
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quasi-Floquet Prethermalization in a Disordered Dipolar
Spin Ensemble in Diamond

Guanghui He, Bingtian Ye, Ruotian Gong, Zhongyuan Liu, Kater W. Murch, Norman Y. Yao,
and Chong Zu

Phys. Rev. Lett. 131, 130401 — Published 27 September 2023
DOI: 10.1103/PhysRevLett.131.130401

https://dx.doi.org/10.1103/PhysRevLett.131.130401


Quasi-Floquet prethermalization in a disordered dipolar spin ensemble in diamond

Guanghui He,1,∗ Bingtian Ye,2,3,∗,† Ruotian Gong,1 Zhongyuan Liu,1

Kater W. Murch,1,4 Norman Y. Yao,2,3,5 Chong Zu,1,4,‡
1Department of Physics, Washington University, St. Louis, MO 63130, USA
2Department of Physics, Harvard University, Cambridge, MA 02138, USA

3Department of Physics, University of California, Berkeley, CA 94720, USA
4Institute of Materials Science and Engineering, Washington University, St. Louis, MO 63130, USA

5Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
∗These authors contributed equally to this work.

†To whom correspondence should be addressed; E-mail: bingtian ye@berkeley.edu
‡To whom correspondence should be addressed; E-mail: zu@wustl.edu

(Dated: August 21, 2023)

Floquet (periodic) driving has recently emerged as a powerful technique for engineering quantum
systems and realizing non-equilibrium phases of matter [1–22]. A central challenge to stabilizing
quantum phenomena in such systems is the need to prevent energy absorption from the driving
field. Fortunately, when the frequency of the drive is significantly larger than the local energy scales
of the many-body system, energy absorption is suppressed [23–32]. The existence of this so-called
prethermal regime depends sensitively on the range of interactions and the presence of multiple
driving frequencies [14, 33–36]. Here, we report the observation of Floquet prethermalization in a
strongly interacting dipolar spin ensemble in diamond, where the angular dependence of the dipolar
coupling helps to mitigate the long-ranged nature of the interaction. Moreover, we extend our
experimental observation to quasi-Floquet drives with multiple incommensurate frequencies. In
contrast to a single-frequency drive, we find that the existence of prethermalization is extremely
sensitive to the smoothness of the applied field. Our results open the door to stabilizing and
characterizing non-equilibrium phenomena in quasi-periodically driven systems.

Floquet theory describes the dynamics of a system
whose Hamiltonian exhibits a single time-translation
symmetry. Often used as a tool to control quantum sys-
tems, Floquet engineering (i.e. periodic driving) can help
to prevent environment-induced decoherence and more
recently, has enabled the study of novel quantum dy-
namical phenomena [8, 37–42]. In particular, many-body
Floquet systems can host intrinsically non-equilibrium
phases of matter, ranging from discrete time crystals
[6, 7, 10–12, 18, 19, 43, 44] to Floquet topological states
[15, 20, 22, 45–51]. Even richer non-equilibrium behav-
iors can arise in “quasi-Floquet” systems, where a single
time-translation symmetry is replaced by multiple time-
translation symmetries [21, 35, 52–55]. For instance, the
spontaneous breaking of the latter can result in time
quasi-crystalline order, which features a subharmonic re-
sponse that is fundamentally distinct from conventional
time crystals [21, 35].

A critical obstacle to stabilizing and observing such
phenomena in driven quantum systems is Floquet heat-
ing: the inevitable absorption of energy from the driving
field. One potential solution arises when the driving fre-
quency, ω, is significantly larger than the local energy
scale, J , of the many-body system; in this case, Floquet
prethermalization occurs and there exists an exponen-
tially long-lived preheating regime described by an ef-
fective time-independent Hamiltonian, Heff [23–30]. The
intuition underlying Floquet prethermalization is simple
— in order to absorb a single photon from the drive, the

system must undergo ∼ ω/J off-resonant rearrangements
of its local degrees of freedom. This higher-order process
leads to an exponentially slow heating rate ∼ O(e−ω/J).

