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We show exactly that standard ‘invariants’ advocated to define topology for non-interacting systems deviate
strongly from the Hall conductance whenever the excitation spectrum contains zeros of the single-particle Green
function, G, as in general strongly correlated systems. Namely, we show that if the chemical potential sits atop
the valence band, the ‘invariant’ changes without even accessing the conduction band but by simply traversing
the band of zeros that might lie between the two bands. Since such a process does not change the many-body
ground state, the Hall conductance remains fixed. This disconnect with the Hall conductance arises from the
replacement of the Hamiltonian, h(k), with G−1 in the current operator, thereby laying plain why perturbative
arguments fail.

The stability of a gapped ground state against smooth de-
formations of the Hamiltonian that do not close a spectral gap
is the cornerstone of topology. Such stability is captured by
quantized invariants. Key invariants that arise in topological
systems are the Chern numbers. While they appear as coef-
ficients of the Chern-Simons Lagrangian, they have physical
import as well. For example, the first Chern number, C1, is
the coefficient,

σH = C1
e2

h
, (1)

of the Hall conductance [1, 2]. As a topological invariant, C1

can only change if the chemical potential crosses a band or
more generally, if there are zero-energy excitations, measured
with respect to the chemical potential. Any movement of the
chemical potential within a spectral gap amounts to an adia-
batic change of the system Hamiltonian, and so cannot change
C1.We will take such a change to be the paradigmatic defini-
tion of an infinitesimal deformation.

For computational purposes, it has become common to for-
mulate Chern numbers in terms of single-particle Green func-
tions. Consider the commonly conceived invariant N3[3, 4]
for the two-dimensional quantum anomalous Hall (QAH) in-
sulator (also named as N2 in Ref. [5, 6])

N3 =
ϵαβγ
6

tr

∫ ∞

−∞
dω

∫
d2k

(2π)2
G−1∂kα

GG−1∂kβ
GG−1∂kγ

G,
(2)

where G(ω,k) is the zero temperature (single-particle) Green
function in momentum space, α, β, and γ take values 0, 1 and
2, such that k0 = ω, and k1, k2 are components of the crys-
tal momentum, and tr denotes the trace over the fermionic
degrees of freedom of G. For non-interacting electrons, N3

reduces to the first Chern number C1, or equivalently the
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) [1] invari-
ant. That N3 is invariant to small deformations of the Hamil-
tonian follows from substituting the infinitesimal,

δ(G∂kαG
−1) = δG∂kαG

−1 −G∂kα(G
−1δGG−1)

=−G(∂kα
G−1)δGG−1 − ∂kα

(δG)G−1,
(3)

into the variation of N3 which leads to a recasting of the re-
sultant integrand as a total derivative. As the integral of a total
derivative, δN3 will naturally vanish for δG continuously con-
nected to zero (i.e. for small deformations). Consequently, N3

is invariant to infinitesimal changes in the underlying Hamil-
tonian provided periodic boundary conditions are imposed.

The utility of Eq. (2) is that only the Green function is re-
quired to evaluate N3, rather than the full spectrum of the
eigenstates as is typically needed to compute the Berry curva-
ture or the TKNN invariant[1]. Consequently, one may hope
that Eq. (2) naturally applies to interacting systems. How-
ever, when interactions are present, the Green function can
vanish[7] along a connected surface in momentum space for
frequencies within the gap. This defines the Luttinger surface,
which is a Mott fixed point under local perturbations[8, 9].
What happens to N3 when the chemical potential crosses
such a surface? If the ground state evolves continuously
and the gap does not close, then the topological invariants
of the ground state cannot change. That is, C1 should re-
main fixed. However, it is known[3, 4] that N3 is sensitive
to a zero or an edge-state (pole in the propagator) crossing the
chemical potential. It is this sensitivity that underlies a recent
claim that zeros are topological in the context of doped Mott
insulators[10]. In particular for models of fractional quantum
Hall effect (FQHE), it has been shown that N3 is in general not
equal to the C1[11]. Even more, pairs of fractional quantum
Hall states with different Chern numbers (and hence different
ground state topology) can be shown to have equal values of
N3. However, to our knowledge, the precise relationship be-
tween N3 and C1 as a function of chemical potential has not
been established for an interacting system.

