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Moiré systems have emerged in recent years as a rich platform to study strong correlations. Here,
we will propose a simple, experimentally feasible setup based on periodically strained graphene
that reproduces several key aspects of twisted moiré heterostructures — but without introducing
a twist. We consider a monolayer graphene sheet subject to a C2-breaking periodic strain-induced
psuedomagnetic field (PMF) with period LM ≫ a, along with a scalar potential of the same period.
This system has almost ideal flat bands with valley-resolved Chern number ±1, where the deviation
from ideal band geometry is analytically controlled and exponentially small in the dimensionless
ratio (LM/lB)

2 where lB is the magnetic length corresponding to the maximum value of the PMF.
Moreover, the scalar potential can tune the bandwidth far below the Coulomb scale, making this
a very promising platform for strongly interacting topological phases. Using a combination of
strong-coupling theory and self-consistent Hartree fock, we find quantum anomalous Hall states
at integer fillings. At fractional filling, exact diagonaliztion reveals a fractional Chern insulator
at parameters in the experimentally feasible range. Overall, we find that this system has larger
interaction-induced gaps, smaller quasiparticle dispersion, and enhanced tunability compared to
twisted graphene systems, even in their ideal limit.

Introduction— The discovery of correlated states in
moiré materials has transformed the study of strongly
correlated phases [1–6]. Moiré materials provide a plat-
form where the bandwidth can be tuned by adjusting the
twist angle, enabling the realization of topologically triv-
ial and non-trivial strongly interacting bands. Beyond
bandwidth and topology, recent works have identified the
quantum geometry of wavefunctions [7–12] as a central
ingredient in understanding interacting physics, includ-
ing the effective quasiparticle dispersion [12–15], the sta-
bility of correlated topological phases [8, 9, 16–19] and
the properties of collective excitations [7, 10, 14, 20–22].
However, compared to bandwidth, quantum geometry is
significantly more difficult to tune since it is mostly fixed
by the form of the moiré potential.

A prominent example is twisted bilayer graphene
(TBG), where an ideal limit [23] can be theoretically
achieved by tuning intrasublattice moiré tunneling to
zero. The resulting model exhibits flat C = ±1 bands
satisfying the trace condition [8, 9, 11, 24], which relates
the Fubini-study metric to the Berry curvature. These
are called “ideal bands”, and are equivalent to those of
the lowest Landau level (LLL) in a non-uniform mag-
netic field [8, 9, 25], making them a promising plat-
form to realize [26] exotic phases such as fractional
Chern insulators (FCIs) [8, 9, 16–19] and skyrmion su-
perconductivity [27, 28]. However, known experimental
knobs cannot tune TBG to its ideal limit (although lat-
tice relaxation moves couplings towards this limit [29–
31]). Alternating-twist multilayer generalizations [32–36]
may improve the situation, particularly at higher magic
angles [31], but still do not offer sufficient tunability.
Other moiré systems employing Bernal-stacked bilayer

graphene such as twisted mono-bilayer [37–43] or double-
bilayer (TDBG) [44–51] admit idealized models [52–55]
but in practice involve additional terms such as trigonal
warping [56] which moves them even further from ideal
conditions [57].

Strain engineering provides another route to realize
narrow bands with strong correlations [58–62]. Strain
acts on graphene as a pseudo-magnetic field (PMF)
with equal and opposite strength in each valley [63–
72]. Early theoretical works focused on strain profiles
that realize a uniform PMF to emulate Landau level
physics [67, 73, 74]. However, these realizations require
the atomic displacement u to grow quadratically with dis-
tance [75] which is only possible experimentally within a
limited length scale (∼ 10−100nm) [76, 77]. A more con-
trollable setup is that of periodic strain, which yields a
periodic PMF with a vanishing average over the unit cell.
This is realized experimentally by suspending graphene
on a network of nanorods [78], or through the sponta-
neous buckling of graphene on substrates such as NbSe2
where a C2-breaking PMF was recently observed [79].
This PMF gives rise to narrow bands [80–84], whose
quantum geometry and the resulting interaction physics
remain to be explored.

