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Collectives of actively-moving particles can spontaneously separate into dilute and dense
phases—a fascinating phenomenon known as motility-induced phase separation (MIPS). MIPS is
well-studied for randomly-moving particles with no directional bias. However, many forms of active
matter exhibit collective chemotaxis, directed motion along a chemical gradient that the constituent
particles can generate themselves. Here, using theory and simulations, we demonstrate that collec-
tive chemotaxis strongly competes with MIPS—in some cases, arresting or completely suppressing
phase separation, or in other cases, generating fundamentally new dynamic instabilities. We es-
tablish principles describing this competition, thereby helping to reveal and clarify the rich physics
underlying active matter systems that perform chemotaxis, ranging from cells to robots.

The thermodynamics of active matter—collections of
agents that consume energy to move or exert forces—has
been studied extensively due to its fundamental richness
as well as its importance to diverse applications [1, 2].
One prominent class of active matter is that composed
of self-propelled agents, ranging from enzymes [3–5] and
cells [6–9] to synthetic microswimmers and robots [10–
12]. These forms of active matter can often be mod-
eled as collections of Active Brownian Particles (ABPs),
each of which self-propels with a velocity of magnitude U0

and a direction that is continually reoriented by random
thermal fluctuations, eventually decorrelating over a time
scale τR. The persistence length of an ABP trajectory is
then given by ∼ U0τR; the directedness of a particle of
radius a can therefore be described by the reorientation
Péclet number PeR ≡ a/(U0τR).

Studies of this canonical model have led to fascinat-
ing insights into the thermodynamics of active mat-
ter. For example, phase separation in passive equilib-
rium systems typically requires attractive interactions
between constituents; in stark contrast, for small PeR,
ABPs undergo motility-induced phase separation (MIPS)
into dense and dilute phases without attractive inter-
actions [13–18]. Surprisingly, this non-equilibrium pro-
cess can often be described using models inspired by the
phase separation of thermally-equilibrated passive sys-
tems [15, 19–22].

This prior work focused on ABPs that move randomly,
with no preferred direction. However, many forms of ac-
tive matter exhibit collective chemotaxis—directed mo-
tion in response to an external chemical gradient that can
be generated collectively by the agents themselves. In
biology, this phenomenon enables populations of cells to
escape from harmful environments, colonize new terrain,
and migrate as groups [6, 23–32]; at the subcellular level,
enzymes may also perform chemotaxis [3–5]. Synthetic

active materials that can perform chemotaxis have also
been developed, often exhibiting new surprises in their
phase behavior—e.g., unusual clustering and oscillatory
density fluctuations [10, 11, 33–42]. However, despite
these hints that chemotaxis can influence the physics of
active matter, a broader understanding of how exactly
chemotaxis alters MIPS remains lacking.
Here, we address this gap in knowledge by develop-

ing a theoretical model that combines both MIPS and
chemotaxis, which are usually studied in isolation. We
find that collective chemotaxis can dramatically suppress
MIPS, arrest phase separation, or engender new complex
phase separation dynamics reminiscent of other pattern-
forming systems [43–59], but that arise due to completely
different physics—in this case, due to the competition
between MIPS, which drives ABPs to cluster into dense
phases, and chemotaxis, which instead drives them to
disperse away.
Governing equations. Building on existing contin-

uum models of MIPS [15, 19–22], we describe the time
evolution of the volume fraction ϕ of chemotactic ABPs
via the continuity equation,

∂ϕ

∂t
= −∇ · J, (1)

J = −M0ϕ∇
(
µ̃h(ϕ,PeR)− κ∇2ϕ

)︸ ︷︷ ︸
MIPS

+χ0ϕ∇f(c̃)︸ ︷︷ ︸
chemotaxis

, (2)

where t is time and J is the flux of particles. This flux
has two contributions, as indicated by the underbraces
in Eq. (2). The first reflects active Brownian motion, as
established by the classical “model B”; in future work,
it would be interesting to explore other models of MIPS
that treat additional complexities [20]. As detailed in
§1 of [60], M0 = 0.5U2

0 τR is the active diffusivity re-
flecting the random undirected motion of the particles,
µ̃h is the bulk chemical potential nondimensionalized by



2

the energy scale 0.5ζU2
0 τR with drag coefficient ζ, and

the characteristic length scale
√
κ ∼ U0τR sets the width

of the interface between the dense and dilute phases in
MIPS [15, 19].

