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Abstract 
 
We study the collective behavior of interacting arrays of nanomagnetic tripods. These objects 
have six discrete moment states, in contrast to the usual two states of an Ising-like moment. Our 
experimental data demonstrate that triangular lattice arrays form a ‘tripod ice’ that exhibits 
charge-ordering among the effective vertex magnetic charges, in direct analogy to artificial 
kagome spin ice. The results indicate that the interacting tripods have effective moments that 
act as emergent local variables, with strong connections to the well-studied Potts and clock 
models. In addition, the tripod moments display a tendency toward a nearest neighbor 
alignment in our thermalized samples that separates this system from kagome spin ice. Our 
results open a path toward the study of the collective behavior of non-binary moments that is 
unavailable in other physical systems. 
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The nanomagnet arrays known collectively as artificial spin ice have offered an important 

window into collective behavior associated with frustrated interactions. The ability to both design 

the array structures and probe the resultant moment configurations microscopically has 

revealed a disparate class of phenomena, including topological excitations, effective magnetic 

monopoles, and various types of ordering [1–3].  

 

The elementary magnetic degree of freedom in existing artificial spin ices has most typically 

been an Ising-like binary moment associated with a single-domain ferromagnetic nanomagnet. 

Experimentally, this has been most commonly realized as a stadium-shaped island or a wire, so 

that shape anisotropy aligns the moment with the geometric long axis [4,5], or a disc with 

perpendicular magnetic anisotropy [6,7]. Other groups have examined circular islands to allow 

for XY symmetry [8–10], or deployed either rectangular islands [11] or closely-paired stadium-

shaped islands [12], both of which create effective quadrupole moments. In each case, the 

fundamental elements have direct counterparts in atomic magnetic moments. 

 

In this work, we examine an alternative fundamental building block, the magnetic tripod, in 

which the nanomagnet structure has three-fold symmetry and six possible effective moment 

states. We experimentally investigate interacting tripods placed on a triangular lattice, allowing 

comparison with the classic kagome structure. Our results demonstrate that this tripod ice 

displays qualitatively distinct collective behavior and suggest a panoply of new physics in 

different geometries of tripod arrays. 
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Figure 1: Magnetic Tripod Lattice. (a) Scanning electron microscopy (SEM) image of 
triangular tripod ice with g = 140 nm. (b) Magnetic force microscopy (MFM) image of the same 
sample. (c) Map of the moments of the individual legs from the MFM image. (d) Map of the 
tripod moments from the MFM image. (e) Top row: color scheme for the six possible tripod 
states, with the arrows indicating the effective tripod moment direction. Middle row: Magnetic 
charges at the tripod centers, with arrows indicating the dipole moments of the legs. Bottom 
row: Magnetic charges at the interstitial vertices between tripods, with arrows indicating the 
dipole moments of the legs. (f) Schematic of the tripod lattice, indicating the lattice constant, a, 
the length of each leg, r, the leg width, w, and the gap, g. 
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Our tripods are threefold-symmetric Y-shaped ferromagnetic nanoislands, as illustrated in 

Figure 1. The tripods are arranged in a regular triangular lattice array, which we call ‘triangular 

tripod ice’ in analogy to naming conventions for other artificial spin ice systems. We placed the 

tripods with identical orientations in this initial study, choosing one of the simplest possible 

structures that reflects the three-fold symmetry of the tripods. This geometry has the advantage 

that it is directly comparable to the conventional kagome ice lattice (the triangular tripod lattice 

can be formed by connecting every other vertex of the kagome structure). Our structure 

therefore allows us to elucidate what new physics arises from having tripods as the fundamental 

unit, as opposed to separated triads of stadium-shaped nanomagnets each behaving as a 

dipole.  

 

Our permalloy structures had thickness of 15 nm, and were defined by the lattice constant, a, 

the leg length, r, and leg width, w, where all parameters are defined in Figure 1f. We 

parameterize the samples in terms of the gap between the tripods (g = a – r), since the 

interaction is strongly correlated with gap size, and we focus on samples with dimensions of r = 

220 nm, w = 80 nm, and varying values of a (resulting in g = 30 - 300 nm). A second set of 

samples with r = 160 nm and w = 60 nm showed qualitatively similar behavior. The magnetic 

state of the lattice was measured with magnetic force microscopy (MFM) after each sample was 

thermalized by heating to slightly above the Curie temperature for permalloy and cooling slowly, 

allowing the moments to reach a low-energy collective state [13]. Details of sample deposition, 

lithography, and thermalization are given in the Supplementary Information [14]. For 

comparison, we also studied two kagome spin ice samples with isolated islands of dimension 

220 nm x 80 nm and lattice parameters of 320 nm and 360 nm, which were grown 

simultaneously on the same substrate. (A schematic of the kagome ice lattice parameter is 

shown in the Supplementary Information.) 

