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Active surface flows accelerate the coarsening of lipid membrane domains
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Phase separation of multicomponent lipid membranes is characterized by the nucleation and
coarsening of circular membrane domains that grow slowly in time as ∼ t1/3, following classical
theories of coalescence and Ostwald ripening. In this work, we study the coarsening kinetics of phase-
separating lipid membranes subjected to nonequilibrium forces and flows transmitted by motor-
driven gliding actin filaments. We experimentally observe that the activity-induced surface flows
trigger rapid coarsening of non-circular membrane domains that grow as ∼ t2/3, a 2× acceleration
in the growth exponent compared to passive coalescence and Ostwald ripening. We analyze these
results by developing analytical theories based on the Smoluchowski coagulation model and the phase
field model to predict the domain growth in the presence of active flows. Our work demonstrates
that active matter forces may be used to control the growth and morphology of membrane domains
driven out of equilibrium.

The dynamic interplay between nonequilibrium forces
and membrane surfaces plays an essential role in many
physical processes in living systems. For example, molec-
ular motors and the cytoskeleton inside living cells gen-
erate active forces on the cell membrane, allowing cells
to bend, flow, and stretch the cell surface [1, 2]. Recon-
stituted multicomponent lipid membranes can also phase
separate into macroscopic domains along the membrane
[3]. While the nucleation and coarsening kinetics of lipid
membrane domains at thermodynamic equilibrium is well
established [4–8], we have little understanding of how
membrane domains grow when subjected to nonequilib-
rium forces and flows, such as those that might be gen-
erated by the actin cytoskeleton.

In this Letter, we experimentally and theoretically
study the effect of internally-driven 2D active flows on
the rate of domain coarsening in phase-separated lipid
bilayers. In the absence of active flows (Fig. 1A, Supple-
mental Movie S1), the lipids form circular, mesoscopic
domains that grow slowly with time, consistent with prior
work on giant vesicles [7]. We find that actin and myosin
create internally-driven surface flows, which couple with
domains (Fig. 1B) and drive coarsening and growth ac-
cording to much faster dynamics than passive systems. In
passive systems, the scaling exponent of α = 1/3 is well-
established for domains of size a that grow with time t
according to a ∼ tα, for both coalescence and Ostwald
ripening mechanisms [4, 5, 7, 9, 10].

Previously, it has been shown that linear, externally-
imposed flows can deform domains and accelerate coars-
ening [11–13]. Here we describe a system in which
surface-adsorbed active matter, in the form of an acto-
myosin cortex, internally drives lipid flows, which lead to
rapid domain growth. Using Cahn-Hilliard simulations,
we show that the in-plane flows created by actin increase
α by more than a factor of 2 at moderate Péclet numbers
of 10−3 to 10−2. We compare these results to analytical
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theory and simulations describing domain growth under
simple shear flow, finding that the behavior of flow-based
mechanisms is consistent with the experimental results
for actin-driven coarsening.
Experiments — A planar lipid bilayer is deposited on a

cushioned glass coverslip, treated with polymer and pro-
teins to prevent kinetic arrest of domains due to friction
with rough substrates (see Supplemental Information for
detailed methods). Briefly, silica coverslips are treated
with chlorotrimethylsilane before heavy meromyosin and
polylysine-grafted polyethylene glycol are adsorbed to
the surface. Giant unilamellar vesicles (GUVs) are
formed at 50°C with 45% dioleoylphosphatidylcholine
(DOPC), 35% dipalmitoylphosphatidylcholine (DPPC),
15% cholesterol, and 5% dioleoyl-3-trimethylammonium
propane (DOTAP) using established electroformation
methods [14], and then allowed to rupture on the treated
coverslip, creating a planar bilayer. At room tempera-
ture, this lipid composition phase-separates into a contin-
uous liquid-disordered (Ld) phase containing dispersed
liquid-ordered (Lo) domains (Fig. 1A) [3]. Small amounts
of lipid dyes are added to each phase for fluorescence
imaging [15].
Bilayers are heated to 37°C and decorated with fil-