The second term in Eq. (2) represents a new addition
of chemotaxis to this classical model of MIPS. This term
is widely used to describe the chemotaxis of microor-
ganisms [6, 24–32, 77] as well as many synthetic forms
of active matter [4, 34, 78, 79]; indeed, it can be di-
rectly derived from an explicit microscopic description of
chemotactic ABPs as detailed in §2 of [60], based on [34].
Here, c̃ is the concentration, nondimensionalized by a
fixed characteristic concentration, of a diffusible chemical
signal (the chemoattractant) that the particles sense and
direct their motion in response to. The monotonically-
increasing function f(c̃) describes the ability of the par-
ticles to sense the chemoattractant; we take f(c̃) = c̃ as
an illustrative example [80, 81]. The chemotactic coef-
ficient χ0 describes the ability of the particles to move
up the sensed chemoattractant gradient. Thus, χ0∇f(c̃)
describes the chemotactic velocity, and when multiplied
by ϕ describes the chemotactic flux [82, 83]. Hence, we
define a new chemotactic Péclet number PeC ≡ χ0/M0

to describe the competition between directed chemotaxis
and undirected active diffusion.

Chemoattractants (e.g., nutrients) are often taken up
by the particles themselves—thereby collectively gener-
ating a local chemoattractant gradient that the particles
bias their motion in response to [24–26, 28, 34, 37, 39,
40, 84–88]. Thus, we describe the chemoattractant via

∂c̃

∂t
= Dc∇2c̃− kϕg(c̃) + S, (3)

whereDc is the chemoattractant diffusivity, k is the char-
acteristic volumetric rate of chemoattractant uptake, and
g(c̃) describes how uptake rate increases with c̃; we use
the linearized g(c̃) = c̃ for simplicity. Finally, S rep-
resents the rate at which chemoattractant is externally
supplied, taken to be constant and spatially uniform as
an illustrative example.

Chemotaxis suppresses MIPS. First, we estab-
lish the conventional case of MIPS as a baseline, de-
scribed by our governing Eqs. (1)–(3) with PeC = 0.
To do so, we choose a functional form for µ̃h(ϕ,PeR),
given by Eq. (S4) of [60], that derives from a previously-
established ABP equation of state [16, 89]. The homoge-
neous state with constant, spatially-uniform ϕ(x) = ϕ0,
where x denotes position, becomes unstable to fluctua-
tions in ϕ when the free energy is nonconvex (∂ϕµ̃h < 0).
Therefore, the spinodal curve demarcating the limit of
stability is given by ∂ϕµ̃h = 0, shown by the black curves
in Fig. 1; ϕ0 represents the ABP volume fraction aver-
aged over the entire system. Above this spinodal curve,
the homogeneous state is linearly stable. Below the spin-
odal, ABPs spontaneously separate into dense and di-
lute phases, initially forming domains with a most un-

stable wavelength ∼ q−1
sp ≡

√
−2κ/∂ϕµ̃h that coarsen

over time via spinodal decomposition (Movie S1) as es-
tablished previously [19, 89].

