 respectively. (f) and (g): ED spectrum for 14 particles
at half filling for Coulomb interaction in lowest Landau level
and screened Coulomb interaction in twisted MoTe2, respec-
tively. Parameters: (θ, ϵr, d) = (3.7◦, 15, 300 Å) unless other-
wise noted.

dispersion centered at rotated monolayer K-points Kt/b,
shifted by the displacement field V , and the moiré
potentials ∆b/t(r) = 2v

∑
j=1,3,5 cos (bj · r ± ψ). The

off-diagonal terms are interlayer tunnelings T (r) =
ω
(
1 + eib2·r + eib3·r

)
, where bj are the reciprocal vec-

tors obtained by counterclockwise (j − 1)π/3 ro-
tations of b1 = (4π3−1/2θ/a0, 0). We focus
on tMoTe2, where recent first-principles calcula-
tions [49] (see also [29, 50]) found (a0,m

∗, V, ψ, ω) =
(3.52 Å, 0.6me, 20.8meV,−107.7◦,−23.8meV). We take
θ = 3.7◦ throughout.

Flat Almost-Ideal Chern Band.—Fig. 1(a) shows the
bandstructure for electrons hK . The top moiré band has
Chern number C = 1, due to the skyrmionic character of

the layer spinor [29].
Recent experiments [26, 27] demonstrate that the

many-body ground state is ferromagnetic (valley-
polarized) in at least the range −1.2 ≲ ν ≲ −0.4. The
“parent state” for this regime is the correlated insulating
state at ν = −1. Fig. 1(b) shows its bandstructure within
self-consistent Hartree-Fock (SCHF), which is strongly
renormalized by interactions. Strikingly, the renormal-
ized C = 1 band (red) becomes almost exactly flat, with
bandwidth 1.6meV at θ = 3.7◦. This reduction [74] in
bandwidth from interaction effects is highly unusual [75].
The many-body physics of such flat bands is deter-

mined by the Bloch wavefunctions, often through their
“quantum geometry”. Recent theories [42, 58, 76–87]
emphasize the role of Kähler geometry in FCI stability.
We say that a band has “ideal quantum geometry” if the
trace inequality T =

∫
d2k (Tr gFS(k)−Ω(k)) ≥ 0 is satu-

rated [58, 79, 83, 88]; here gFS is the Fubini-Study metric
and Ω is the Berry curvature. Ideal bands are “vortex-
able” in the sense that ẑP = P ẑP where P is the projec-
tor onto the band and ẑ = x̂+ iŷ [85, 89]. Vortexability
enables the direct construction of Laughlin-like FQHE
trial states that are exact many-body ground states for
ideal bands with short-range interactions [85, 89, 90].
Fig. 1(c) shows T , the deviation from ideality, and σ[Ω],
the standard deviation of Berry curvature. Both are
small in tMoTe2 for 3◦ ≤ θ ≤ 4◦. The top valence band
thus has the rare combination of excellent quantum ge-
ometry and negligible bandwidth that favors lattice real-
izations of exotic quantum Hall states at zero magnetic
field.

The interacting physics of the flat band is modelled
by projecting Eq. (1) via −ĥ → ∑

k ϵ(k)ĉ
†
kĉk and ρ̂q →

ρq =
∑

k ĉ
†
k⟨uk|uk+q⟩ĉk+q where ϵ(k) and uk are the

dispersion and periodic part of Bloch wavefunction. Fig.
1(d) shows the bare (ν = 0) and renormalized (ν = −1)
bandwidths versus twist angle, minimized near 3◦ and
3.6◦, respectively. Fig. 1(e) confirms that FCIs are sta-
bilized at ν = −1/3,−2/3 — in concord with previous
results [46, 49, 50]. The mild angular dependence should
make FCIs relatively robust to twist angle disorder. No-
tably the gap at ν = −2/3 is largest where the bandwidth
at ν = −1 is smallest [91]. We therefore expect ∼3.6◦ to
be optimal for FQH physics at half filling.
Composite Fermi liquid at ν = −1/2.— We now go

beyond gapped FCIs and examine the more exotic gap-
less CFL state [1, 11]. We focus on ν = −1/2 but our
conclusions also apply to ν = −3/4 (data in SM [92]).
(i) Many body spectrum: Fig. 1(f, g) compares the