amentous actin (F-actin) [16], a negatively-charged cy-
toskeletal protein, which adsorbs to the bilayer via elec-
trostatic attraction to positively-charged DOTAP en-
riched in the Ld phase (Fig. 1C, left) [17]. Myosin II
motor proteins [18, 19] are added in a rigor (ATP-free)
state, causing them to crosslink actin but not apply any
contractile force (Fig. 1C, right). Upon quenching the
system to room temperature, the Lo domains re-form and
actin is sequestered into the Ld phase (Fig. 1C, D). Unlike
the circular domains in Fig. 1A, the domains in Fig. 1D
initially adopt a morphology characterized by sharp cor-
ners and elongated edges, as they have low line tension
and are forced to conform to actin bundles [20, 21]. These
actin-constrained domains reach a steady size and do not
appreciably grow over tens of minutes.
Upon introducing ATP, we observe rapid actomyosin

contraction, along with simultaneous elongation and
growth of lipid domains (Fig. 1D, Supplemental Movie
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FIG. 1. (A) Planar lipid bilayers phase-separate into liquid-
ordered (Lo) and liquid-disordered (Ld) phases. (B) In this
work, we study the growth of lipid domains of size a under
2D flows generated by internal “active” forcing. (C) (Left)
In our experiments, actin is bound to the Ld phase, avoid-
ing the Lo phase. (Right) Actomyosin contraction internally
drives lipid membrane flows. (D) Time-lapse images of actin
(magenta) contraction with vectors calculated from particle
image velocimetry overlaid (top), and Lo lipid domains grow-
ing in time (green, bottom). Scale bar is 5 µm.

S2). The most dramatic contraction is often very short-
lived (< 5 s) as the actin forms contractile clusters and
generates surface flows that rapidly coarsen the Lo do-
mains. Fig. 1D (top) shows the actin flow field generated
by particle image velocimetry (PIV), and confirms that
in-plane actin flows are directed toward an apparent sink
in the upper right quadrant of the image.

We threshold time-lapse images of the domains and
track the area/perimeter ratio of the resulting binary
images as a metric for characteristic domain size a(t),
consistent with prior experimental work on lipid do-
main growth [7]. This definition of the characteristic
domain size is consistent with the alternative definition
based on the first moment of the static structure fac-
tor, a(t) ∼

(∫
kS(k, t) dk/

∫
S(k, t)dk

)−1
, where k is the

wave vector (see Supplemental Information). We fit the
resulting data to the equation a(t) = (At + B)α before
re-scaling the time to give the form a ∼ tα (see Sup-
plemental Methods). Figure 2 shows the growth of a(t)
over time for five independent experiments with acto-
myosin activity (black open symbols). We find growth

FIG. 2. Liquid-ordered (Lo) lipid domain size, a(t), is plotted
as a function of time, t, for experiments (black) and Cahn-
Hilliard numerical calculations (green), with growth expo-
nents α presented for each: a ∼ tα. Closed symbols represent
passive domain growth in the absence of flow, with circles
and triangles representing three independent passive experi-
ments. Passive domains grow as α = 1/3 (dashed black line),
consistent with classical theories on coalescence and Ostwald
ripening. Open symbols represent active domain growth in
the presence of 2D flow, either imposed experimentally via ac-
tomyosin contraction, or incorporated theoretically using par-
ticle image velocimetry from experiments (Fig. 1D). Five in-
dependent active experiments are presented, along with sim-
ulations using three different Péclet numbers (Pe). Each data
set is rescaled by a different factor a0 to capture the power
law scaling exponents.

exponents range from α = 0.59 to 0.74 for these domains
under internally-driven, active surface flows.