How do the features of MIPS change upon the intro-
duction of chemotaxis (PeC > 0)? Given a constant
and uniform S, the homogeneous state is now described
by spatially-uniform ABP and chemoattractant profiles,
ϕ(x) = ϕ0 and c̃(x) = c̃0, where c̃0 is given by the steady-
state solution to Eq. (3), c̃0 = S/(kϕ0). By perturb-
ing this steady state with small-amplitude fluctuations
δϕ = δϕ̂eiq·x+ωt and δc̃ = δĉeiq·x+ωt of spatial wavevec-
tor q and growth rate ω, we obtain the dispersion re-
lation ω(q), given by Eq. (S33) of [60], where q = |q|
is the wavenumber of a given mode. The homogeneous
state is linearly stable if Re ω < 0, which is always
true when ∂ϕµ̃h > 0. We therefore focus our subsequent
analysis on the spinodal region of non-chemotactic MIPS
where ∂ϕµ̃h < 0, and nondimensionalize q and ω by the
characteristic non-chemotactic MIPS quantities qsp and
ωsp ≡ ω(qsp; PeC = 0).

As detailed in §3 of [60], the dispersion relation for
chemotactic MIPS [Eq. (S37)] solely depends on three
dimensionless parameters: α ≡ −M0ϕ0∂ϕµ̃h/Dc, which
compares the collective ABP diffusivity −M0ϕ0∂ϕµ̃h to
that of the chemoattractant; the Damköhler number
Da ≡ kϕ0/(2Dcq

2
sp) = −κkϕ0/(Dc∂ϕµ̃h), which com-

pares the rates of chemoattractant uptake and diffusion
over the length scale q−1

sp /
√
2; and the reduced chemo-

tactic Péclet number Pe′C ≡ χ0c̃0/(−M0ϕ0∂ϕµ̃h). Be-
cause the MIPS phase diagram is conventionally pa-
rameterized by ϕ0 and PeR, which together set ∂ϕµ̃h

[Eq. (S5)], we also define versions of the three dimen-
sionless parameters that are independent of these vari-
ables: α0 ≡ M0/Dc, Da0 ≡ κk/Dc, and PeC given ear-
lier, such that α = −α0ϕ0∂ϕµ̃h, Da = −Da0ϕ0/∂ϕµ̃h,
and Pe′C = −PeC · S/(kϕ2

0∂ϕµ̃h). Furthermore, because
the proportionality between Pe′C and PeC is scaled by
S/k, without loss of generality, we fix the chemoat-
tractant supply rate S/k = 1. Chemotactic MIPS is
then parameterized by a total of five governing parame-
ters: {ϕ0,PeR, α0,Da0,PeC}, as summarized in Table S1.
Thus, to examine how chemotaxis influences MIPS, we
first investigate how the conventional ϕ0 −PeR phase di-
agram of MIPS changes upon varying α0, Da0, and PeC.

As detailed in §3 of [60] and summarized in Appendix
A, our first main result from the linear stability anal-
ysis is that phase separation is suppressed by chemo-
taxis, but only when two criteria are simultaneously sat-
isfied: (i) Pe′C ≥ Pe′C,crit, and (ii) α ≤ αcrit, where

Pe′C,crit = (1+min{Da, 1})2/(4 ·min{Da, 1}) and αcrit =

1 + 2 · Da + 2
√
Da(1 + Da). We therefore designate the

limits given by Pe′C = Pe′C,crit and α = αcrit as “Bound-
ary 1” and “Boundary 2”—shown in the PeR − ϕ0 phase
diagrams (Fig. 1) by the solid and red dotted curves, re-
spectively. Boundary 1 is colored by the different values
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FIG. 1: Chemotaxis suppresses MIPS. (a, c, e) Phase diagram determined by linear stability analysis for different
Da0 and α0; ϕ0 represents the system-averaged ABP volume fraction. The black curve shows the limit of stability
without chemotaxis, below which is conventional MIPS. The colored solid and red dotted curves show Boundaries 1
and 2, defined in the main text; different colors indicate different PeC. Boundary 2 is below the horizontal axis in
(a). The region above both Boundaries is stable (ABPs in the homogeneous state), while the region below either
Boundary is unstable. The different instability types—finite (F) or unbounded (U), stationary (S) or oscillatory

(O)—are denoted by the shaded, unshaded, non-hashed, and hashed regions, respectively. Dash-dotted and dashed
curves indicate the boundaries between F/U and S/O instabilities, respectively. The predictions are corroborated by
simulations (Movies S2-S4), snapshots of which are shown in (b, d, f), which focus on the grey boxed regions shown

in (a, c, e). Snapshots in (b) and (d) correspond to PeC = 1, while PeC = 0.35 in (f).

of PeC. Boundary 2 does not depend on PeC. Criteria
(i) and (ii) correspond to the regions above Boundaries 1
and 2, respectively; hence, the region above both Bound-
aries represents the stable regime in which the ABPs are
in the homogeneous state, while conversely, the region
below either Boundary 1 or 2 represents the unstable
regime in which the ABPs phase separate.