spectra of twisted MoTe2 and the lowest Landau level
(LLL) at half filling with 14 electrons, showing a one-to-
one correspondence at low energy. The LLL spectrum
uses the same geometry as tMoTe2 with Coulomb inter-
actions. This one-to-one similarity holds at all system
sizes Ne = 8 − 14. We thus conclude that the ground
state of Ĥ at ν = −1/2 is the same phase as the half-
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FIG. 2. Numerical identification of the composite Fermi liquid
(CFL) from iDMRG. (a) Occupations n(k) in the Brillouin
zone at Ly = 8 for the Fermi liquid (FL, left side) versus
the CFL (right side). (b) Connected structure factor S(q) =
⟨ρ̂q ρ̂−q⟩ − ⟨ρ̂q⟩ ⟨ρ̂−q⟩ at Ly = 8. Characteristic features of
a Fermi surface are visible for both the FL and CFL: near-
vanishing weight outside |q| ≈ 2kF , and peaks corresponding
to momentum transfers inside that radius. (c) Cuts of S(q) at
constant qy for Ly = 5 for the CFL. Each peak or inflection
in S(q) quantitatively matches scattering events across the
almost-circular composite Fermi surface (Inset). Parameters
match Fig. 1 with ϵr = 15 (100) for the CFL (FL).

filled LLL with Coulomb interactions — the CFL. The
ground state and low-energy excitations are at precisely
the momenta expected for compact composite Fermi sea
(CFS) configurations [93]. See SM for other system sizes,
and detailed matching of degeneracies, momenta, and ex-
citations to CFL expectations.

(ii) Absence of electron Fermi surface: A finite quasi-
particle weight Z > 0 gives the jump in electron occupa-
tions n(k) at the Fermi surface in a regular Fermi liquid
(FL). As a non-Fermi liquid, composite fermions have
vanishing Z, leading to the absence of Fermi surface oc-
cupation discontinuities.

To characterize the CFL, we employ large-scale
iDMRG [94, 95] calculations with the TenPy library [96].
We use an infinite cylinder geometry with circumference
Ly = 5 − 10, corresponding to Ly evenly spaced hori-
zontal wires through the Brillouin zone (Fig. 2(c) inset).

We take a computational basis of hybrid Wannier or-
bitals [97–99], and use “MPO compression” [100, 101] to
accurately capture gate-screened Coulomb interactions in
the flat band. Under weak interactions (ϵr = 100), we
find the FL expected from band theory at ν = −1/2,
with an almost-circular Fermi surface centered at Γ (Fig.
2(a), left) with radius kF = (ABZ/2π)

1/2. The SM shows
electrons, holes, and particle-hole pairs are likely gap-
less [102], confirming the Fermi liquid.

Under realistic interactions (ϵr = 15) with the same
parameters, the ground state has quasi-uniform occupa-
tions |n(k)− 1

2 | < 0.17 (Fig. 2(a), right). Because charge
QE = 1 correlations are short-ranged, the state is incon-
sistent with an electronic Fermi liquid. However, the
state has high entanglement and significant electrically-
neutral correlations, consistent with the gapless density
fluctuations expected from an emergent CFS. To reveal
the “hidden” CFS, we turn to the structure factor.

(iii) Scattering across the composite Fermi sea:
Fig. 2(b) contrasts the connected structure factor S(q) =
⟨ρ̂qρ̂−q⟩− ⟨ρ̂q⟩ ⟨ρ̂−q⟩ between the FL and the CFL. Both
nearly vanish when |q| > 2kF , strongly implying that
there is a Fermi surface in the CFL phase whose con-
stituent fermions aren’t electrons. We then match the
features of S(q) to scattering events with different mo-
mentum transfers across the putative CFS in Fig. 2(c),

e.g. ĉ†k=Gĉk=B scattering with qx ≈ 1.94kF . The tour-
de-force work of Geraedts et al [63] showed such features
are emblematic of the CFS arising from the half-filled
LLL. As every feature in S(q) corresponds to such a
scattering (quantitative matching in SM), we conclude
the state has an almost-circular [103] CFS composed of
non-Landau quasiparticles. These two independent nu-
merical methods establish a CFL state at ν = −1/2 (see
SM for ν = −3/4).

