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Recent experiments have produced evidence for fractional quantum anomalous Hall (FQAH) states at zero
magnetic field in the semiconductor moiré superlattice system tMoTe2. Here we argue that a composite fermion
description, already a unifying framework for the phenomenology of 2d electron gases at high magnetic fields,
provides a similarly powerful perspective in this new context. To this end, we present exact diagonalization
evidence for composite Fermi liquid states at zero magnetic field in tMoTe2 at fillings n = 1

2
and n = 3

4
. We

dub these non-Fermi liquid metals anomalous composite Fermi liquids (ACFLs), and we argue that they play
a central organizing role in the FQAH phase diagram. We proceed to develop a long wavelength theory for
this ACFL state that offers concrete experimental predictions upon doping the composite Fermi sea, including a
Jain sequence of FQAH states and a new type of commensurability oscillations originating from the superlattice
potential intrinsic to the system.

Introduction. Recently, signatures of fractional quantum
anomalous Hall (FQAH) states at zero magnetic field have
been observed by optical measurements on twisted bilayer
MoTe2 (tMoTe2) at fractional fillings of the moiré unit cell
n = 2

3 and 3
5 [1]. In a separate work, the charge gap of the

putative FQAH state at n = 2
3 was measured [2]. FQAH

states in twisted homobilayers of transition metal dichalco-
genides (TMD) were theoretically predicted as a consequence
of topological moiré bands [3], spontaneous ferromagnetism,
and strong correlations [4–7]. These recent observations pro-
vide new motivation to explore the phenomenology and phase
diagram of partially filled Chern bands in tMoTe2 and be-
yond [8, 9].

Unlike Landau levels, Chern band systems can exhibit com-
petition between incompressible FQAH states [10–18] and
more conventional broken symmetry phases enabled by the
presence of a periodic lattice structure, such as charge ordered
phases [19–21] and generalized Wigner crystals [22–25], or
conducting phases [26–28] like Fermi liquids and even super-
conductors. Exotic quantum critical phases have also been
shown to appear in half-filled flat Chern bands [29]. As a re-
sult, the global phase diagram of partially filled Chern bands
is potentially much richer than that of Landau levels, calling
for systematic study.

In this work, we focus on the physics of twisted TMD bi-
layers at even-denominator filling factors, which have not yet
received attention. We present numerical evidence from con-
tinuum model exact diagonalization (ED) calculations of gap-
less metallic states at filling factors n = 1

2 and 3
4 . Remark-

ably, depending on the twist angle, two types of ferromag-
netic metals with full spin/valley polarization are found. At
larger twist angle, the ground state is a Fermi liquid. In con-
trast, at smaller twist angles where strong interaction effect in-
duces odd-denominator FQAH states, we find non-Fermi liq-
uid metals of composite fermions at n = 1

2 and 3
4 . These

states share features with the composite Fermi liquid (CFL) at

* These authors contributed equally to the development of this work

high magnetic fields [30, 31], but are “enriched” by the under-
lying moiré superlattice. We dub these zero-field non-Fermi
liquid states “anomalous composite Fermi liquids” (ACFLs).

Synonymously with the CFL phases in Landau level sys-
tems, we propose the ACFL as the parent state of the FQAH
phase diagram at B = 0 [32–34]. Indeed, based on our ED
study, we argue that the prominent FQAH states at n = 2

3 and
3
5 in twisted TMD homobilayers are descendants of the ACFL
state at n = 1

2 . These states fall along a Jain sequence of
FQAH states, which we show emerges by doping the ACFL.

We further reveal the unique phenomenology of the ACFL
state itself. Perhaps most strikingly, the ACFL resistivity and
thermodynamic properties experience intrinsic commensura-
bility oscillations as a function of density, ρe, at B = 0. This
behavior contrasts both with an ordinary Fermi liquid and a
CFL in a Landau level [35–45]. Close to the ACFL state, we
find the oscillations are periodic in 1/δρe and occur at large
integers j satisfying

1

δρe
∝ j + ϕ

kF Q
, (1)

where δρe ≡ ρe − ρ is the doping density from half filling, Q
is the moiré superlattice wave vector, kF =

√
4πρ is the com-

posite Fermi wave vector, and ϕ is a phase shift. For the ACFL
state at a particular even-denominator filling fraction such as
n = 1

2 , kF is proportional to Q, meaning that the doping den-
sity, δρe, associated with the commensurability oscillation is
inversely proportional to the moiré unit cell area. As a result,
the corresponding filling fraction, n = n+ δn, is universal.