As a starting example, we consider Da0 = 0.2 and
α0 = 1, shown in Fig. 1(a). In this case, Boundary 2 is
below the horizontal axis; hence, the system is linearly
stable above Boundary 1 and unstable below it. Bound-
ary 1 shifts to lower PeR and a narrower range of ϕ0

with increasing PeC. That is, the region of instability
shrinks and phase separation is suppressed when chemo-
taxis is stronger. Numerical simulations at PeC = 1 con-
firm this linear stability result: ABPs are in the homoge-
neous state above Boundary 1, but phase separate below
it, as shown in Fig. 1(b). Intriguingly, the features of
this phase separation appear to be fundamentally dis-
tinct from the spinodal decomposition observed in con-

ventional non-chemotactic MIPS. For example, as shown
in Movie S2, ABPs phase separate into finite-sized do-
mains that remain stationary, and do not subsequently
coarsen—unlike in conventional MIPS.

Next, upon increasing α0 to 4, Boundary 1 remains
unaltered, but Boundary 2 shifts upward, as shown in
Fig. 1(c). As a result, for the case of PeC = 1, Bound-
ary 2 rises above Boundary 1, which is omitted since
Boundary 2 now corresponds to the limit of stability, as
confirmed by numerical simulations shown in Fig. 1(d).
As shown in Movie S3, ABPs phase separate into finite-
sized domains and bands that form traveling waves, a
feature that is fundamentally distinct both from conven-
tional MIPS and Fig. 1(b).

Finally, to highlight yet another distinct form of phase
separation, we then increase both α0 and Da0 in Fig. 1(e),
where Boundary 1 shifts downward while Boundary 2
shifts upward, part of which becomes the limit of stabil-
ity for PeC = 0.35, confirmed by simulations in Fig. 1(f).
Strikingly, we find that throughout the unstable region,
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FIG. 2: Chemotaxis arrests phase separation and
generates dynamic instabilities. Phase diagram is
parameterized by α0 and PeC, holding ϕ0 = 0.8,

PeR = 10−3, and Da0 = 0.5 fixed. Different instability
types predicted by our linear stability analysis are
indicated using the same labels as in Fig. 1, again

corroborated by simulations (Movie S7), snapshots of
which are shown. Arrows show the local velocity field u
relative to the characteristic velocity u0 ≡ M0/

√
κ ∼ U0;

|u| < 0.005u0 vectors are omitted for clarity.

the patterns vary from traveling bands that are extended
(shaded green + hashed region) or less extended (un-
shaded + hashed region) to domains that stretch, rotate,
and translate (unshaded region below the green dashed
curve), as shown in Movie S4.

Taken altogether, these results demonstrate that MIPS
is suppressed when (1) the strength of chemotaxis, as
quantified by PeC, and (2) chemoattractant diffusiv-
ity relative to that of the ABPs, as quantified by α−1

0 ,
are sufficiently high. Moreover, our simulations reveal
that the features of phase separation are dramatically
altered by chemotaxis—with separated domains that ini-
tially can either be finite-sized or unbounded in space,
and can either be stationary or exhibit complex oscil-
latory dynamics in time, depending on the values of
{ϕ0,PeR, α0,Da0,PeC}. We summarize these results in
the α0 − PeC phase diagram shown in Fig. 2, holding
ϕ0, PeR, and Da0 fixed, and show the region of stability
(which lies above Boundary 1 and to the left of Bound-
ary 2 in the α0−PeC plane shown) and snapshots of these
different types of instability (animated in Movie S7) that
we now seek to categorize.