Zero Field CFL Wavefunction.— Standard theories of
composite fermions apply at B > 0, where emergent
gauge flux cancels external magnetic flux. These cannot
apply directly here at zero magnetic field. We therefore
construct an explicit zero-field CFL wavefunction. To
start, we approximate the geometry of the top tMoTe2
band as ideal. Such bands have the general “LLL-like”
wavefunction [58, 83],

ψl(r) = ϕ(r)ζl(r) = f(z)e−K(r)ζl(r), (3)

where f(z) is holomorphic and ζl(r) is an orbital-space
spinor where

∑
l |ζl(r)|2 = 1. Here ϕ(r) is the wavefunc-

tion of a Dirac particle in an inhomogeneous, periodic,
magnetic field B(r) = ∇2ReK(r) with one flux per unit
cell [58, 104, 105]. While ψ is symmetric under ordinary
translations, ϕ(r) and ζl(r) are symmetric under mag-
netic translations, with opposite magnetic twists [106],
giving a gauge redundancy ϕ(r) → e+iλ(r)ϕ(r), ζl(r) →
e−iλ(r)ζl(r). The form Eq.(3) implies that all many-body
wavefunctions within the band of interest have the form
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FIG. 3. Many-body phase diagrams and optical responses.
(a) Phase diagram at ν = −1 with θ = 3.7◦ showing a transi-
tion from C = 1 layer-unpolarized state to a C = 0 layer po-
larized state. (b) Phase diagram of the topological regime at
ν = −1/2: The CFL phase is shown in red, whereas the green
region corresponds to the FL phase. Here ‘LP’ indicates a
layer polarization instability determined from ν = −1 SCHF.
(c) Direct optical probe of almost-ideal quantum geometry
via an “extinguished” valence-valence optical responses in σ−,
Inset: the Haldane model at (t, t2) = (1, 0.05) has non-ideal
geometry. Parameters match Fig. 1.

Ψ = Ψϕ

∏
i ζli(ri), where Ψϕ is a wavefunction of flux-

feeling particles; in the SM we interpret this fraction-
alization in terms of a new type of Chern band parton
theory [107, 108]; see also [109–114]. For example, we
may use Read & Rezayi’s LLL ansatz for the CFL [115]
to obtain:

Ψ({ri}) = P det
ij
ψCF
ki

(rj)
∏
i<j

(zi − zj)
2
∏
i

e−K(ri)ζli(ri).

(4)
Here P =

∏
i Pi is the many-body projector to the top

band, and ψCF
ki

fill a Fermi sea [116].
Experimental Signatures.— We conclude with experi-

mental implications of the quantum geometry and CFL
phase. Fig. 3(a,b) show phase diagrams of tMoTe2. At
ν = −1, SCHF finds the |C| = 1 phase transitions to an
valley and layer polarized phase at large V . At ν = −1/2,
we find a broad CFL phase centered around 3.8◦ that
competes with layer polarized phases and C = 1 Fermi
liquids at larger V . The layer polarized region is es-
timated from SCHF at ν = −1, where an interaction-
driven layer-polarized state is more favorable. The phase
diagram at ν = −3/4 is similar (see SM), except the CFL

is more sensitive to displacement field.
The almost ideal quantum geometry manifests opti-

cally. If a band with projector P is vortexable, then ẑP =
P ẑP implies the velocity operator v̂± = −i[x̂ ± iŷ, Ĥ]
must obey (I − P )v̂+P = 0, i.e. left-circularly polarized
transitions are “extinguished”. This gives perfect circu-
lar dichroism:

σ+ − σ−

σ+ + σ− = 1; σ±(ω) =
ie2

ℏ
∑

k,a ̸=b=0

fab
ϵab

|⟨ψka|v̂±|ψkb⟩|2
ω − ϵab

.