Despite this promise, there are two natural scenarios
where prethermalization can break down: (i) systems
with long-range, power-law interactions [14, 33] and (ii)
quasi-Floquet systems where multi-photon processes can
enable resonant energy absorption [35].

Here, we report the experimental observation of Flo-
quet prethermalization in a long-range interacting quan-
tum system under quasi-periodic driving. Our experi-
mental platform consists of a dense ensemble of dipolar
interacting nitrogen-vacancy (NV) centers in diamond
(Fig. 1) [7, 8, 40, 57–59]. With single-frequency mod-
ulation, we observe that the heating time, τ∗, is con-
sistent with an exponential scaling with increasing driv-
ing frequency. In contrast, by driving quasi-periodically
with two frequencies, we find that Floquet heating can
be fitted to a stretched exponential profile with τ∗ ∼
O(eω

1
2 ) [35]. Interestingly, in the quasi-periodic case, the

heating is extremely sensitive to the smoothness of the
drive; indeed, when the system is driven via rectangu-
lar pulses (as opposed to sinusoidal pulses), we observe a
significant enhancement in the heating rate (Fig. 3) [35].
We remark that the presence of slow heating is reminis-
cent of classic results from the NMR literature detail-
ing the observation of long-lived dynamics in driven sys-
tems [38, 60–64]. However, the origin of the long-lived
dynamics are either expected to be independent of the
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FIG. 1. Quasi-Floquet prethermalization in a dipolar spin system. (a) Quasi-periodic driving of a strongly interacting
NV ensemble in diamond with two incommensurate frequencies ω and φω, where φ is the golden ratio. Typical thermalization
dynamics of the spin polarization ⟨Sx(t)⟩ exhibit an initial fast decay followed by a late-time slow relaxation. Top: Level
structure of NV center. Without an external field, |ms = ±1⟩ sublevels are degenerate and sit Dgs = (2π) × 2.87 GHz above
|ms = 0⟩. A magnetic field B ∼ 350 G along the NV axis splits |ms = ±1⟩, enabling the isolation of a two-level system. (b)
Experimental sequence. The dynamical decoupling sequence eliminates the on-site random fields induced by the environmental
bath spins. The sequence includes a series of fast π-pulses with alternating phases along x̂ and −x̂ axes to compensate the pulse
errors. The inter-pulse spacing is fixed at τ = 0.1 µs, much smaller than the interaction timescale between NV centers. A static
microwave Ω

∑
i S

x
i together with dipolar interaction serves as the static Hamiltonian H0, and a time-dependent microwave

Ωf(t)
∑

i S
x
i serves as the Floquet and quasi-Floquet drives. A final π

2
-pulse along ∓ŷ axis rotates the spins back to ẑ for

detection [56].

driving frequency or exhibits a lifetime that scales as a
power-law of the driving frequency [56]. These scenar-
ios are markedly distinct from the context of Floquet
prethermalization, which exhibits an exponentially long
lifetime in ω. Despite such distinction, how to unequiv-
ocally demonstrate exponential over power-law scaling
from real experiment remains a challenging task [56].

Experimental system—We choose to work with a dia-
mond sample containing a dense ensemble of spin-1 NV
centers with concentration, ρ ∼ 4.5 ppm [56, 57]. The
NV centers can be optically initialized and read out us-
ing green laser. In the presence of an external magnetic
field ∼ 350 G, the |ms = ±1⟩ sublevels are Zeeman
split, allowing us to isolate an effective two-level system,
{|ms = 0⟩, |ms = −1⟩} (Fig. 1a). By applying a reso-
nant microwave field with Rabi frequency Ω, the effec-
tive Hamiltonian governing the system (in the rotating
frame) is [7, 8, 58]:

H0 = −
∑
i<j

J0Ai,j

r3i,j
(Sz

i S
z
j − Sx

i S
x
j − Sy

i S
y
j ) + Ω

∑
i

Sx
i ,

(1)

where J0 = (2π) × 52 MHz·nm3, Ai,j characterizes the
angular dependence of the dipolar interaction, ri,j is the

distance between the ith and jth NV centers, and Ŝ is
spin operator.