Chemotaxis arrests phase separation. We first
classify the instabilities by their distinct spatial char-

acteristics. In particular, depending on the range of
initially-unstable wavenumbers q− < q < q+ in the dis-
persion relation ω(q) [Eq. (S33)] derived using our linear
stability analysis, we differentiate instabilities as being
either finite-wavelength (F) when the unstable modes
are spatially bounded (q− > 0), and therefore phase-
separated domains do not coarsen, or unbounded (U)
when the unstable modes can instead extend indefinitely
in space (q− = 0) [90]. While conventional MIPS is
a Type U instability [19, 43, 89], our second main re-
sult is that chemotaxis can give rise to Type F insta-
bilities as well—as shown by the domains that do not
coarsen in e.g., Movies S2–S3 noted earlier. Compar-
ing the ABP (Movies S2–3) and chemoattractant (Movies
S5–6) profiles reveals the underlying reason: ABPs in an
extended, dense domain collectively establish a strong lo-
cal chemoattractant gradient through uptake—which in
turn causes them to bias their motion up the gradient
and disperse away, arresting phase separation.

This behavior is also reflected in the simulations shown
in Fig. 2 and Movie S7. For the example of α0 = 2 (left of
Boundary 2), as PeC increases, the coarsening slows and
eventually becomes arrested (§6 of [60]), forming finite-
sized domains and stripes—ultimately reaching the ho-
mogeneous state at the largest PeC above Boundary 1.
Examining the dispersion relations corroborates this ob-
servation (see Appendix B). Indeed, determining q− di-
rectly from the dispersion relation yields the criterion
that Type F is Pe′C > 1 (shaded regions in Fig. 1), while
Type U is given by Pe′C < 1 (unshaded). The boundary
between the two, given by Pe′C = 1 (Eq. (S68), is repre-
sented by the dash-dotted curves in Figs. 1 and 2. In all
cases, our predictions agree well with the simulations, as
detailed in §7 of [60]—thereby providing a description of
how chemotaxis can arrest MIPS. Indeed, as described in
§9 of [60], this description may help to rationalize previ-
ous observations of bacterial populations [7, 91].

Chemotaxis engenders complex oscillatory dy-
namics. We further classify the instabilities by their
distinct temporal characteristics [43] — “Stationary” (S)
if all unstable modes are non-oscillatory with Im ω = 0,
or “Oscillatory” (O) if there exist unstable and oscillatory
modes with Re ω(q) > 0 and Im ω(q) ̸= 0. While conven-
tional MIPS is a Type S instability, our third main result
is that chemotaxis can give rise to Type O instabilities
as well—e.g., Movies S3-4 noted earlier. This behavior is
also reflected in Fig. 2 and Movie S7, and is again cor-
roborated by examining the dispersion relations for the
example of α0 = 8 (Appendix B). In this case, at large
PeC, chemotaxis proceeds more rapidly and the diffus-
ing chemoattractant cannot equilibrate fast enough. As
a result, variations in c̃(x) lag behind ϕ(x) (Appendix
B), driving sustained large-scale motion of the phase-
separated domains [92, 93] e.g., through stretching, rotat-
ing, and translating, as indicated by the arrows in Fig. 2
showing the local velocity field u.
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The dispersion relation again yields a criterion for the
Type O instability, shown as the hashed regions in Fig. 1.
The Type S/O boundary [Eq. (S60)] is represented using
the dashed curves in Figs. 1(e)-(f) and 2; in Fig. 1(c)-(d),
this Boundary coincides with Boundary 2. We again ob-
serve good agreement between the predicted Type S/O
boundary and the simulations [94]. Thus, our analysis
provides a key first step toward explaining how the inter-
play between chemotaxis and chemoattractant diffusion
can generate more complex phase separation dynamics
than in conventional MIPS. Indeed, as described in §9
of [60], our results may help guide new experiments us-
ing synthetic materials [12, 95–101] to explore these rich
physics. Our simulations also show other complex fea-
tures, e.g., the quasi-ordered lattices in Fig. 2, whose
description will require nonlinearities to be explicitly in-
corporated in the analysis; moreover, while here we ex-
amined a specific type of chemotaxis and MIPS, our theo-
retical framework can be readily extended to other forms
of taxis and phase separation. We further describe these
useful directions for future work in §10 of [60].