 

The MFM images, such as shown in Figure 1b, demonstrate that the tip of each of the three 

legs of each tripod has either a north or south magnetic pole, so that the three points of each 

island each have a magnetic pole (and a fourth magnetic pole is at the center of each structure).  

We note that the domain structures of similar-shaped (but larger) magnetic objects were 

examined previously, and those showed both complex magnetic domains as well as the simple 

three-pole state that we observe, depending on the interactions [15,16]. Micromagnetics also 

confirm that the directions of the leg dipole moments obey the ice rule, with two pointing in and 

one out, or vice versa (see Supplementary Information). If one considers each leg dipole as 
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having an effective magnetic charge of q = ±1 at each end, the tripod has those effective 

charges at the ends of each of its three legs, and an effective net charge of ±1 at the center, 

associated with a domain wall. These charges are illustrated in Figure 1e, along with the 

charges of ±1 or ±3 at the interstitial points. 

 
As noted above, because the legs of the tripods are on the edges of a kagome-like lattice, the 

moments of the legs can be easily mapped onto the moment structure of the well-studied 

kagome ice geometry [2,3,5,17–19]. Unlike kagome ice, however, there is a symmetry breaking 

between the tripod centers and the interstitial vertices of the tripod lattice. The kagome ice 

vertices on the tripod centers are always connected, whereas on the interstitial vertices the 

islands are separated by the gaps, as illustrated in Figure 1f. In the limit of g = 0, the symmetry-

breaking is removed, and the system becomes equivalent to a connected kagome ice, which 

experimentally shows a low energy state very similar to kagome ice composed of isolated 

islands [20,21]. The collective dynamics of connected artificial spin ice is associated with 

domain wall motion through the structure [22], as opposed to individual moment reversals, and 

is thus quite different from the isolated tripods we are examining.  

 

Because of the symmetry-breaking, we model tripod ice by defining a new non-binary variable, 

the tripod moment m, which aligns with the combined net dipole moment of the three legs and is 

designated by its orientation, θ. We note that θ has six possible values, as shown in Figure 1e 

(top row). Thus, m can be considered a six-state Potts variable [23,24], or equivalently a clock 

variable. Potts variables and Potts model Hamiltonians have been the subject of theoretical 

studies since the 1950’s, when they were introduced as a generalization of the Ising model, and 

have since found applications ranging from magnetism [25], including artificial spin ice [11,12], 

to computational biology [26,27] and complex networks [28]. We are unaware, however, of 

previous experimental systems in which a six-state Potts variable has been examined in detail. 

We also note that the thermal magnetic reversal processes of these structures are likely to be 

constrained to rotate m in increments of 60 degrees when a single leg domain flips orientation, 

thus putting interesting constraints on the dynamics. 
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Figure 2: Charge Correlations. (a) Schematic showing the charge-charge distance order 

between tripod centers and interstitial vertices, labelled by increasing neighbor distance. (b) The 

charge correlation as a function of vertex separation and comparison with the result from our 

measurement of the 320 nm kagome ice. (c) A typical map of the magnetic charges in tripod ice 

from an MFM image. Crystallites of charge ordering are shaded grey and purple, and the 

charges at the tripod centers and interstitial vertices indicated with red and blue dots. The image 

was taken from the g = 30 nm array. (d) The charge correlation between the tripod centers as a 

function of distance. The inset shows the data for the g = 30 nm array on a semi-log scale, 

suggesting an exponential dependence. The error bars in (b) and (d) are the standard error from 

multiple MFM images.  

   



7 
 

We now turn to the statistics of the measured magnetic configurations, obtained from the MFM 

images of our thermalized arrays. We first perform a comparison to expectations for the 

thoroughly examined kagome ice system [2,17,20,29,30]. By mapping the tripod charges onto a 

kagome ice structure, we find a configuration exhibiting crystallites of charge ordering among 

the magnetic charges on the tripod centers and interstitial vertices. This is demonstrated in 

Figure 2c, where we show an example of real-space charge ordering from one of our MFM 

scans. We note that these data are qualitatively similar to charge crystallites observed 

experimentally in thermalized kagome ice, which reproducibly are near the Ice-II transition and 

in good agreement with Monte Carlo calculations [18,31,20,19,21,32]. 