We note that H0 contains only the energy-conserving
terms of the dipolar interaction under the rotating-wave
approximation. The approximation holds because the
NV transition frequency is more than three orders of
magnitude larger than any other terms in the interacting
Hamiltonian [56]. The presence of other paramagnetic
spins in the diamond lattice [65] leads to an additional

on-site random field at each NV center which is elimi-
nated using dynamical decoupling (Fig. 1b) [56].

Let us begin by characterizing the dynamics of the
NV ensemble under the static Hamiltonian H0. We set
Ω = (2π) × 0.05 MHz, comparable to the average dipo-
lar interaction strength. After optically initializing the
NV spins to |ms = 0⟩, we then prepare a product state,

⊗i
|0⟩i+|−1⟩i√

2
, by applying a global π/2-pulse around the

ŷ axis. We let the system evolve under H0 for a time
t, before measuring the final NV polarization, ⟨Sx(t)⟩,
along the x̂ direction.

The polarization dynamics proceed in two steps. At
early times, t ≲ 100 µs, the polarization exhibits rapid
decay toward a plateau value, reflecting local equilibra-
tion under H0 (Fig. 2a). Following these initial dy-
namics, the system exhibits a slow exponential decay

∼ A0e
− t

T0 with A0 = (0.43 ± 0.01) and a time-scale
T0 = (0.82±0.03) ms that is consistent with spin-phonon
relaxation [66]. To ensure that the observed spin dy-
namics does not come from the incorporated dynamical
decoupling pulses, we also investigate the corresponding
spin dynamics at Ω = 0. The measured NV polarization
quickly decays to zero, in agreement with the expectation
of thermalization behavior (Fig. 2a Inset).

Floquet prethermalization—To probe the nature and
existence of Floquet prethermalization, we modulate the
Rabi frequency as Ω(t) = Ω[1 + f(t)], where f(t) =
sin(ωt) (Fig. 1b) [67]. Starting with a driving frequency
ω = (2π) × 0.07 MHz, which is comparable to energy
scales within H0, we perform the same spin polarization
measurement (light blue curve in Fig. 2a). The measured
spin dynamics at stroboscopic times, t = 2πN/ω (where
N is an integer), exhibit an initial relaxation, which is
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FIG. 2. Probing the spin dynamics under periodic and quasi-periodic drives. (a) The measured spin polarization
⟨Sx(t)⟩ under Floquet drive. After an initial fast decay (gray shaded area), a long-lived prethremal regime persists. Dashed
lines are fits of the late-time dynamics using single exponential decay. Inset: Measured initial spin dynamics for the undriven
case (red): After the initial fast relaxation, the polarization decays to an equilibration plateau (dashed line), due to the finite
static field, Ω

∑
i S

x
i . In contrast, the polarization with only dynamical decoupling (Ω = 0) quickly decays to zero. (b) Measured

prethermal equilibrium value, A(ω), as a function of ω−1. Dashed line is a linear fit with the gray shaded area representing
95% confidence interval. The red diamond marks the measured amplitude for the undriven case. (c) Heating timescale τ∗ as a

function of the driving frequency ω. For both sinusoidal and rectangular single-frequency drives, τ∗ ∼ O(eω/J). For sinusoidal

quasi-periodic drive, τ∗ ∼ O(eω
1
2 ); while for rectangular quasi-periodic drive, τ∗ ∼ O(ω

1
2 ). (d) Measured spin dynamics under

quasi-periodic drive [ω = (2π)× 0.103 MHz]. We observe an additional small time-quasiperiodic micromotion on top of a slow
relaxation. Left inset: zoom-in of the micromotion. Right inset: relative amplitude of the micromotion, W , scales quadratically
with ω−1. (e) Using rolling-average to remove the micromotion [56], we observe a quasi-Floquet prethermal regime, whose
lifetime τ∗ increases with ω. Dashed lines are fits using single exponential decay. Errorbars on the spin polarization represent
1 s.d. accounting statistical uncertainties, and errorbars on the prethermal plateau and timescale represent 1 s.d. from the
fitting.