We measure the active coarsening rate across five dif-
ferent membrane compositions and actin densities, with-
out observing a strong correlation between coarsening
rate and composition (Supplemental Fig. S1) or actin
density (Supplemental Fig. S2) over the range tested.
We perform an additional control experiment in which
we quench the bilayer and add ATP simultaneously; we
observe the passive scaling of α = 1/3 at early times
when the Lo domains are small compared to the actin
mesh size (≈1 µm), while at later times, larger domains
are driven to grow more rapidly (see Supplemental Fig.
S3).

We compare these active data to control experiments
in which lipid bilayers without actin are heated above
the miscibility temperature, and then allowed to cool
so that the domains can re-form and coarsen (Supple-
mental Movie S1). Figure 2 (black closed symbols)
shows that passive membranes recover the scaling of
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α = 1/3, which applies to both coalescence and evap-
oration/condensation mechanisms of coarsening and has
been well-established for membrane domains in both ex-
perimental and theoretical work [4, 5, 7, 9] (see Supple-
mental Information for derivation). We perform these
passive experiments with five different lipid compositions,
including critical mixtures, obtaining scaling results con-
sistent with those of Stanich et al. on GUVs (Supple-
mental Figs. S1 and S4) [7]. We hypothesize that actin
contraction generates in-plane forces in the membrane,
which drive the lipid domains to grow at an accelerated
rate.

Theory — To evaluate our hypothesis that active con-
vection can accelerate domain coarsening, we use a Cahn-
Hilliard model to evolve a phase-separating 2D system
under surface flows. We evolve a concentration order pa-
rameter, ϕ(x, t), using the Cahn-Hilliard equation [22],
which is commonly used to study coarsening in binary
mixtures [23–26]. The Cahn-Hilliard model predicts the
passive growth exponent α = 1/3 (Fig. 2, green closed
circles and Supplemental Movie S3), which is consistent
with prior work on Ostwald ripening in the absence of
flow [4, 27] (see Supplemental Information).

To analyze the effect of 2D active flows on domain
coarsening, we present the following non-dimensional
Cahn-Hilliard equation in Fourier space:

dϕk

dt
+ PeF{v · ∇ϕ} = −k2F

{
δf

δϕ

}
− k4ϕk, (1)

where ϕk is the Fourier transform of ϕ(x, t), k is the wave
vector, v is the nondimensional convective surface veloc-
ity generated by the actin filaments, the Péclet number
Pe ≡ γ̇κ/M , γ̇ is the rate of strain, M is lipid mobility,
and κ is a surface tension parameter. We model the bulk
free energy, f [ϕ(x, t)] = ϕ4/4 − ϕ2/2, a double-well po-
tential where the concentration of pure phases is ϕ = ±1.
We add a convective term v · ∇ϕ to impose surface flows
on the phase-separating system, testing the effect of our
hypothesized actin-induced surface convection on domain
coarsening. We use this model to obtain a mechanistic
understanding of how active convection impacts the ki-
netics of domain growth. Hydrodynamic effects of the
fluid and the bulk Ld phase may also be included, but we
omit them here because surface tension (or line tension)
driven flows that cause accelerated coarsening mecha-
nisms are only significant for near-critical point quenches
where the minority phase is elongated and/or intercon-
nected [10, 28].

We numerically solve the Cahn-Hilliard model using
pseudo-spectral methods with periodic boundary condi-
tions, starting from an initial state, ϕ0, with uniform
noise. To avoid any boundary artifacts, we restricted
our analysis to the interior of the simulation box (see
Supplemental Fig. S6). To corroborate our experimen-
tal results, we impose the surface flow field obtained by
PIV analysis of actin (Fig. 1D, white arrows). We fix
Cahn-Hilliard parameters M and κ based on the pixel
resolution of the camera, while varying Pe to evaluate

the effect of active flows on growth rate (Supplemen-
tal Movie S4). Fig. 2 (green symbols) shows that do-
mains coarsen rapidly for the strongest flows (α = 0.93
for Pe = 10−2) while weaker flows effectively act as
noise and recover passive scaling (α = 0.34 for Pe =
10−4). The experimentally-derived scaling exponents of
α = 0.59 − 0.74 lie between those for Pe = 10−4 and
Pe = 5 × 10−3 in the numerical solutions. These results
are consistent with an estimate of the molecular Péclet
number based on literature values, ≈ 10−4 − 10−3, using
≈ 1 nm lipids with diffusivity 1−10 µm2/s under surface
flows with velocity ≈ 1 µm/s [29, 30].
In addition to the Ostwald ripening mechanism in the