(5)
Here ϵab = ϵa − ϵb are energy differences and fab =
f(ϵa) − f(ϵb) are Fermi factors. Fig. 3(c) shows σ± for
tMoTe2 at ν = −1. As the C = +1 band is nearly vor-
texable, transitions from the second and third valence
bands to the empty top valence band nearly vanish, giv-
ing nearly-perfect circular dichroism > 0.9 at resonance.
The inset shows a control experiment: the Haldane model
has Chern bands C = ±1 but not ideal geometry; σ− is
not extinguished there.
Finally, we discuss direct experimental probes of the

zero-field CFL. While the CFL and the FL are both
compressible and metallic, they differ in that the CFL’s
excitations have vanishing overlap with the electron
in the limit of low energies, and CFs themselves are
best thought of as (doubled) vortices in the electronic
fluid [3, 4, 117–119]. This observation leads to a number
of striking physical responses that differ strongly from
Fermi liquids. These include (i) a “pseudogap” in the
tunneling density of states A(ω) ∝ e−ω0/ω [120] as a
function of bias ω, which has been observed between two
CFLs with a tunnel barrier [5]; (ii) distinct DC conduc-
tivity in the clean limit: σxx → 0 in a CFL in the ab-
sence of disorder kF l → ∞, whereas in the FL, even in
a Chern band, σxx diverges [121]; (iii) strong violation
of the Wiedemann-Franz law [118, 119] which compares
heat and charge transport; (iv) quantum oscillations with
doping, that CFs feel a magnetic field ∝ (ν − 1/2) and
can fill Landau levels, leading to Jain-like [1] FCIs when
fully developed, which can further be probed using ge-
ometric resonance with a one-dimensional periodic grat-
ing [3, 6, 7]; (v) vanishing thermoelectric conductance
αxx = jx/(−∂xT ) due to approximate emergent particle-
hole symmetry [122, 123]; (vi) surface acoustic wave at-
tenuation, a contactless probe that measures σxx(q) ∝ |q|
in the CFL [3], as opposed to σxx ∝ |q|−1 in a clean
FL [8].
Finally we highlight properties of zero field CFLs that

transcend LLL physics. First, the Chern bands of MoTe2
have one effective magnetic flux quantum per moiré unit
cell, translating to 160T at 3.7◦. This vastly exceeds
laboratory magnetic fields, leading to enhanced energy
scales. The lack of real quantizing magnetic fields, how-
ever, opens up the possibility of employing zero field ex-
perimental probes such as high resolution angle-resolved
photoemission spectroscopy (ARPES). Furthermore, the



5

exponentially suppressed tunneling density of states of
the CFL could be probed through tunneling from a prox-
imate Fermi liquid state, or via spatial variation of the
twist angle, which can be used to create a CFL-FL in-
terface within the same sample. Our work does not rule
out the possibility of a continuous quantum phase transi-
tion, driven by displacement field, between the CFL and
FL [113], which could be studied experimentally. Since
the effective magnetic field of the TMD originates from
spontaneous breaking of time reversal symmetry through
valley polarization, rather than external magnetic field,
domains between opposite valley polarizations and hence
between time-reversal-related CFLs are expected. Trans-
port properties across such a domain wall would interro-
gate composite fermions in an entirely new regime, and
potentially shed light on their proposed Dirac charac-
ter [4, 117, 119]. Finally, we note that moiré phonons
occur on the same scale as the effective magnetic length
in this system; their interplay with CFL physics is un-
clear at present and worthy of future study.
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moiré bilayer transition metal dichalcogenides: Phase
diagram, resistivity, and quantum criticality. Phys. Rev.
X, 12:021064, Jun 2022.

[39] Haining Pan, Fengcheng Wu, and Sankar Das Sarma.
Band topology, hubbard model, heisenberg model,
and dzyaloshinskii-moriya interaction in twisted bilayer
wse2. Phys. Rev. Res., 2:033087, Jul 2020.

[40] Ahmed Abouelkomsan, Emil J. Bergholtz, and Shub-
hayu Chatterjee. Multiferroicity and topology in twisted
transition metal dichalcogenides, 2022.

[41] Valentin Crépel, Nicolas Regnault, and Raquel Queiroz.
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moiré superlattices. Phys. Rev. B, 99:075127, Feb 2019.

[56] Aaron L. Sharpe, Eli J. Fox, Arthur W. Barnard, Joe
Finney, Kenji Watanabe, Takashi Taniguchi, M. A.
Kastner, and David Goldhaber-Gordon. Emergent fer-
romagnetism near three-quarters filling in twisted bi-
layer graphene. Science, 365(6453):605–608, 2019.

[57] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang,
J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and
A. F. Young. Intrinsic quantized anomalous hall effect
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