qualitatively similar to the undriven case. However, the
late-time dynamics exhibit a significantly faster polar-
ization decay, arising from Floquet heating. To obtain
the heating timescale τ∗, we fit the experimental data to

∼ Ae−( t
τ∗ + t

T0
), where T0 is the previously extracted spin-

phonon lifetime. As shown in Fig. 2a, by increasing the
driving frequency, one can extract the frequency depen-
dence of the amplitude, A(ω), and the heating time-scale,
τ∗(ω); both are crucial for understanding the nature of
Floquet prethermalization.

Focusing first on the heating time-scale, we find that
τ∗ increases exponentially with ω for more than an order
of magnitude, demonstrating the existence of a paramet-
rically long-lived prethermal regime (Fig. 2c). The ob-
served exponential scaling also allows us to extract a phe-
nomenological local energy scale of the NV many-body
system, Jexp = (2π)× (0.032± 0.006) MHz.

Intuitively, this Jexp extracted from Floquet heating
process is expected to agree with the local energy scale

of the system. However, for systems with power-law in-
teraction as ours (∼ 1/r3 in 3D), a naive estimation of
the local energy scale J ≈

∫
J0

r3 ρd
3r is divergent, and

thus, one should expect the prethermalization to not ex-
ist. Nevertheless, an important missing piece to this puz-
zle is the angular dependence of the dipolar interaction,
Ai,j [33]. Crucially, the combination of this angular de-
pendence and the NV’s random positioning in the dia-
mond lattice ensures that the average, Ai,j = 0, which
helps to mitigate the divergence of the above integral [68].

A more careful analysis reveals that the relevant lo-
cal energy scale is the variance of the interaction, J̃ ≈
[
∫
(
J0Ai,j

r3 )2ρd3r]
1
2 =

√
16π
15 J0ρ [56]. As long as the

driving frequency ω > J̃ , one should expect the pres-
ence of prethermalization, in agreement with previous
theoretical studies [33]. Using the independently cali-
brated NV density, ρ, we estimate the local energy scale
J̃ ≈ (2π) × 0.02 MHz, which is indeed comparable with
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Jexp extracted from Floquet heating.

Next, let us turn to analyzing the frequency depen-
dence of the amplitude, A(ω). One can think of A(ω)
as the value of the prethermal plateau. In general, for
short-range interactions, it is expected that A(ω) is de-
termined by a time-independent effective Hamiltonian,

Heff(ω) = H0 + O( J̃ω ), which can be calculated order-
by-order via a Magnus expansion [69]. In this case,

A(ω) = Tr[
∑

i S
x
i e

−βHeff (ω)] = A0 + O( J̃ω ), where the
inverse temperature β, is set by the energy density of the
initial state.

For sufficiently long-range interactions (such as dipo-
lar interactions in 3D), the existence of Heff is unproven
[14, 26, 69–71]. However, by probing the functional form
of A(ω) and its extrapolated value as ω → ∞, one can
provide experimental evidence for the existence of Heff .
As depicted in Fig. 2b, we find that the frequency depen-
dence of A(ω) is linear in ω−1, allowing us to extrapolate
A(ω → ∞) = (0.47 ± 0.06). This is consistent with the
measured value in the undriven case, A0 = (0.43± 0.01),
suggesting that despite the presence of strong long-range
interactions, the effective Hamiltonian exists and can be
well-approximated by H0 at leading order [56].

Quasi-Floquet prethermalization— We now turn to the
quasi-Floquet setting. Specifically, we choose f(t) =
1
2 [sin(ωt) + sin(φωt)], where φ = (

√
5 − 1)/2 ≈ 0.618 is

the golden ratio, so that the system is driven by two in-
commensurate frequencies. From the perspective of Flo-
quet heating, the situation is significantly more complex.
In particular, recall that within Fermi’s golden rule, the
heating rate can be estimated from the overlap between
the Fourier spectrum of the drive, F (ν) =

∫
f(t)eiνtdt,

and the local spectral function of the spin ensemble,
S(ν) =

∑
i,j δ(Ei − Ej − ν)|⟨i|Sx|j⟩|2 [72].