Ref. [23] has shown that a fully flat ideal band is
realized in a Dirac system if the sublattice-polarized
wavefunctions at the Dirac point have zeros in real
space [23, 85]. However, in contrast to moiré potentials
which give rise to non-Abelian gauge field [23, 86], strain
only leads to an Abelian field. This poses a challenge
for realizing ideal bands in strained graphene, since the
wavefunctions of a Dirac particle in an Abelian field are
exponential functions that can never have zeros.
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FIG. 1. (a) The PMF as described by Eq. (1). The band
structures of the Hamiltonian (2) without (b) and with (c,d)
scalar potential. (e) The minimal bandwidth of the C = +1
flat band and its bandgap∆ with respect to the lower band for
different α for the value of β that minimizes the bandwidth as
shown in the inset. All energy scales are measured in units of
E0 = ℏvF |G0|. The setup of Ref. [79] corresponds to α ≈ 0.4
and E0 ≈ 0.3 eV.

In this letter, we will show that by combining slowly-
varying periodic C2-breaking PMF with a scalar poten-
tial of the same periodicity in monolayer graphene, we
can realize an isolated almost ideal flat band with valley
resolved Chern number C = ±1. By almost ideal, we
means that deviations from ideality, i.e. trace condition
violation, are analytically controlled and exponentially
small in α ∼ (LM/lB)

2. Here, LM ≫ agraphene is the
period of the PMF and lB is the magnetic length cor-
responding to the maximal PMF. This deviation is ≪ 1
for experimentally realistic parameters. We note a simi-
lar setup proposed earlier combining C2-symmetric PMF
with periodic scalar field to gap out the graphene Dirac
cone [69].

We show that the bandwidth is tunable via a scalar
field, and can be made significantly smaller than the
Coulomb scale. We study this limit of small band-
width using analytical strong coupling theory, Hartree-
Fock (HF) and exact diagonalization (ED). We provide
evidence for quantum anomalous Hall (QAH) states and
fractional Chern insulators (FCIs) at integer and frac-
tional fillings, respectively. Our results suggest that
this system is more tunable and has favorable param-
eters to realize QAH and FCI states compared to twisted
graphene systems, even in their ideal limit.

Flat bands and topology— Our starting point is the

continuum model of strained graphene with a triangular
C2-breaking PMF [79] given by

B(z, z̄) = B0

5∑
l=0

eiGl·r = B0

5∑
l=0

e
i
2 (Glz̄+Ḡlz), (1)

where Gl = Rπl/3G0, G0 = 4π√
3LM

(1, 0), and Gl ≡ Glx +

iGly.
The Hamiltonian in a single valley has the form H =

vFσ · (−iℏ∇ + eÃ) where ∇ × Ã = B. The other val-
ley is generated by time-reversal symmetry T [87]. H
is invariant under three-fold rotations C3 and MxT , the
combination of mirror x 7→ −x and time-reversal. Strain
corresponding to (1) breaks both C2T and My symme-
tries of graphene [80, 81]. Furthermore, H has the chiral
symmetry σzHσz = −H, which protects a single Dirac
cone per valley against gapping out even though C2T
symmetry is broken. A sublattice potential ∝ σz can
be used to open a gap at the Dirac cone, but such a
potential cannot be tuned in practice. Nevertheless, by
noting that the sublattice polarized wavefunctions at the
Dirac point are given by simple exponentials ψA/B ∝ e±ϕ

(−∇2ϕ ∝ B, see Eq. 4), we see that a scalar potential
∝ ϕ acts effectively as a tunable sublattice potential that
gaps out the Dirac point. The explicit form of the poten-
tial is σ0V0

∑
l e

iGl·r, which matches the height buckling
pattern [79] and thus is generated by applying a vertical
electric field [83, 88].
Let us express the Hamiltonian in dimensionless units

by measuring momentum in units of |G0| = 4π√
3LM

and

introducing the magnetic length for the PMF B0 = ℏ
el2B

,
leading to

H = E0([k + αA] · σ + βV (r)), (2)