Eq. (1) is both a consequence of the attachment of flux to
charge in the ACFL – which causes the composite fermions
to feel an effective magnetic field upon doping – and the sys-
tem’s intrinstic moiré potential. In contrast, commensurability
oscillations in CFLs in Landau level systems require an exter-
nally supplied periodic potential. In addition to commensura-
bility oscillations, a distinguishing feature of a CFL (at zero or
finite field) is a large DC Hall angle, θH = arctan(σxy/σxx),
which approaches π/2 in the clean limit [30].
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FIG. 1. Zero-field and ferromagnetic Fermi liquid in semiconductor moiré bands. Low-lying spectrum as a function of many-body crystal
momentum (see the Supplemental Material for elaboration) of the (a) half-filled LLL and (b) lowest moiré band at a twist angle θ = 2◦

with a Coulomb interaction. Occupation numbers of the Bloch states averaged over the degenerate ground state manifolds (see main text),
n(k) ≡

∑
i∈GS ⟨Ψi| c†kck |Ψi⟩ /NGS , are also shown. Full spin polarization is assumed in the LLL whereas all possible Sz sectors are

considered in the moiré band. Analogous data at (c) θ = 2◦, n = 3
4

and (d) θ = 4.5◦, n = 1
2

. In each case the lowest 20 energy levels within
each (k, Sz) sector are shown. In (b-d) a dielectric constant ϵ = 10 is used.

CFL phases are expected to exhibit non-Fermi liquid ob-
servable features, some of which may be accessible as new
platforms are developed realizing the ACFL. For example,
the thermodynamic entropy of the ACFL state can be mea-
sured from the change in chemical potential with temperature
through a Maxwell relation [46, 47]. In the clean limit, be-
cause gauge fluctuations lead to a logarithmic mass enhance-
ment of composite fermions, the entropy of ACFL state should
also be enhanced [48], s(T )/T ∼ m∗(T ) ∼ log T [30], com-
pared to the linear temperature dependence of an ordi-
nary Fermi liquid, s(T )/T ∼ constant. In systems where
the electronic Coulomb interaction is screened by a nearby
metallic gate, this enhancement becomes a power law,
s(T )/T ∼ T−1/3.

Motivation. In ordinary Landau level quantum Hall
systems, the existence of a CFL phase can be under-
stood through flux attachment. At even-denominator filling
ν = 2πρe/B = 1

2q , where q is an integer, ρe is the electron
density, and B is the external magnetic field, attaching 2q flux
quanta to each electron completely screens the magnetic field,
leading to an effective system of composite fermions in effec-
tive magnetic field b∗ = B − 2q(2πρe) = 0. As a result,
the composite fermions form a Fermi surface strongly cou-
pled to an emergent gauge field [30]. Upon doping away from
ν = 1

2q , the composite fermions feel a nonvanishing magnetic
field and fill Landau levels, leading to the Jain sequence of
observed fractional quantum Hall phases,

νJain =
p

2q p− 1
, (2)

where p is the number of filled composite fermion Landau
levels [32, 33].

A similar picture should be applicable to twisted TMD bi-
layers in the absence of a physical magnetic field, when (1) in-
teractions spontaneously drive all carriers into the Chern band
of one valley; (2) the Coulomb Hamiltonian projected to the
Chern band sufficiently resembles that of the lowest Landau
level (LLL); and (3) the band dispersion is small relative to the
system’s characteristic interaction energy scale ∼ e2/(ϵaM ).
When these conditions are satisfied, the problem can be ap-
proximately mapped to that of a partially filled Landau level.
One might therefore expect that any of the quantum Hall
phases in a Landau level at filling ν should be possible in a
flat C = 1 band at the same filling. The challenge is to find
situations in which such physics succeeds over other phases
that are not possible in Landau levels. Hence, once a material
is known to exhibit the FQAH effect, it is natural to antic-
ipate that other essential features of the fractional quantum
Hall phase diagram also occur in the same material, such as
the convergence of Jain sequence FQAH phases into a metal-
lic CFL at half-filling.