It is this loophole that we address in this paper. For the
Hatsugai-Kohmoto model[12, 13] with a topological non-
trivial ground state, we use the exact Green function to show
that even without closing the gap, N3 changes when a band
of zeros crosses the chemical potential. By definition, such
a change constitutes an infinitesimal variation that does not
close an energy gap, and hence there should be no change in
topological invariants characterizing the ground state. Conse-
quently, we demonstrate explicitly that N3 in Eq. (2) and C1

are disconnected should zeros appear in the Green function.
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In general for interacting systems, although N3 is a topologi-
cal property of the single-particle Green function, it does not
necessarily encode a topological invariant of the ground state
in contrast to previous claims[3, 4, 10].

The computation of N3 requires knowledge of the full
single-particle Green function. To this end, we adopt a model
that affords an exact treatment of interaction and topology for
the QAH effect[14]. For a square lattice with the orbitals po-
sitioned at lattice sites, the non-interacting part of a two-fold
(spinful) Chern insulator can be written as,

H0 =
∑
k

c†kh(k)ck =
∑
k

c†k

(
hQAH(k) 0

0 hQAH(k)

)
ck, (4)

where c† = {c†O1,↑c
†
O2,↑, c

†
O1,↓c

†
O2,↓} is a four-component

spinor, and O1/2 stands for different orbitals or sub-lattices,
respectively. hQAH(k) = d⃗(k) · σ⃗ describes a 2 × 2 QAH
Hamiltonian for each spin, e.g. d⃗(k) = (sin kx, sin ky,m −
cos kx − cos ky). This non-interacting Hamiltonian can be
diagonalized under a unitary transformation into h(k) =
V (k)diag(ε−,k, ε−,k, ε+,k, ε+,k)V

†(k) where upper (+) and
lower (−) bands are given by

ε±,k = ±|d⃗(k)| = ±
√
d2x(k) + d2y(k) + d2z(k). (5)

Electrons with opposite spin have the same dispersion and
chirality. This momentum space basis is not destroyed under
the local-in-momentum Hatsugai-Kohmoto (HK) interaction
that includes Mottness[8, 12, 14–16]

HQAH−HK =
∑
k,σ

[
(ε+,k − µ)n+,k,σ + (ε−,k − µ)n−,k,σ

]
+ U

∑
k

(n+,k,↑ + n−,k,↑)(n+,k,↓ + n−,k,↓).
(6)

The interaction term is rotational symmetric under the unitary
transform V (k) since n+,k,σ + n−,k,σ is a trace in either the
orbital or band basis. The exact Green function in the band
basis,

G±,k,σ(ω) =
⟨(1− n+,k,σ̄)(1− n−,k,σ̄)⟩

ω + µ− ε±,k

+
⟨n+,k,σ̄ + n−,k,σ̄ − 2n+,k,σ̄n−,k,σ̄⟩

ω + µ− (ε±,k + U)

+
⟨n+,k,σ̄n−,k,σ̄⟩

ω + µ− (ε±,k + 2U)
,

(7)

has 6 poles at any given momentum. However, only some
of them have a non-vanishing weight in the insulating state
for U ≫ W , where W = 2maxk |d⃗(k)| is the bandwidth.
At quarter-filling, the degenerate ε− band is singly occupied,
thus ⟨n−,k,↑⟩ = ⟨n−,k,↓⟩ = 1/2. The ε+ band remains empty
for both spin, ⟨n+,k,σ⟩ = 0 and ⟨n+,k,σ̄n−,k,σ̄⟩ = 0. Thus,
the poles at ε±,k − µ + 2U have zero weight while the poles
at ε±,k − µ+ U and ε±,k − µ both have 1/2 weight.