Cahn-Hilliard model, we note that a different model of
phase coarsening based on the Smoluchowski coagula-
tion model predicts a α = 2/3 growth for domains sub-
jected to weak shear flows. The Smoluchowski coagula-
tion model is commonly used to predict Brownian floc-
culation of colloids [31] and diffusion-reaction dynam-
ics of macromolecules [32], and is conceptually distinct
from the molecular mechanisms driving coarsening in the
Cahn-Hilliard equation. In the Smoluchowski perspec-
tive, the lipid domains are modeled as macroscopic col-
loids of fixed size that merge upon contact (i.e., dimerize
via an infinitely fast chemical reaction upon contact) [10].
Thus, although they both predict α = 1/3 passive scal-
ing, the Smoluchowski model assumes domain growth via
coalescence as opposed to Ostwald ripening [8, 33].
To obtain the enhanced scaling in shear flow under the

Smoluchowski perspective, we consider the conservation
of the number density n of singlet domains:

dn

dt
+ J = 0, (2)

where J is a sink that captures the merging of singlet
domains to dimerized domains:

J = −Dc

a
n2

∮
r=2a

n · (Pecv −∇r ln g +∇rV ) g dℓ. (3)

The sink depends on the normalized pair distribution of
domains g(r; Pec), nondimensional velocity field v, unit
normal to the domain surface n, nondimensional pair po-
tential V , gradient operator relative to the center of a
domain ∇r, and Péclet number based upon treating the
domains as colloids Pec ≡ γ̇a2/Dc (with domain diffu-
sivity Dc). Assuming that the pair distribution quickly
reaches a steady state at all times compared to the de-
cay of the singlet density (quasi-static approximation),
we solve for g(r; Pec) with boundary conditions g = 0
at contact and g = 1 far away. The g = 0 condition
at contact assumes an instantaneously fast merging of
two singlet domains, although a finite reaction time is
also straightforward to implement. Hydrodynamic inter-
actions between the domains may also be included in the
pair distribution problem, but we omit them here be-
cause lubrication flows can generally only slow down the
collision rates between membrane domains [10, 34].
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Eqs. 2 and 3 show that the singlet density decreases
by a second-order reaction, J = keffn2, where keff is in-
terpreted as the transport-limited effective reaction rate
constant. Assuming the domains are circular with no
bulk interaction (V = 0), subjected to a simple shear
flow, a perturbation analysis at small Pec gives

keff =
πkBT

8ηa ln
(

L
2a

) (1 + CPec
1/2

)
(4)

with bulk solvent viscosity η, system size L, and a
numerical prefactor C (see Supplemental Information)
[31, 35, 36]. We have used the Saffman-Delbrück diffusiv-
ity for large domains compared to the Saffman-Delbrück
length [37]; the membrane is embedded within a bulk
3D fluid, and the quasi-2D geometry is critical for ob-
taining the correct scaling [7, 8, 38]. For a constant
domain area fraction ϕA = nπa2, Eqs. 2-4 yield a do-
main growth scaling of a(t) ∼ t1/3 in the absence of
flow (Pec = 0), and an enhancement in the presence
of weak shear flows, a(t) ∼ t2/3. Therefore, both the
coalescence-based Smoluchowski model and the ripening-
based Cahn-Hilliard model predict a similar enhance-
ment to the growth of domains with active convection;
both mechanisms are present in the experiments.