Numerical evidence for ACFL. We now provide numer-
ical evidence for the ACFL in tMoTe2. The nontrivial layer
pseudospin structure of this system’s Bloch wavefunctions en-
dows its moiré bands with topological character [3]. In partic-
ular, the first moiré valence band in each valley has |C| = 1,
with opposite signs in opposite valleys due to time-reversal
symmetry. We study the continuum model of tMoTe2 with
Coulomb interaction U(r) = e2

ϵr projected to the lowest moiré
band, using finite size ED with torus geometry [8]. Further
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details of the model and methodology are provided in the Sup-
plemental Material.

To establish a benchmark for a CFL on a finite-size torus,
we show the low-lying many-body spectrum of the half-filled
LLL on a torus with 16 flux quanta in Fig. 1(a). Given our
system geometry, the spectrum features 12 exactly degenerate
ground states with 2 in each of 6 momentum sectors. The mo-
mentum quantum numbers of the degenerate ground states re-
flect the most compact possible composite Fermi sea configu-
rations [14]. There are 6 such configurations – one composite
fermion is accounted for by occupying the state at the center
of the Brillouin zone, 6 more by occupying the set of closest
points, and the final one by occupying any one of the 6 next
closest points. The additional factor of 2 in the overall ground
state degeneracy is enforced by the non-commuting center-
of-mass magnetic translations [49]. We also show the mo-
mentum space occupation numbers of electron Bloch states
averaged over the ground state manifold. The Bloch state oc-
cupation is uniform despite the presence of a composite Fermi
sea.

Next, in Fig. 1(b), we show the many-body spectrum of
the θ = 2◦ lowest tMoTe2 band at filling n = 1

2 on the
corresponding 16-unit-cell torus across all possible Sz ≥ 0
sectors. First, we observe that the lowest-lying states have
Sz = Sz,max = 4, indicating spontaneous, full spin/valley
polarization. Moreover, these states have the same momen-
tum quantum numbers as their partners in the LLL, providing
evidence for a composite Fermi sea. The momentum space
occupation numbers are nearly uniform as in the LLL, demon-
strating that the system is not a ferromagnetic Fermi liquid. In
Fig. 1(c), we show an ED spectrum at n = 3

4 that exhibits full
valley polarization and similarly resembles its partner in the
LLL, which is shown in the Supplemental Material.

In Fig. 1(d), we contrast these findings with n = 1
2 at a

larger twist angle θ = 4.5◦. Here, the lowest-energy states
are still fully spin/valley polarized, but their many-body mo-
menta are those expected from simply occupying the moiré
band Bloch states with lowest energy, indicating a Fermi liq-
uid phase. Moreover, the Bloch state occupation numbers in
Fig. 1(c) exhibit a sharp drop across the Fermi surface ex-
pected for non-interacting, spin-polarized holes.

Effective theory of the ACFL. With this motivation, we
propose a long wavelength effective theory of the ACFL in a
Chern band at half-filling, n = 1

2 ,

LACFL = ψ†
[
i∂t + at +At + V(x)

]
ψ

− 1

2m∗
|(i∂i + ai +Ai)ψ|2 − V (ρe)

− 1

2

1

4π
εµνλ aµ∂νaλ − at ρ . (3)

Here ψ is the composite fermion field, m∗ is an effec-
tive mass; V (ρe) is the density-density interaction poten-
tial; aµ = (at, ax, ay) is a fluctuating Chern-Simons statis-
tical gauge field; and Aµ = (At, Ax, Ay) is the background

electromagnetic gauge field. We denote the value of the
charge density at half filling by ρ, such that the charge per unit
cell is n ≡ ρ× (unit cell area) = 1

2 . Importantly, although we
focus on n = 1

2 here, the theory for the ACFL at n = 3
4

is easily obtained by attaching 4 flux quanta and acting with a
particle-hole transformation (subtracting a filledC = 1 band).
We expect its universal properties to be essentially the same
as the ACFL at n = 1

2 . In the Supplemental Material, we
discuss how Eq. (3) can be constructed from a parton mean
field construction along similar lines to Ref. [27], which also
considered ACFL type phases in flat Chern bands (we note
here that the Supplemental Material also includes the addi-
tional Refs. [50–68]).