At half-filling and U ≫ W , the ground state always occu-
pies both ε± with the same spin, ⟨n−,k,σ⟩ = ⟨n+,k,σ⟩ = 1/2
and ⟨n+,k,σn−,k,σ⟩ = 1

2 . Thus the poles at ε±,k−µ+U have
zero weight. The remaining 4 poles all have the same weight
of 1/2, generating the zero branches located at the poles of
the self-energy,

Σ±,k,σ(ω) = U +
U2

ω + µ− ε±,k − U
. (8)

The position of the 4 poles relative to the chemical potential
defines the electron filling. In the case of half-filling, the lower
two poles located at ε±,k − µ lie below the chemical poten-
tial, while ε±,k − µ+ 2U lies above, thereby maintaining the
gapped Mott state.

According to a previous analysis[14] on the topology of this
model, we know that both the QAH-HK and QAH-Hubbard
models predict a topologically trivial phase at half-filling
when the interactions dominate. There is a topological phase
transition from half-filling to quarter-filling, leading to a topo-
logical Mott insulator at quarter-filling with C1 = 1, which is
half the Chern number of the non-interacting insulator at half
filling .
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FIG. 1: The pole structure for the Green function from Eq. (7) at
half-filling with U ≫ W . The solid lines represent the poles, the
dashed line represents the zeroes. The numbers next to the curves are
the corresponding contribution to N3 of that particular band. Note
that all three of these configurations represent the same gapped half-
filling ground state, while the N3 for each setup is N3 = 0,−2, or
undefined. Here we use the Haldane model[17] as an example for
Eq. (6) with an HK interaction to construct the band dispersion.

At any filling with a gap, such as half-filling where U sets
the gap scale, we can shift the chemical potential µ inside
this gap without affecting the many-body ground state. As
this constitutes an infinitesimal variation of the Hamiltonian,
there should be no change in the topology. However, this shift
of µ drastically changes the value of N3 due to the location of
zeroes, as shown in Fig. 1. At half-filling, ⟨n±,k,σ̄⟩ = 1/2 for
both of the spin as well as the upper(+) and lower(−) topolog-
ical bands. All the spinful bands of zeroes or poles below the
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chemical potential contribute a ±2 to N3 as labeled in Fig. (1).
The zero bands locate at ε±,k − µ+U . If the branches of the
zeros are located on the same side of the chemical potential
(Fig. 1(a)), N3 = 0. In the vicinity of the symmetry point,
µ = U , the chemical potential is located between the two
zero branches (Fig. 1(b)), giving rise to a non-zero N3 = −2.
When the chemical potential passes through the zeroes band
(Fig. 1(c)), N3 diverges as if the system is in a metallic state.

This seems to give rise to a contradiction if we expect N3

to be proportional to the Chern number (equivalently, the Hall
conductance). That is, there seems to be a change in the
topological invariant without changing the many-body ground
state. A similar change in the Luttinger count has been noted
previously[18, 19], because moving the chemical potential in
the gap changes the positions of the zeros but ultimately can-
not change the filling. It is for this reason that it has been
correctly argued that the Luttinger count, which counts zeros
and poles, does not enumerate the charge density in generic
interacting systems. Similarly, we have shown here explicitly
that N3 is counting both zeros and poles of the Green func-
tion and hence does not enumerate the Chern number in gen-
eral. This derivation could also apply to the quantum spin Hall
(QSH) system[20–22] with strong interactions where a similar
interaction-induced topological phase is observed[13].

FIG. 2: The change of N3 (Solid Black line) according to Eq. (2) and
C1 (Dashed Red line) according to Eq. (12) for a QAH-HK model
with U ≫ W as a function of the chemical potential µ. The fillings
are labeled at the top. Inside the red regions, both N3 or C1 are
undefined due to the crossing of poles (metallic state); inside the
yellow regions, N3 is undefined due to the crossing of zeros.