 

To further analyze our observed charge ordering, in Figure 2b we plot the charge correlation vs. 

the separation between charges (D), with the neighbor distances illustrated in Figure 2a. The 

charge correlation is defined as 𝐶(𝐷) = ⟨ 𝑞𝑖 𝑞𝑗⟩, where  𝑞𝑖 and  𝑞𝑗 have distance D between all 

effective magnetic charges on both the tripod centers and the interstitial center points between 

tripods. For comparison, we also plot the charge correlations from our measurements of 

kagome ice, and the agreement is striking.  

 

Figure 2d shows the correlation of charges just on the tripod centers, Ctripod(D), demonstrating 

that those correlations decrease monotonically with separation on the lattice, and that there is 

strong dependence on the gap size. The inset to Figure 2d shows that, in the case of the 

strongest correlation (g = 30 nm), the charge correlation has an apparent exponential decay 

with distance, with a fit that indicates a decay length of 277±7.4 nm. The exponential decay 

suggests equilibration just above the charge ordering transition [18,31], where charge 

correlations are expected to decay exponentially with a correlation length diverging at the 

transition. Our kagome ice data in Figure 2b show similar exponential behavior over the limited 

range in which we have results.  To the best of our knowledge, experimental observation of 

such behavior has not been previously reported for artificial spin ices. 
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Figure 3: Tripod Moment Correlations. The moment correlation for various tripod ice lattices 

as a function of distance between the tripod moments. The equivalent for the 320 nm kagome 

ice is also shown. The error bars are the standard error from multiple MFM images.  
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Having compared the charge correlations with the kagome structure, we now consider the 

correlations among the effective magnetic moments associated with the tripods. Figure 3 shows 

the correlation 𝑀(𝐷) = ⟨𝑚𝑖 ∙ 𝑚𝑗⟩ among neighboring tripods, versus their separation distance. 

We see a clear correlation among nearest-neighbor tripods, which decays rapidly with 

separation. The positive value of M for the closest spacing suggests that there is a net effective 

ferromagnetic interaction between neighboring tripod moments. In the same figure, we compare 

with the equivalent correlations from our measurements of the 320 nm kagome ice, extracted by 

ascribing to every other vertex in the kagome ice structure a net moment with six possible 

directions, as described in Supplementary information. The much larger value of the nearest 

neighbor M for the tripod ice samples compared with the kagome ice samples, indicates that the 

tripod ferromagnetic correlation is not due to the small background magnetic field that is present 

during thermalization. Furthermore, the measured correlation demonstrates that the tripod ice 

system has novel collective behavior that is associated with the tripod as a fundamental building 

block. 
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Figure 4: Gap Dependence of Correlations. Various measures of correlations for nearest 
neighbors (Dmin) in triangular tripod ice (experimental data) and kagome ice (simulations).  Note 
that Dmin has a different definition for the different quantities plotted. a. The charge correlation 
C(Dmin). b. The tripod moment correlation M(Dmin). c. The fraction of nearest-neighbors with the 
same effective moment orientation  𝑓Δθ=0(D𝑚𝑖𝑛). Data are shown for both shapes of tripods 
studied and for Monte Carlo simulations of the dipolar kagome ice system. The value of the gap 
used for the kagome simulation data is obtained as described in the text. The error bars are the 
standard error from all MFM images. 
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Figure 5: Energetics of Ordered States of Tripod Ice. Relative energy differences with 
respect to a polarized state for different magnetic textures as a function of leg length ratio r/a. 
(a) Data for a magnetic tripod lattice.  (b) Data for a dipolar kagome spin ice lattice. (c) Color-
coded schematics of three possible ground state candidates: black for polarized state, violet for 
stripe state, and green for vortex state (equivalent to the kagome long-range-ordered state).  
The filled symbols with solid lines are calculated using the Coulomb interaction model and open 
symbols with dashed lines are calculated employing the point dipole approximation. The insets 

give magnified plots around r/a  1.  
 

a) 

b) 

c) 
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In Figure 4 we examine the gap dependence of nearest-neighbor charge and effective tripod 

moment correlations for both sets of tripod ice samples, using the gap as a tuning parameter for 

the strength of the pairwise tripod interactions. We also compare with results from Metropolis 

Monte Carlo simulations of dipolar kagome ice [33], mapping each gap value to an effective 

temperature determined by minimizing the overall difference between the experimental and 

simulated charge correlations for different neighbors (as described in the Supplementary 

Information). In Figure 4a, we see that the charge correlations track almost perfectly between 

tripod ice and kagome ice (as might have been expected from Figure 2b), validating the choice 

of the charge correlators for bridging between the two structures. By contrast, there is a striking 

difference in the development of the nearest-neighbor tripod moment correlations (Figure 4b), 

where the kagome ice tripod moment correlation is determined as described above for figure 3. 