The theory in Eq. (3) closely resembles the Halperin-Lee-
Read (HLR) theory of half-filled Landau levels [30]. This is
not surprising: the |C| = 1 Chern band in twisted TMD bi-
layers can be thought of as carrying an emergent magnetic
flux of one flux quantum per unit cell, which arises from the
skrymion lattice configuration of “Zeeman” field acting on the
layer pseudospin [3]. Nevertheless, there are two major dif-
ferences with the standard HLR theory for a half-filled Landau
level. The first is the final term, which alters the usual flux at-
tachment constraint. Using the equation of motion for at,

ρe = ρ+
1

2

1

2π
(∇× a) , (4)

where we have used the fact that the physical electron
density consides with that of the composite fermions,
ρe = δLACFL/δAt = ψ†ψ, and boldface denotes spatial vec-
tors. At half-filling of the Chern band, n = n = 1

2 , meaning
that by Eq. (4) the gauge flux per unit cell must vanish, and
the composite fermions form a Fermi surface (as above, we
use n to denote charge per unit cell).

The second difference is that Eq. (3) includes the effect of
the moiré superlattice, in the form of a periodic scalar poten-
tial,

V(x) = V0

3∑
n=1

cos (Qn · x) , (5)

where Qn are the moiré superlattice wave vectors (see Sup-
plemental Material). The full scalar potential felt by the com-
posite fermions is therefore V(x)+At, whereAt includes any
additional probe fields. We will see that the presence of this
term leads to commensurability oscillations which are unique
to the ACFL.

Although the theory in Eq. (3) should correctly reproduce
long wavelength, universal observable properties, we empha-
size that this theory is not meant to completely incorporate
microscopic details. For example, it does not give the correct
algebra of density operators, nor does it incorporate the com-
posite fermion dipole moment. Rather, we expect that should
a complete, band-projected theory be constructed, then Eq. (3)
could be understood as its long wavelength limit. For recent
efforts to develop band-projected composite fermion theories
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a)

n=3/5

LLL, 𝜈=3/5

FIG. 2. Jain sequence states at n = 2
5

, 3
5

. (a) Low-lying spectrum
of the LLL with Coulomb interaction on a torus with 30 flux quanta
at ν = 2

5
and 3

5
. (b) Corresponding data for the lowest moiré band

at θ = 2◦, ϵ = 10. The moiré ground state manifold has the same
momentum quantum numbers and approximate fivefold topological
ground state degeneracy as the LLL. In each case the lowest 3 fully
spin polarized states in each momentum sector are shown.

in the context of the LLL, see Refs. [69–72].
FQAH sequence. Doping away from half-filling by tuning

charge density or applied magnetic field causes the composite
fermions to feel a net magnetic field and fill Landau levels. As
a result, we can immediately predict a Jain sequence of FQAH
states in tMoTe2 corresponding to integer quantum Hall states
of composite fermions. Like fractional Chern insulator states
developed earlier [16–18, 73, 74], these FQAH phases are
topological orders enriched with (super)lattice symmetry. Say
that the composite fermions fill p Landau levels,

νψ = 2π
⟨ψ†ψ⟩
b∗

= p, b∗ = ∇× (a+A) , (6)

where b∗ is the total magnetic field felt by the composite
fermions. Combining the flux attachment constraint, Eq. (4),
with Eq. (6), we can relate the electron density to the applied
magnetic field, B = ∇×A,

ρe(B) =
p

2p− 1

(
2ρ− B

2π

)
. (7)

The Streda formula then implies that one will measure Landau
fans extending to B = 0, with slopes that fall on the Jain
sequence (see Fig. 3),

dρe
dB

= σxy = − p

2p− 1
. (8)

For the FQAH sequence proximate to n = 3
4 , one obtains

FQAH states on the sequence, n = 1− p
4p−1 .