To address this conundrum, we compute the Hall conduc-
tance directly and establish when it is permissible for it to be
recast as N3. The advantage of the HK model is that the inter-
actions preserve the center of mass and U does not have any
dependence on momentum. Thus, the current operator in the
orbital basis

J(q) =
1√
V

∑
k

c†k−q/2

∂h(k)

∂k
ck+q/2, (9)

can be taken to be unchanged from its non-interacting form
(See Appendix), where h(k) is the 4 × 4 non-interacting

Hamiltonian defined in Eq. (4).We substitute this current oper-
ator into the Kubo formula[23] and obtain the current-current
response function at finite temperature

Rαβ(q, τ) = ⟨T [Jα(q, τ)Jβ(−q, 0)]⟩

=
1

V

∑
k,k′

∂hab(k)

∂kα

∂hcd(k′)

∂k′β

⟨T [c†k−q/2,a(τ)ck+q/2,b(τ)c
†
k′+q/2,cck′−q/2,d]⟩ ,

(10)

where α and β represent real-space directions and a, b, c, d
are orbital and spin indices. Since the HK interaction does
not mix momentum, the 4-fermion correlation function can
be calculated according to Wick’s theorem[9]. We find that

⟨T [c†k−q/2,a(τ)ck+q/2,b(τ)c
†
k′+q/2,cck′−q/2,d]⟩

= ⟨c†k−q/2,a(τ)ck′−q/2,d⟩ ⟨ck+q/2,b(τ)c
†
k′+q/2,c⟩ .

(11)

The Fourier transform of the current-current response func-
tion gives jα(q, ω) = Rαβ(q, ω)Aβ(q, ω). The conduc-
tivity is thus given via analytical continuation σαβ(ω) =
limq→0

1
iωRαβ(q, iνr → ω + iη) with

Rαβ(q, iνr) =
kBT

V

∑
k,n

Tr

[
∂h(k)

∂kα
G(k + q/2, ωn)

∂h(k)

∂kβ
G(k − q/2, ωn − νr)

]
.

(12)

For a non-interacting system, h(k) in Eq. (10) can be replaced
by G−1 which will bring the Hall conductance into the form
of N3. However, for an interacting system, no such correspon-
dence can be made; in general

∂G−1(k)

∂kα
=

∂h(k)

∂kα
+

∂Σ(k)

∂kα
, (13)

because the presence of the self-energy in the Green function
introduces added momentum dependence. A non-trivial Σ(k)
with a band of poles (yielding the band of zeros in the Green
function as shown in Fig. 1(b)) gives rise to the non-zero con-
tribution to N3. Also, Σ(k) diverges at the Luttinger surface,
accounting for the undefined N3 in Fig. 1(c). Hence, for any
interacting model with a pole in its self-energy, replacing h(k)
with G−1 fails. As a consequence, there will be a general
disconnect between N3 with the Hall conductance whenever
zeros exist. A recent derivation of the Hall conductance us-
ing diagrammatic perturbation theory (which inherently as-
sumes adiabatic continuity with the non-interacting limit) pur-
ports to derive an equivalence between N3 and C1 [24]. As
zeros in the Green function indicate that the self-energy di-
verges, no such adiabatic continuity exists and hence any cor-
respondence between N3 and C1 fails based on perturbative
arguments. This is consistent with two prior results. First,
the breakdown of Luttinger’s theorem for interacting systems
stems been tied to the non-existence of the Luttinger-Ward
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functional on account of poles in the self energy[19]. Second,
the disconnect between N3 and C1 for fractional quantum
Hall states—which are not perturbatively connected to non-
interacting topological phases—was pointed out in Ref. [11]
and also in the context of Weyl-Mott insulators[25]. Conse-
quently, anytime there is a breakdown of perturbation theory,
N3 and C1 cannot be directly related.

In all such cases, the Hall conductance must be computed
directly from the Kubo formula, or equivalently by integrating
the Berry curvature as a function of twisted boundary condi-
tions [2]. We illustrate this here with a computation of the
Hall conductance directly from Eq.(7). The full details are
provided in the Appendix. We define the Chern number of the
ground state according to Eq. (1), where the ground state is
taken to be the zero-temperature limit of a thermal state to ac-
count for the spin degeneracy. At quarter-filling, the Hall con-
ductance C1 = 1 is halved compared with the non-interacting
two-fold QAH result C1 = 2. At half-filling, the Hall con-
ductance remains zero as long as no pole of the Green func-
tion crosses the chemical potential. To illustrate the deviation
of N3 from the Hall conductance C1, we plot their values as
a function of the chemical potential µ in Fig. 2. Besides the
conflict between a non-zero N3 and a vanishing C1 at half-
filling, we observe an additional difference by a factor of 2 at
quarter-filling between them. This difference of factor is simi-
lar to the deviation between N3 and C1 in FQHE[2, 11] caused
by the ground state degeneracy. Thus, neither the trivial phase
at half-filling nor the topological phase at quarter-filling could
be captured accurately by N3. This invariant fails to capture
properties of the ground state that are robust to perturbations
of the Hamiltonian, both qualitatively and quantitatively. We
have thus shown that the deviation of N3 from C1 stems from
poles in the self-energy or equivalently zeros of the single-
particle Green function. A similar problem occurs for the Lut-
tinger count,