Returning to the Cahn-Hilliard model (Eq. 1), we also
considered simple toy models of the surface velocity to
gain a more mechanistic understanding of the effect of
flows on domain growth. We consider a general 2D lin-
ear flow v(x) = G · x where G is a gradient tensor. We
compute Eq. 1 for shear and rotational flow fields and
measure the domain size and structure as a function of
time. In shear flow, we observed frequent domain merg-
ing and elongation along the extensional axis of shear
(Fig. 3A, Supplemental Movie S5). Fig. 3C shows that
as the static structure factor evolves in time, the magni-
tudes of the peaks grow as the peaks shift toward lower
wave vectors.

Previous work shows that mechanical shear enhances
droplet coarsening at low Péclet numbers in both 2D and
3D systems, particularly along the extensional axis of
shear [11, 13, 39], which we also observe at long times
(Supplemental Movie S6). We hypothesize that with one
fewer spatial degree of freedom than 3D systems, our
quasi-2D geometry enhances the effect of flow-accelerated
coarsening, as there is one fewer unsheared mode of re-
laxation available to the domains.

Conversely, in rotational flow, the domains remain ap-
proximately circular, similar to the passive case (Fig. 3B,
Supplemental Movie S5). In Fig. 3D, we compare the rate
of domain growth for the two linear flows, finding that
at high Pe = 10−2, shear flow accelerates domain growth
(α = 0.73) while rotational flow essentially recovers pas-
sive scaling (α = 0.28). This result is consistent with
the physical intuition that rigid body rotation about the
center of the system should not alter the frequency of col-
lisions between domains. Our analysis provides further
physical insight into our experiments as any arbitrary lin-
ear flow may be constructed from linear combinations of

C. D.
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FIG. 3. General linear flows modulate the growth and mor-
phology of phase-separating domains. Numerical solution
snapshots of phase separation for Eq. 1 in (A) shear flow and
(B) rotational flow. Inset snapshots show the evolution of
the domains. (C) Static structure factor for domains under
shear flow. (D) Shear flow increases the domain growth rate,
whereas rotational flow maintains the same scaling as passive
Ostwald ripening, ≈ t1/3. The parameters shown here corre-
spond to (M , κ, γ̇)=(1, 0.25, 0.04), or Pe = 10−2.

shear and rotational flow. For example, extensional flow
is a sum of shear flow and rotational flow, has features
that are similar to the flows observed in our experiments,
and also yields α ≈ 0.73 scaling.

Both the Smoluchowski and Cahn-Hilliard models pre-
dict a α ≈ 2/3 enhancement in simple shear flow, but no
enhancement in rotational flow. We note that coalescence
is an important mechanism of growth in the experiments
due to the large colloidal Péclet number Pec ≡ γ̇a2/Dc ≈
10, compared to the molecular Péclet considered in the
Cahn-Hilliard model, Pe ≡ γ̇κ/M ≈ 10−4 − 10−2.

While numerical solutions validate that 2D flows accel-
erate domain growth, we can obtain further mechanistic
insight by linearizing the Cahn-Hilliard equation and ob-
taining an analytical approximation of α at early times.
Under simple shear flow, perturbation analysis at small
Pe yields a(t) ∼ t1/4 +Pe t5/4 +O(Pe2) (see Supplemen-
tal Information). Note that the passive scaling obtained
from the linearized equation is t1/4, which is different
from the t1/3 scaling obtained from the numerical solu-
tion to the fully nonlinear Eq. 1. This is consistent with
prior studies of the Cahn-Hilliard equation in the context
of the kinetics of Ostwald ripening [26]. The linearized
form captures domain growth at very early times, and
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nonlinear terms are required to observe t1/3 passive scal-
ing. Nonetheless, even in the linearized form, this calcu-
lation demonstrates that the leading-order effect of flows
appears at O(t5/4), and any surface flows will accelerate
the growth scaling beyond the passive exponent. While
not exact solutions, these trends are consistent with our
experimental observations that surface flows can signifi-
cantly accelerate the kinetics of coarsening.
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