Here, E0 = ℏvF |G0|, α = 1/l2B |G0|2 = 3(LM/4πlB)
2,

and β = V0/E0. A and V are dimensionless gauge and
scalar potentials given by

A =

5∑
l=0

ei
πl
3 e

i
2 (Glz̄+Ḡlz), V =

5∑
l=0

e
i
2 (Glz̄+Ḡlz), (3)

where A ≡ Ax + iAy. Using the experimental parame-
ters of Ref. [79], LM ≈ 15 nm and lB ≈ 3.2 nm, we find
α ≈ 0.4 and E0 ≈ 0.3 eV [89]. Fig. 1(b-c) show band
structures for α = 0.4 without (β = 0) and with (β ̸= 0)
scalar potentials. For β = 0, we find a pair of isolated
bands connected by a single Dirac cone at Γ (which cor-
responds to graphene K), protected by chiral symmetry.
To highlight the role of topology, we adopt a sublat-

tice basis [9, 90]. At β = 0, chiral symmetry implies
[σz,H2] = 0. Thus, we can label the doubly-degenerate
eigenfunctions of H2 by a sublattice index A/B. The sub-
lattice wavefunctions mix the energy eigenfunctions of H;
ψA/B,k = (1/

√
2)(ψϵ,k ± σzψϵ,k) where σzψϵ,k ∝ ψ−ϵ,k.
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FIG. 2. (a,b) Sublattice-polarized zero mode wavefunctions at the Γ point. (c) The BZ-averaged square root deviation

(1− |⟨ψk,A|ψη
k,A⟩|)1/2 between the real wavefunction and the ansatz in Eq. (6) for β = 0. (d,e) The Berry curvature Ω and the

trace condition violation (Trg − |Ω|)/|Ω| of the C = +1 band for α = 0.4, β = 0. The dotted hexagons indicate the BZ.

Importantly, while the band wavefunctions around neu-
trality are singular at the Dirac point and cannot be as-
signed a Chern number, the sublattice wavefunctions are
well-defined everywhere [9, 90, 91]. In the SM [92] we
show that the sum of these two Chern numbers is always
odd, implying that these two bands are non-trivial within
a single valley [80]. By direct computation, the sublattice
A (B) wavefunction has Chern number +1 (0) in the K
valley.

Adding a scalar potential with β > 0 gaps out the
Dirac point and leads to an isolated C = 1 band polarized
on sublattice A (see Fig. 1(c)). Remarkably, the scalar
potential can be tuned to obtain an almost perfectly flat
band, shown in Fig. 1(d). At α = 0.4, β = 0.068 gives
the minimal bandwidth. Using a height modulation of
0.2 nm [79], this is generated by a vertical electric field
of 100 mV/nm.

Fig 1(e) shows the minimal bandwidth as a function of
α (see inset for the corresponding β value) together with
the gap to the closest band. We note that all energy
scales decrease exponentially with α. On top of this ex-
ponential squeezing, the scalar potential further flattens
the topological band, leading to a minimum bandwidth
that is almost two orders of magnitude smaller than the
typical energy scale at a given α. For interacting physics,
we introduce the Coulomb scale: VC = e2/(4πϵϵ0LM ). In
dimensionless units, vC = VC/E0 =

√
3e2/8π2ϵϵ0vFℏ ≈

0.63/ϵ which is independent of LM . In Fig. 1(e), we show
the energy hierarchy of the bandwidth and the bandgap
compared to the Coulomb energy scale. The bandwidth
is significantly smaller than the Coulomb scale, placing
the system in the strongly interacting regime.

Wavefunctions and quantum geometry— For β = 0,
the sublattice-polarized Bloch wavefunctions at Γ satisfy

DψΓ,B = 0, D†ψΓ,A = 0 (4)

with D = −2i∂ + αĀ and D† = −2i∂̄ + αA. Noting
that A = −2i∂̄V , we can solve Eq. (4) as ψΓ,A/B(r) =

e∓αV (r). These wavefunctions are plotted in Fig. 2(a,b),
showing that the A sublattice wavefunction is strongly
suppressed at r = 0 and peaked at the two other C3

invariant points related by MxT , while the B sublattice
wavefunction is strongly peaked at r = 0.

To understand the quantum geometry of the bands, let
us review the construction of Ref. [23]. An ideal perfectly
flat Chern band can be constructed for a Dirac operator
if the zero mode wavefunction at the Dirac point ψ0 has
a real-space zero [93]. The ideal band wavefunctions take
the form

ψk(r) =
σ(z + iB̃−1k)

σ(z)
e

i
2 zk̄ψ0(r), (5)

where k = kx + iky and B̃ = 2π
AUC

with AUC the area
of the unit cell. ψk satisfies D(∂̄)ψk = 0 if D(∂̄)ψ0 =
0 and transforms as a Bloch state under translations
ψk(r + R) = eik·Rψk(r) for any lattice vector R. The
latter property follows from the properties of the modi-
fied Weierstrass sigma function [11, 94].