n = 2

∫
ReG(p,ω=0)>0

ddp

(2π)d
, (14)

which makes no distinction between the mechanisms for
ReG(p, ω) crossing the real axis. There is now ample
evidence[18, 19, 26] that it is zeros that disconnect the Lut-
tinger count from the physical particle density. At play here
is a similar trend: any movement of the chemical potential
within the gap changes the Luttinger count but ultimately
should not change the physical charge density. This is not
surprising as the Luttinger count is reducible to the analo-
gous expression for N3 with just a single product ∂G−1G,
thereby defining N1[4]. It was shown in Ref. [27] that two
1+1-dimensional interacting systems with unequal N1 could
nevertheless possess topologically equivalent ground states.
Taken together, we see that all generalized invariants of the
form, Nℓ are disconnected from the physics of the many-body
ground state because of the zeros of the single-particle Green
function. For both N1 and N3, this discrepancy arises pre-
cisely when the single-particle Green function fails to accu-
rately capture properties of the many-body ground state; the

emergence of Green function zeros signifies the importance
of multi-particle spectral weight. The charge density and
Hall conductance, being properties of the ground state and
not properties of single-particle excitation, encode physics be-
yond the single-particle Green function. Finally, we note that
Refs. [4, 10] showed that at the interface between two sys-
tems across which N3 jumps by ∆N3 with no other differing
topological invariant, there will be ∆N3 zeros in the boundary
Green function. While this result is certainly correct and en-
codes topological properties of the single-particle Green func-
tion, our work here calls into question the significance of this
result for ground-state topological properties. In particular,
we have shown here that N3 can jump at an interface where
the chemical potential changes smoothly while remaining in
the bulk gap. Although the single-particle Green function
will develop boundary zeros, we have shown that robust ob-
servables computed from the many-body ground state cannot
change across the interface. In order to reconcile these ob-
servations, what is needed is an analysis of higher-order cor-
relation functions to reinstate the connection between ground
state topology and robust observables [28].
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Appendix: Current operator of HK model

Here we provide a detailed derivation of the current opera-
tor of the HK model. We start with a generalized form of the
HK Hamiltonian in a band basis,

H =H0 +HI

=
∑
k,σ

c†k,aσh
ab
σ (k)ck,bσ

+
∑
k

Aabcd(k)c†k,a↑ck,b↑c
†
k,c↓ck,d↓,

(15)

where hσ(k) is the 2 × 2 QAH Hamiltonian for each spin,
a, b, c, d are orbital indices which take value from O1 or O2.
The current satisfies the continuity equation,

∂ρ(x)

∂t
+∇ · J(x) = 0. (16)

The density operator for origin-localized orbitals can be
Fourier transformed into

ρ(q) =
1√
V

∑
k,a,σ

c†k,aσck+q,aσ. (17)

The continuity equation then yields

q · J(q) = [ρ(q), H] = [ρ(q), H0] + [ρ(q), HI ], (18)
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where the first term is the non-interacting current operator
Eq. (9). We focus on the contribution from the second term.
According to the general Fermion commutation relation∑

k′,e

[c†k′,eσck′+q,eσ, c
†
k,aσck,bσ]