It is instructive to multiply Eq. (7) on both sides by the su-

j =5
j =6

FIG. 3. Commensurability oscillations. Schematic of cyclotron
orbits at special commensurate values. For j ≥ 5, 1

2
< ρe < 3

5
.

perlattice unit cell area to obtain the simple expression,

n =
p

2p− 1
(1− nΦ) , (9)

where nΦ is the flux per unit cell. The FQAH Jain sequence
includes the observed state at filling 2

3 in tMoTe2, which has
also been studied numerically [8, 9]. In Fig. 2 we present ED
evidence for additional Jain FQAH states in tMoTe2 at n = 2

5
and its particle-hole conjugate at n = 3

5 .
Intrinsic commensurability oscillations at zero field.

We now explore the host of phenomena arising from an in-
terplay of flux attachment with the presence of the moiré su-
perlattice potential. Indeed, due to the periodic modulation in-
trinsic to moiré materials, we find that both commensurability
oscillations [75–79] and Hofstadter subgaps can be accessed
by tuning density alone.

Commensurability oscillations occur when the cyclotron
radius and the modulation period are commensurate. More
precisely, magnetoresistance minima and compressibility
maxima are expected when a system in a spatially modulated
potential with wave vector Q satisfies the electronic flat band
conditions,

2kFQℓ
2 = 2π(j + ϕ) , (10)

where j is a positive integer, ℓ is the effective magnetic length
felt by the electric charges, and ϕ is a phase shift. This condi-
tion is derived in the Supplemental Material from both pertur-
bative and semiclassical approaches.

Again focusing on the n = 1
2 ACFL, if the system is doped

from half-filling by density, δρe = ρe − ρ, the composite
fermions feel a magnetic field b∗ = 4π δρe by the flux attach-
ment constraint in Eq. (4). As in the HLR approach, the com-
posite Fermi wave vector of the ACFL described by Eq. (3) is
set by the electric charge density, kF =

√
4πρ. We then find

that commensurability oscillations occur at densities

δρe =
kF Q

(2π)2
1

j + ϕ
(11)

at large j where δρe is small compared to ρ. For the n = 1/2
ACFL, we have kFQ = (4π3/2/ 4

√
3)/A (A is the moiré unit

cell area) so that the oscillations correspond to filling frac-
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tions, n = 1
2 + δn, where

δn =
1

4
√
3
√
π

1

j + ϕ
≈ 0.43

j + ϕ
. (12)

Close to n = 1/2, the oscillations therefore have period
∆(1/δn) ≈ 2.3.

We emphasize that in the ACFL these commensurability os-
cillations occur in the absence of any external magnetic field.
They coexist with SdH oscillations coming from filling integer
Landau levels of composite fermions, which realize Jain states
in a clean system. Additionally, tuning density and external
field together allows full access of the magnetic spectrum of
composite fermions near half-filling of the Chern band.

Discussion. Starting from a band-projected continuum
model for tMoTe2, we have presented exact diagonalization
evidence for compressible, non-Fermi liquid states at zero
magnetic field, which we dub the anomalous composite Fermi
liquid. Much as in conventional fractional quantum Hall
systems, we argue that the ACFL picture offers a powerful
organizing perspective for understanding fractional quantum
anomalous Hall states. Indeed, all of the states for which
there currently exists theoretical or experimental evidence
fall on the celebrated Jain sequence. We furthermore devel-
oped an effective theory capturing the universal properties of
the ACFL offering concrete, observable signatures, including
commensurability oscillations and Jain sequence FQAH states
themselves.

Interestingly, in the recent experiment on tMoTe2 [1], the
coercive field is found to be enhanced at n = 3

4 , in addition
to n = 2

3 . Unlike the n = 2
3 state, which is incompressible,

the n = 3
4 state appears to be compressible. Our theory offers

a potential explanation of the observed n = 3
4 state as the

ACFL.
Finally, the emergence of an ACFL state suggests the pos-

sibility of new quantum phase transitions not possible at fi-
nite field. For example, while our analysis here focuses on
zero displacement field, it should be possible to induce a
phase transition between ACFL and ferromagnetic Fermi liq-
uid phases by tuning displacement field. Continuous transi-
tions between CFLs and Fermi liquids have been proposed in
the past [27, 28]. We leave study of such phase transitions to
future work.

Note added. Recently, an independent work by Dong et
al. [80] appeared, which has some overlapping conclusions
with the present study.
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