A crucial property of the wavefunction (5) is that its
cell-periodic part uk = e−ik·rψk is holomorphic in k.
This property is equivalent [24, 95, 96] to the trace con-
dition, tr g(k) = |Ω(k)| where gµν(k) is the Fubini-study
metric, defined as the symmetric part of the quantum
metric tensor ηµν(k) = ⟨∂kµ

uk|(1−|uk⟩⟨uk|)|∂kν
uk⟩, and

Ω(k) is the Berry curvature. Equivalently, this property
has been recently interpreted as a vortex attachment con-
dition, which enables the construction of trial FCI states
that are exact ground states for repulsive short-range in-
teractions [24, 52, 54]. These three equivalent properties
define an ideal band.

Since the wavefunction ψΓ,A is given by a simple expo-
nential, it cannot have any zeros. However, for α suffi-
ciently large [98], this wavefunction is exponentially small
at r = 0. As a result, we can multiply it by a regulator
fη(r) which vanishes at 0 but is close to 1 everywhere
else in the unit cell; such a replacement will only change
the wavefunction by an exponentially small term. One
possible choice of regulator is fη(r) = 1 − eη[V (r)−6] for
some k-independent η > 0. Consider the (unnormalized)
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FIG. 3. (a-d) Self-consistent HF spectra of the strongly-correlated insulators discussed in the text. System size 24×24. (e) ED
spectrum at ν = −2/3 on 24 k-points of the QAH band at ν = −1, as discussed in the text. The ground state is approximately
3-fold degenerate (colored in blue). The inset shows the spectral flow of the 3 ground states under flux insertion, indicating a
Laughlin state. Parameters: α = 0.4, β = 0.068, and E0 = 0.325 eV [97]

variational state

ψη
k,A(r) =

σ(z + iB̃k)

σ(z)
e

i
2 zk̄fη(r)e

−αV (r), (6)

whose Bloch periodic part uηk,A = e−ik·rψη
k,A is a holo-

morphic function of k, meaning that this ansatz satis-
fies the ideal band condition. Thus, the deviation of
the real wavefunction from the ansatz provides a mea-
sure for the violation of the ideal band condition. This
deviation, measured by

√
1− |⟨ψk,A|ψη

k,A⟩| [99] is plot-

ted in Fig. 2(c) for different values of η. The deviation
decreases with α, as expected, and is of order ∼ 1%,
indicating very small violation of the trace condition
Trg − |Ω| [see Fig. 2(d,e)]. The trace violation is fur-
ther reduced when β is tuned to give the minimal band-
width (see SM [92]). We note that the wavefunction (6),
up to a k-independent phase, corresponds to the LLL
of a Dirac particle in an inhomogeneous magnetic field
B(r) = −∇2 log |fη(r)e−αV (r)/σ(z)| that has a non-zero
average flux of 2π per unit cell [8].

The wavefunction of the B sublattice is topologically
trivial and Wannierizable. It is strongly peaked at
r = 0 and thus admits the ansatz [100] ψk,B(r) =∑

R e
ik·ReαV (r−R).Combined with the ansatz for the

sublattice A wavefunction, Eq. (6), we see that project-
ing the β = 0 Hamiltonian onto the two flat bands
yields exponentially small dispersion; the Hamiltonian
only contains sublattice off-diagonal terms with the over-
laps ⟨ψA|ψB⟩ ∼ e−α. This also explains why the value
of the scalar potential β needed to flatten the band de-
creases exponentially with α [cf. the inset in Fig. 1(e)].
A detailed analysis of the band energetics is provided in
the SM [92].