= c†k−q,aσck,bσ − c†k,aσck+q,bσ

= −q · ∇kc
†
k,aσck,bσ − c†k,aσq · ∇kck,bσ

= −q · ∇k(c
†
k,aσck,bσ),

(19)

where we have expanded the operator to linear order in q and
neglected higher order terms O(q2) since we will take the q →
0 limit in the Kubo formula. The commutator between the
density operator and the interaction is∑

k

Aabcd(k)
∑
k′,e,σ

[c†k′,eσck′+q,eσ, c
†
k,a↑ck,b↑c

†
k,c↓ck,d↓]

=−
∑
k

Aabcd(k)
(
q · ∇k(c

†
k,a↑ck,b↑)c

†
k,c↓ck,d↓

+c†k,a↑ck,b↑q · ∇k(c
†
k,c↓ck,d↓)

)
=−

∑
k

Aabcd(k)q · ∇k(c
†
k,a↑ck,b↑c

†
k,c↓ck,d↓)

=
∑
k

q · (∇kA
abcd(k))c†k,a↑ck,b↑c

†
k,c↓ck,d↓,

(20)

where at the last step we integrated by part using the fact that
the Brillouin zone is compact. Thus there is no contribution
to J(q → 0) as long as ∇kA

abcd(k) = 0. This is true for
the interaction term we used in Eq. (6) where Aabcd(k) =
Uδabδcd. Thus, we can use Eq. (9) for the current operator for
the purposes of computing response functions in the q → 0
limit.

Appendix: Hall conductance of QAH-HK model

Eq.(12) can be directly used to calculate the Hall conduc-
tance with the exact Green function Eq.(7) using numerical
integration techniques. Here we will follow the derivation
by Bernevig[29] by introducing a flat-band limit in order to
analytically compute the Hall conductivity for the QAH-HK
model. We place all the occupied energy at µ−U < εG < µ,
whereas all the unoccupied states at energy εE > µ, while
keeping the eigenstates of the system unmodified. The Hall
conductance (Eq. (12)) is invariant under this deformation
since the deformation of the dispersion is smooth. We also
take the β → ∞ limit to achieve the zero temperature result.

The non-interacting Hamiltonian for each spin can be writ-
ten as the sum over the projectors PG(k) =

∑
i∈G |i, k⟩ ⟨i, k|

onto the occupied states and the projectors PE(k) =∑
j∈E |j, k⟩ ⟨j, k| the empty states,

hσ = εGPG + εEPE . (21)

We emphasize that the filled bands are defined according to
the interacting system. Thus the projection operators depend
on the filling. The current is thus

∂hσ(k)

∂kα
= εG

∂PG

∂kα
+ εE

∂PE

∂kα
= (εG − εE)

∂PG

∂kα
. (22)

In the flat band limit, the form of the Green function depends
on the filling. We enumerate the possibilities here:

1. At quarter-filling, as analyzed above, either spin of the
two degenerate ε− bands is occupied, thus dimPG = 2
and it projects onto the ε− bands

PGh = PGV diag(εG, εG, εE , εE)V
†

= PGV diag(εG, εG, 0, 0)V
†.

(23)

The ε+ bands remain empty for both spin, dimPE = 2
and it projects onto the ε+ bands.

PEh = PEV diag(εG, εG, εE , εE)V
†

= PEV diag(0, 0, εE , εE)V
†.

(24)

The exact Green function in the original basis is ob-
tained by performing the unitary transform on Eq. (7)

G(k, ω) = V diag(G−,k,↑, G−,k,↓, G+,k,↑, G+,k,↓)V
†.
(25)

The projection operator PG (PE) thus projects onto the
first two (last two) elements of the diagonal matrix,
leaving

PGG(k, ω) = V diag(G−,k,↑, G−,k,↓, 0, 0)V
†

= G−,k,σPG,
(26)

PEG(k, ω) = V diag(0, 0, G+,k,↑, G+,k,↓)V
†

= G+,k,σPE .
(27)

Thus the exact Green function at quarter-filling in the
orbital basis could be written as

G(k, ω) =

( 1
2

ω + µ− εG
+

1
2

ω + µ− U − εG

)
PG

+
1

ω + µ− εE
PE .