We acknowledge support from NSF Grants CBET-
1941716, DMR-2011750, and EF-2124863, the Camille
Dreyfus Teacher-Scholar Program, the Pew Biomedical
Scholars Program, and a Princeton Bioengineering Ini-
tiative (PBI2) Postdoctoral Fellowship.
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APPENDIX A: LINEAR STABILITY ANALYSIS

Here, we provide a summary of the linear stability
analysis in §3 of [60]. Substituting the small-amplitude
perturbations δϕ and δc̃ into linearized Eqs. 1, 2, and 3
yields

ωδϕ̂ = −M0ϕ0q
2(∂ϕµ̃h + κq2)δϕ̂+ χ0ϕ0q

2f ′(c̃0)δĉ, (4)

ωδĉ = −Dcq
2δĉ− k(g(c̃0)δϕ̂+ ϕ0g

′(c̃0)δĉ). (5)

§3E of [60] shows that the system is always linearly sta-
ble outside the spinodal region ∂ϕµ̃h > 0. Therefore, we
analyze the linear stability when ∂ϕµ̃h < 0 below. Nondi-
mensionalizing the wavenumber q and growth rate ω via
q̃ = q/(

√
2qsp) and ω̃ = ω/(4ωsp), we obtain the following

quadratic equation for ω̃,

ω̃2 +

[
q̃4 −

(
1− 1

α

)
q̃2 +

Da

α

]
ω̃

+
q̃2

α

(
(q̃2 − 1)(q̃2 +Da) + DaPe′C

)
= 0. (6)

The stability condition is that two solutions to the equa-
tion satisfy Re ω̃±(q̃) ≤ 0 for all q̃, or equivalently
ω̃+ω̃− > 0 and ω̃+ + ω̃− < 0.

Since

ω̃+ω̃− =
q̃2

α

(
(q̃2 − 1)(q̃2 +Da) + DaPe′C

)
, (7)

when Da ≤ 1, αq̃−2ω̃+ω̃− ≥ Da(Pe′C−1). When Da > 1,

αq̃−2ω̃+ω̃− ≥ − (1+Da)2

4 + DaPe′C. Therefore, ω̃+ω̃− > 0
for all q̃ is equivalent to criterion (i) (Pe′C ≥ Pe′C,crit).
Since

ω̃+ + ω̃− = −q̃4 +

(
1− 1

α

)
q̃2 − Da

α
, (8)

when α ≤ 1, ω̃+ + ω̃− ≤ −Da/α < 0. When α > 1,
ω̃++ ω̃− ≤ (1−α−1)2/4−Da/α. Therefore, ω̃++ ω̃− < 0
for all q̃ is equivalent to criterion (ii) (α ≤ αcrit).
In the main text, we define type U instability to be

when the lower bound of the unstable wavenumber q− is
zero. As shown in §3C of [60], this condition is equivalent
to requiring that the second order derivative of ω̃+ at
q̃ = 0 is positive, that is, ω̃′′

+(q̃ = 0) = 2(1−Pe′C) > 0, or
Pe′C < 1.

Oscillatory instability emerges when there exists q̃ for
which Re σ(q̃) > 0 and Im σ(q̃) ̸= 0, or equivalently
ω̃+ω̃− > 0 and the determinant of Eq. 6 is negative. The
first condition requires that criterion (ii) is not satisfied
(α > αcrit). For the second condition, because the deter-
minant is

∆ =

[
q̃4 −

(
1 +

1

α

)
q̃2 − Da

α

]2
− 4DaPe′C

α
q̃2, (9)

∆ becomes negative when Pe′C is sufficiently large. §3D
of [60] derives the expression for the critical Pe′C above
which both conditions are met.