Interacting phases for the partially filled Chern band—
Next we consider the effect of interactions on the
partially-filled flat Chern band. Due to valley and spin,
we consider the filling ν ∈ [−4, 0]. Using a screened
Coulomb interaction Vq = e2

2ϵϵ0|q| tanh |q|d, we consider

the Hamiltonian H+Hint with [9, 90]

Hint =
1

2A

∑
q

Vqδρqδρ−q, ρq =
∑
α,k

λα,q(k)c
†
α,kcα,k+q

(7)
where δρq = ρq − ∑

α,G,k δq,Gλα,G(k), α = (s, τ) is a
combined index for spin s and valley τ , G are reciprocal
lattice vectors, and λα,q(k) = ⟨uα,k|uα,k+q⟩.
In the limit of small bandwidth, we can employ strong

coupling analysis similar to TBG [9, 90, 91, 101] to find
that the ground states at integer fillings are generalized
spin-valley ferromagnets. The argument is explained in
detail in SM [92] and summarized here. Our setup is
simpler than TBG, where there are two flat bands per
flavor, and simpler than other moiré systems like TDBG,
where dispersion is non-neglegible [56]. At ν = −1 and
ν = −3, the ground state is a QAH spin and valley polar-
ized insulator with Chern number ±1 that spontaneously
breaks both SU(2) spin and time-reversal T . At ν = −2,
we have two degenerate ground state manifolds: (i) a
QAH valley ferromagnet with C = ±2 and (ii) a family
of spin-polarized states with C = 0 consisting of a spin
ferromagnet in each valley. The two manifolds (i) and
(ii) are degenerate in our model, but adding an interval-
ley Hund’s coupling lifts the degeneracy and select states
in (ii) [56, 92, 102].

In contrast to TBG, there are no further anisotropies.
In addition, intervalley coherent orders are disfavored
since they involve coherent superposition of states from
opposite Chern bands, leading to nodal order parame-
ters [56, 103]. Furthermore, the interaction-generated
dispersion due to Hartree-Fock corrections [13–15, 101]
is smaller compared to TBG with similar interaction
parameters [92]. This follows from the delocalization
of the A-sublattice wavefunctions across two different
points, related by MxT [see Fig. 2(a)], which leads to
a much milder Hartree potential than that of the AA-
site-localized TBG electrons. This makes the QAH more
energetically favored against competing states compared
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to TBG [104]. The ground states at different fillings are
confirmed through self-consistent HF, shown in Fig. 3.We
notice here the relatively large gaps and small quasipar-
ticle dispersion (see SM [92] for comparison with TBG).

We expect the flat ideal Chern bands to host FCIs
when fractionally filled. We verify this in the simplest
case where we electron-dope the ν = −1 spin and valley
polarized QAH state, such that the doped charge en-
ters in a single flavor. Performing single-flavor ED at
ν = −2/3 shown in Fig. 3, we see clear signatures of a
Laughlin state with 3-fold ground state degeneracy and
spectral flow indicating topological order (results for a
large parameter space can be found in SM [92]). Here,
we have not included the interaction-generated dispersion
which makes ED extremely sensitive to grid choice. How-
ever, we note the results of Ref. [19] which showed that
FCIs in chiral TBG are stable up to relatively large values
of dispersion. Given the smaller interaction-generated
dispersion in our system [92], we expect the FCIs to sur-
vive its addition. We leave a detailed analysis of this
effect to future works.

Discussion— We studied a system of monolayer
graphene with periodic, C2-breaking PMF combined
with a periodic scalar field with the same period LM ≫ a.
This can be realized experimentally by placing graphene
on top of a C2-breaking substrate such as NbSe2 which
causes both a strain-induced C2-breaking PMF, and
height modulation, giving a periodic potential in perpen-
dicular electric field. Other realizations involve a network
of nanorods [78] arranged in a C2-breaking pattern [80],
combined with a periodic scalar potential generated by a
patterned dielectric [105, 106] or a separate moiré hBN
potential [107]. We have shown that this system hosts
almost ideal topological bands whose bandwidth can be
made very small by tuning the scalar potential. This es-
tablishes this system as a promising platform to study
correlated topological phases such as QAH states and
FCIs, which we have numerically verified. One further
advantage of this system is the ability to access both a
topological band and a trivial band within the same sys-
tem by switching the sign of the scalar field or the gate
voltage. From an experimental viewpoint, the main tech-
nical challenge in the setup based on NbSe2 substrate lies
in the difficulty of gating the sample since the substrate is
metallic. By overcoming this technical difficulty or using
a different C2-breaking but insulating substrate, we pre-
dict this system to be an ideal platform to study strong
correlation effects in topological bands with several ad-
vantages over twisted multilayer graphene-based moiré
systems.
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