This picture immediately provides a more formal intu-
ition for the exponentially slow heating observed in the
context of single-frequency driving (Fig. 3c). In partic-
ular, for f(t) = sin(ωt), F (ν) exhibits a cut-off at fre-
quency ω. Meanwhile, as aforementioned, S(ν) exhibits

an exponentially small tail for frequencies ν > J̃ [73].
In combination, this implies that for a single driving fre-
quency, ω > J̃ , energy absorption is strongly suppressed

leading to τ∗ ∼ eω/J̃ .

For driving with two incommensurate frequencies, even
when ω > J̃ , there are multi-photon processes that are
effectively resonant within the local energy scale; these
processes correspond, for example, to the absorption of
n1 photons of energy ω and the emission of n2 photons
of energy φω. Thus, there is no strict cut-off for F (ν),
and the drive spectrum exhibits a non-zero amplitude for
all frequencies ν = |n1ω − n2φω| < J̃ . Interestingly, de-
spite this, for sufficiently large driving frequencies, sem-
inal results have proven that the quasi-Floquet heating
timescale remains extremely slow, exhibiting a stretched
exponential lower-bound [74].

In contrast to the Floquet case, we measure the dy-
namics at evenly spaced time points, since there does not
exist a stroboscopic time which is an integer multiple of
both drives. Much like the single-frequency drive, after
an early-time transient, the spin polarization exhibits a
slow decay. However, we observe small oscillations scal-
ing as ∼ ω−2 on top of the decay (Fig. 2d), corresponding
to the micromotion of the quasi-Floquet system [75–78].
To reliably extract a heating timescale τ∗ from our quasi-
Floquet measurements, we perform a rolling average to
obtain the overall decay profile (Fig. 2e) [56]. By varying
the driving frequency, we extract a heating time-scale,

τ∗ ∼ eω
1
2 (Fig. 2c), which is consistent with the theoret-

ically predicted stretched exponential form [35].

Robustness of quasi-Floquet prethermalization—The
stability of slow prethermal heating is quite different de-
pending on whether one considers the Floquet or quasi-
Floquet setting. For the Floquet setting, the exponen-
tial behavior of τ∗ is robust to the functional form of
the drive amplitude f(t). However, in the quasi-Floquet
setting, the stretched exponential behavior of τ∗ is only
predicted to hold when f(t) is smooth. In particular,
when f(t) is smooth, even though F (ν) does not exhibit
a cut-off for small ν, its amplitude is exponentially small
in this regime (Fig. 3c) [35, 36].

These expectations are indeed borne out by the data
(Fig. 2c, Fig. 3). Using a rectangular wave f(t) =
Sgn[ 12 sin(ωt) +

1
2 sin(φωt)], we observe that the heating

timescale is significantly shortened and scales as a power-
law with increasing driving frequency ∼ ω

1
2 , as opposed

to a stretched exponential. In contrast, for a single-
frequency drive, the smoothness of the driving field is
not critical: the Floquet heating time-scale exhibits an
exponential scaling for both sinusoidal and rectangular
forms of f(t).

Outlook—Looking forward, our work opens the door
to a number of intriguing future directions. First, it is
interesting to ask whether the restriction on Ai,j = 0 is
essential for realizing prethermalization in long-range in-
teracting systems [14, 33, 34]. Second, the observed long-
lived quasi-Floquet prethermal regime can enable the ex-
perimental realization of novel non-equilibrium phases of
matter [15, 20, 22, 45–51]. Finally, while our experi-
ments suggest the presence of power-law-slow-heating in
the case of a quasi-Floquet, rectangular-wave drive, the
precise frequency dependence of the heating rate remains
unknown and requires future study.
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