APPENDIX B: THE ROLE OF CHEMOTAXIS IN
ARRESTING PHASE SEPARATION AND
GENERATING COMPLEX DYNAMICS.

As shown in Fig. 2 and Movie S7, for the example of
α0 = 2 (left of Boundary 2), chemotaxis arrests phase
separation with increasing PeC. Examining the disper-
sion relations in Fig. 3(a) corroborates this observation.
At low non-zero PeC, the unstable modes extend to
q− = 0 (blue to green curves), indicating a Type U in-
stability. By contrast, for the larger PeC = 0.76, q− > 0
(chartreuse curve), indicating a Type F instability.

Also as shown in Fig. 2 and Movie S7, for the exam-
ple of α0 = 8 (right of Boundary 2), chemotaxis arrests
phase separation with increasing PeC. Examining the
dispersion relations in Fig. 3(b) corroborates this obser-
vation. At low PeC (blue and cyan curves), all unstable
modes (with Re ω > 0) are stationary (having Im ω = 0),
indicating a Type S instability; by contrast, at higher
PeC (green to orange curves), some unstable modes have
Im ω ̸= 0, indicating a Type O instability.

Comparing the ABP and chemoattractant profiles,
ϕ(x) and c̃(x) respectively, sheds light on the physics
underlying these complex dynamics at large PeC and
α0. Fig. 3(c) shows the illustrative case of α0 = 8 for
the five different PeC shown in (a). For the lowest two
PeC, chemotaxis is weak, enabling c̃(x) to equilibrate in
response to changes in ϕ(x). Consequently, the phase-
separated patterns remain stationary, reflective of a Type
S instability. For larger PeC, however, chemotaxis pro-
ceeds more rapidly and the diffusing chemoattractant
cannot equilibrate fast enough. As a result, variations
in c̃(x) lag behind ϕ(x), driving directed large-scale mo-
tion of the phase-separated domains [92, 93], reflective of
a Type O instability.
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[30] S. Gude, E. Pinçe, K. M. Taute, A. B. Seinen, T. S.
Shimizu, and S. J. Tans, Bacterial coexistence driven
by motility and spatial competition, Nature 578, 588

https://doi.org/10.1021/acs.biochem.8b00801
https://doi.org/10.1021/acs.nanolett.8b00717
https://doi.org/10.1073/pnas.1814180115
https://doi.org/10.1073/pnas.1814180115
https://doi.org/10.1073/pnas.1814180115
https://www.springer.com/gp/book/9780387952239
https://doi.org/10.1103/PhysRevLett.122.248102
https://doi.org/10.1103/PhysRevLett.122.248102
https://doi.org/10.1146/annurev-conmatphys
https://doi.org/10.1146/annurev-conmatphys
https://doi.org/10.1146/annurev-conmatphys
https://doi.org/10.1083/jcb.201508047
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.108.268303
https://doi.org/10.1103/PhysRevLett.108.268303
https://doi.org/10.1038/s41578-018-0016-9
https://doi.org/10.1038/s41578-018-0016-9
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/PhysRevE.91.032117
https://doi.org/10.1103/PhysRevE.91.032117
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/103/30008
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevLett.111.145702
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1103/PhysRevLett.112.218304
https://doi.org/10.1073/pnas.1001994107
https://doi.org/10.1073/pnas.1001994107
https://doi.org/10.1038/s41586-019-1733-y
https://doi.org/10.1038/s41586-019-1733-y
https://doi.org/10.1038/s41467-018-04539-4
https://doi.org/10.1016/j.bpj.2021.05.012
https://doi.org/10.7554/eLife.71226
https://doi.org/10.7554/eLife.67316
https://doi.org/10.1088/1367-2630/ab4522
https://doi.org/10.1088/1367-2630/ab4522
https://doi.org/10.1038/s41586-020-2033-2


8

(2020).
[31] J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin,

P. Silberzan, and B. Perthame, Mathematical descrip-
tion of bacterial traveling pulses, PLoS Computational
Biology 6, 10.1371/journal.pcbi.1000890 (2010).