This affirms that the tripod moments have a net positive correlation with each other, which 

distinguishes them from the kagome system. We note that the Monte Carlo values for dipolar 

kagome ice are lower than that observed experimentally for the kagome ice system in figure 3, 

possibly due to a small background magnetic field during thermalization or lack of full ergodicity 

in the thermalization process.  

 

We further explore the nearest neighbor ferromagnetic correlations among tripod moment by 

defining the fraction of neighboring tripods with angular differences between their moments of 

Δθ = θi – θj = 0. We define this correlated fraction as 

 

𝑓𝛥𝜃=0(𝐷) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑚𝑖 , 𝑚𝑗) pairs when 𝑚𝑖 𝑚𝑗 align 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑚𝑖 , 𝑚𝑗) pairs 
 

 

as a function of the distance D between the tripod centers of mi and mj. For a random 

distribution of moments, 𝑓𝛥𝜃=0 should be 1/6, and we see that the data are well above that 

value, indicating a tendency for alignment of neighboring tripod moments. We note that 𝑓𝛥𝜃=0 is 

a different measure from M, since 𝑓𝛥𝜃=0 measures whether neighboring pairs have exactly the 

same tripod moment or not. The values of 𝑓𝛥𝜃=0 greater than 1/6 in Figure 4c suggests that the 

low energy state of the system has effective ferromagnetic nearest neighbor interactions among 

the tripod moments, again confirming the difference with dipolar kagome ice, and indicating that 

the tripod collective behavior is qualitatively different. 
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Since the ground state of dipolar kagome ice was somewhat complex to ascertain 

originally [18,31,34], and we expect a similar near-degeneracy of multiple states in tripod ice, we 

consider possible low-energy states of the tripod ice system without definitively identifying a 

ground state. Toward that end, we examine the dependence of the system energy on the ratio 

of the leg length to the lattice parameter, i.e., r/a, both within a Coulomb description and a point 

dipole description as shown in Figure 5a-b (see Supplementary Information for details). 

Specifically, we examined simple ordered states of the tripod moments in which the charges are 

also ordered, choosing a polarized (ferromagnetic) state, a stripe state, and a vortex state that 

corresponds to the ordered ground state of dipolar kagome ice drawn in Figure 5c. As seen in 

Figure 5a, the polarized state is the lowest in energy, except for larger values of r/a, where the 

energy hierarchy between the considered magnetic configurations displays a high sensitivity to 

this ratio. This contrasts sharply with the same calculation for the kagome lattice in Figure 5b, 

for which the vortex state has the lowest energy (as expected from previous work [18,31]). The 

ferromagnetic correlations between nearest-neighbor tripod moments in Figure 4b and 4c, as 

well as the non-monotonic behavior in M as a function of gap size, are consistent with the 

tendency for a polarized state in close energetic proximity to other ordered states. We note that 

minor lithographic imperfections in the experimental structures will also affect the 

superparamagnetic freezing of the system in any thermalization process, further obscuring the 

range of possible ground states for the structure. 

 

The combination of the results in Figures 3-5 demonstrate that interacting tripods, each 

representing six-fold Potts states, have collective behavior that is fundamentally different from 

Ising-like stadium-shaped moments used in the preponderance of previous artificial spin ice 

studies. While we only explored one of the simplest possible lattices, our demonstration opens 

the door for exploring potentially novel spin textures and collective spin dynamics in mesoscopic 

magnetic architectures, beyond the Ising framework. Unlike the quadrupolar units created 

previously in square islands or pairs of stadium-shaped islands [11,12], this system is 

comprised of building blocks with a fundamental symmetry that has no obvious previous 

experimental analog either in artificial spin systems or atomic magnetic structures. We expect 

that the tripods can be combined into a wide range of lattices to realize a variety of new 

frustrated systems, including hybrid behavior that combines Ising states with Potts states. The 

advent of tripod systems also opens the possibility of experimentally exploring collective 

behavior of such magnetic elements, e.g., by incorporating real-time XMCD-PEEM imaging to 
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study the dynamics of Potts states, offering novel vistas for exploring previously inaccessible 

statistical mechanical properties. 
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