(28)

2. At half-filling, since U is much greater than the band-
width, the ground state always singly occupies both ε±
bands, this means that both ε+ and ε− are flattened to
εG. This flattening process does not affect the Hall con-
ductance even if zero bands are crossing the chemical
potential. PG projects onto all four bands and PE = 0
vanishes. The exact Green function in the original basis
reads

G(k, ω) =

( 1
2

ω + µ− εG
+

1
2

ω + µ− 2U − εG

)
PG. (29)
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With these projection operators, the current-current correlator
becomes

Rαβ(q, iνr) =
1

V β

∑
k,n

(εG − εE)
2

Tr

[
∂PG

∂kα
G(k + q/2, ωn)

∂PG

∂kβ
G(k − q/2, ωn − νr)

]
.

(30)

One quick inspection of this expression tells us that at half-
filling, this response function has to be 0. The derivative on
PG always vanishes as PG = I . Tuning the chemical po-
tential without crossing the poles does not break this 0 value.
The Hall conductance at half-filling configuration shall always
vanish.

At quarter filling, we adopt the projection operator identi-
ties

(∂αPG)PG(∂βPG)PG = (∂αPG)PE(∂βPG)PE = 0, (31)
(∂αPG)PG(∂βPG)PE = (∂αPG)(∂βPG)PE , (32)
(∂αPG)PE(∂βPG)PG = (∂αPG)(∂βPG)PG. (33)

Together with the contour integration method to perform the
summation over the Matsubara frequencies ωn, we find that

Rαβ(iνr) =
1

2V

∑
k

(εG − εE)
2

Tr

[
(∂αPG)(∂βPG)PE

εG − εE − iνr
+

(∂αPG)(∂βPG)PG

εG − εE + iνr

]
.

(34)

The dependence on U is fully removed since the poles at
εG+U always lie on the same side as εE relative to the chem-
ical potential. We may complete the integral in the lower half
plane without enclosing any poles. Taking the antisymmetric
part between α and β and performing the analytic continua-
tion on Matsubara frequencies iνr → ω leads to

Rαβ(ω → 0) =
1

2V

∑
k,n

(εG − εE)
2Tr

[
2ω(∂αPG)(∂βPG)PG

(εG − εE)2 − ω2

]
=

ω

V

∑
k,n

Tr [(∂αPG)(∂βPG)PG] .

(35)

This response function is exactly half of the non-interacting
value due to the halved weight in the non-interacting Green
function. By substituting the wave function formalism for
the projection operator PG =

∑
i∈G |i, k⟩ ⟨i, k|, we con-

clude that the Hall conductance, in units of e2

h , is half of
the Berry curvature of the filled non-interacting band, which
means C1 = 1

2C
non-interacting
1 = 1.

Appendix: Ferromagnetic ground state

The ground state of the HK model is known to possess a
large degeneracy due to the spin degrees of freedom[12, 15].

This degeneracy can be removed by applying an infinitesimal
Zeeman field that picks one certain direction for the ferro-
magnetic ground state[9, 13, 14]. By applying an infinitesi-
mal magnetic field along the z-direction, the Green function
is modified at all energies. The locations of the poles do not
move, but the weight of the Hubbard band poles is now unity,
and the bands are fully spin-polarized. At quarter- and half-
filling, the system remains insulating, and the exact Green
function in the band basis [30]

G±,k,↑(ω) =
1

ω + µ− ε±
, (36)

G±,k,↓(ω) =
1

ω + µ− ⟨nk↑⟩U − ε±
, (37)

where nk↑ = n+,k↑+n−,k↑ is the total number of filled elec-
trons in the spin-up bands. The system is now equivalent to
two separate QAH systems. In the limit of U ≫ W , only
the spin-up bands will be occupied. Thus the ground state
is a spin-polarized QAH state. The Hall conductance is un-
changed since the Zeeman field is an infinitesimal perturba-
tion. However, since the Zeeman field removes the zeros, it
drastically changes N3 even for values of the chemical po-
tential far from the zero bands. At quarter filling, N3 goes
from 2 to 1, while at half filling N3 = 0 for all values of the
chemical potential. This shows that N3 is not a property of
the ground state manifold but instead depends on the proper-
ties of the Green function at all energies. This is in contrast
to the Hall conductance which is related to a zero frequency
response function.
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