[32] J. A. Moore-Ott, S. Chiu, D. B. Amchin, T. Bhattachar-
jee, and S. S. Datta, A biophysical threshold for biofilm
formation, eLife 11, 10.7554/eLife.76380 (2022).

[33] H. Stark, Artificial chemotaxis of self-phoretic active
colloids: Collective behavior, Accounts of Chemical Re-
search 51, 2681 (2018).

[34] O. Pohl and H. Stark, Dynamic clustering and chemo-
tactic collapse of self-phoretic active particles, Physical
Review Letters 112, 238303 (2014).
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and F. Jülicher, Growth and division of active droplets
provides a model for protocells, Nature Physics 13, 408
(2017).

[48] A. M. Menzel and H. Lowen, Traveling and resting crys-
tals in active systems, Physical Review Letters 110,
055702 (2013).

[49] A. Ziepke, I. Maryshev, I. S. Aranson, and E. Frey,
Multi-scale organization in communicating active mat-

ter, Nature Communications 13, 6727 (2022).
[50] S. Saha, J. Agudo-Canalejo, and R. Golestanian, Scalar

active mixtures: The nonreciprocal cahn-hilliard model,
Physical Review X 10, 041009 (2020).

[51] Z. You, A. Baskaran, and M. C. Marchetti, Nonreciproc-
ity as a generic route to traveling states, Proceedings of
the National Academy of Sciences 117, 19767 (2020).

[52] J. van der Kolk, F. Rasshofer, R. Swiderski, A. Haldar,
A. Basu, and E. Frey, Anomalous collective dynamics of
auto-chemotactic populations (2022).

[53] R. Matas-Navarro, R. Golestanian, T. B. Liverpool, and
S. M. Fielding, Hydrodynamic suppression of phase sep-
aration in active suspensions, Physical Review E 90,
032304 (2014).

[54] R. M. Navarro and S. M. Fielding, Clustering and phase
behaviour of attractive active particles with hydrody-
namics, Soft Matter 11, 7525 (2015).

[55] S. Yin and L. Mahadevan, Contractility-induced phase
separation in active solids, (2022).

[56] M. Z. Bazant, Thermodynamic stability of driven open
systems and control of phase separation by electro-
autocatalysis, Faraday Discussions 199, 423 (2017).

[57] R. Adkins, I. Kolvin, Z. You, S. Witthaus, M. C.
Marchetti, and Z. Dogic, Dynamics of active liquid in-
terfaces, Science 377, 768 (2022).

[58] A. M. Tayar, F. Caballero, T. Anderberg, O. A. Saleh,
M. C. Marchetti, and Z. Dogic, Controlling liquid-liquid
phase behavior with an active fluid (2022).

[59] F. Caballero and M. C. Marchetti, Activity-suppressed
phase separation, Physical Review Letters 129, 268002
(2022).

[60] See the supplemental material at [url], which includes
Refs. [61–76].

[61] J. Tailleur and M. E. Cates, Statistical mechanics of
interacting run-and-tumble bacteria, Physical Review
Letters 100, 218103 (2008).

[62] L. Shampine and M. Reichelt, Ode matlab solvers, Jour-
nal of Scientific Computing 18, 1 (1997).

[63] H. Furukawa, Spinodal decomposition of two-
dimensional fluid mixtures: A spectral analysis of
droplet growth, Physical Review E - Statistical Physics,
Plasmas, Fluids, and Related Interdisciplinary Topics
61, 1423 (2000).

[64] M. Laradji, S. Toxvaerd, and O. G. Mouritsen, Molec-
ular dynamics simulation of spinodal decomposition in
three-dimensional binary fluids, Physical Review Let-
ters 77, 2253 (1996).

[65] S. Mao, D. Kuldinow, M. P. Haataja, and A. Košmrlj,
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