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A bicircular light (BCL) consists of left and right circularly polarized lights with different frequencies, and
draws a rose-like pattern with a rotational symmetry determined by the ratio of the two frequencies. Here
we show that an application of a BCL to centrosymmetric systems allows a photocurrent generation through
introduction of an effective polarity to the system. We derive formulas for the BCL-induced photocurrent from
a standard perturbation theory, which is then applied to a simple 1D model and 3D Dirac/Weyl semimetals. A
nonperturbative effect with strong light intensity is also discussed with the Floquet technique.

Introduction. — Symmetry plays a central role in studying
quantum phases of matter and governs their responses to ex-
ternal perturbations [1]. For example, time-reversal symmetry
breaking allows quantum Hall effects with quantized Hall con-
ductivity [2]. Inversion symmetry breaking is necessary for
emergence of electric polarization [3] and bulk photovoltaic
effect [4]. Symmetry of the electronic system in solids is usu-
ally determined by the crystal structure, spontaneous symme-
try breaking in the ground state such as magnetic order, and
an application of the external field.

Dynamical control of quantum systems by periodic driv-
ing has attracted keen attention and is recently called “Floquet
engineering” [5-7]. Periodic driving has an advantage that it
can control the symmetry and topology of quantum materials
without changing their chemical composition and sometimes
offers novel quantum phases which have no counterpart in the
equilibrium [8-12]. In particular, an application of the cir-
cularly polarized light (CPL) can introduce an effective time-
reversal symmetry (TRS) breaking to the system, which is ex-
emplified by the emergence of an anomalous Hall insulating
phase in graphene under CPL [13, 14].

Employing a two-frequency drive instead of a monochro-
matic drive has recently been attracting an interest as a method
to enlarge the capabilities of Floquet engineering [15-21]. In
particular, the spatial inversion symmetry and rotational sym-
metry of the system can be controlled by applying so called
bicircular light (BCL). The BCL consists of two CPL waves
with different frequencies and opposite chirality [22], and is
expressed in the form of a vector potential as

Ax(t) + l.Ay(t) — Ao[einIQt + e—inzgtﬂ'é)]’ (1)

where Ay is the amplitude and n;,n, are the integers repre-
senting the frequencies of the two CPL waves. The BCL wave
draws the rose-like pattern with (n;+n,)/gcd(n;, ny)-fold rota-
tional symmetry as shown in Fig. 1(a), which implies that ap-
plying BCL can reduce the system’s rotational symmetry from
that of the crystal structure. The parameter 6 is the phase dif-
ference between two CPL waves and serves as a knob to rotate
the rose pattern drawn by the BCL wave [see Fig. 1(b)]. Re-
cently, several studies on the control of symmetry and topol-
ogy using a BCL drive have been reported, including charge
dynamics in graphene [23] and Weyl point generation in Dirac
semimetals [24]. Moreover, it was also shown that the BCL
driving can introduce polarity in centrosymmetric systems and
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FIG. 1. Schematics of bicircular light (BCL) that consists of circu-
larly polarized light (CPL) with different frequencies. (a) The electric
field of the BCL draws the rose-like pattern with a rotational symme-
try determined by the ratio of the two frequencies. The rose patterns
with n; = 1,n, = n in Eq. (1) are plotted. (b) The relative phase
between two CPL waves leads to rotation of the rose pattern of the
BCL. (c) Application of BCL to centrosymmetric systems can induce
photocurrent with introduction of an effective polarity.

induce electric polarization due to inversion symmetry break-
ing originating from incompatible rotation symmetry of the
BCL [25].

BCL’s ability to control the inversion and rotation symme-
try of the materials is also expected to apply to optoelectronic
properties of materials. In particular, bulk photovoltaic effect
(BPVE) [4] is an important nonlinear optical phenomenon in
a system lacking inversion symmetry, where the light irradi-
ation induces a dc photocurrent [26-28]. There are several
mechanisms for BPVE, including the shift current, injection
current, and ballistic current [29-31]. Among them, the injec-
tion current is a photocurrent proportional to relaxation time
of photocarriers and plays a dominant role in the circular pho-
togalvanic effect in which circularly polarized light induces
chirality dependent photocurrent [31]. Indeed, application of
two frequency drive has been studied as a method to induce in-
jection current [32] and injection spin current [33] based on a
perturbation theory, showing a coherent control of the current
direction with the relative phase of the two frequency lights.



Such coherent control of photocurrent was demonstrated in
Bi,Ses in a collinear polarization scheme [34]. More recently,
photocurrent induced by co-rotating CPL in the strong inten-
sity regime has been studied with an ab initio calculation [35].

In this paper, we study photocurrent induced by the BCL,
on the basis of Floquet engineering of inversion and rota-
tional symmetries of the system. We demonstrate that irra-
diating the C3-symmetric BCL creates photocurrent in inver-
sion symmetric systems such as C, or C4 symmetric systems
[Fig. 1(c)], where photocurrent cannot be induced by conven-
tional monochromatic light irradiation. Specifically, using the
perturbation theory and the Floquet theory, we derive a for-
mula for the BCL-induced photocurrent which is proportional
to the relaxation time 7 (i.e., injection current) in systems
with spatial symmetries. We apply the obtained formula to
a 1D system with inversion symmetry and a 3D Dirac/Weyl
semimetal, where the latter exhibits a large photocurrent due
to its gapless nature. The direction of the photocurrent can be
controlled by the pattern of the BCL light through the phase
6. Also, nonperturbative effects on the photocurrent with the
light intensity are discussed with the Floquet-Keldysh formal-
ism.

BCL-induced photocurrent. — Let us study photocurrent
induced by a BCL drive in centrosymmetric systems based
on a standard perturbation theory. Specifically, we adopt a
diagrammatic approach [36] to calculate the nonlinear optical
conductivity for the BCL-induced photocurrent. Under the
vector potential A(r) of the BCL, the dynamics of the electron
obeys the time-dependent Schrédinger equation with the time-
dependent Hamiltonian H(¢) with the minimal coupling,

H(1) = Ho(k + e A(n)/h), 2

where Hy(k) is the Bloch Hamiltonian in the equilibrium.
In the following, we focus on the C3-symmetric BCL rep-
resented by A() = (A((1),A,(®) with (n1,n2) = (1,2) in
Eq. (1). The electric field is given by E(t) = —-0A(t)/0t =
Re[E®e + B2~ with the complex electric fields
E® and EC?Y. BCL driving breaks both time-reversal
symmetry and spatial symmetries including inversion, which
leads to a photocurrent generation even in systems with spa-
tial inversion or rotational symmetry. Specifically, the BCL-
induced photocurrent is a third-order response with respect
to the electric field at the lowest order as with the combina-
tion of the photon energies, Q + Q — 2Q = 0. The dominant
contribution to the photocurrent is the so called injection cur-
rent contribution which is proportional to the relaxation time
T ~ Hi/yp. In the diagrammatic approach, such contribution is
included in the box diagram as detailed in Appendix. By keep-
ing only the terms oc 1/, in the diagrammatic computation,
we obtain the expression for the BCL-induced photocurrent as

J3(Q) = Re [ohtl EVESYES) 3)

with
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where we defined [dk] = dk/(27)¢ with the spatial dimen-
sion d, €5 = € — € and f,;, = f(€,) — f(€,) represent the
difference of band energies and the Fermi distribution func-

tions, respectively, and v, = (al ?,% |b) represents the matrix

element of the velocity operator. Here we defined o-’écgiy =
2By a7 (0; Q, Q, —2Q) by adding up the nonlinear con-
ductivities 0 in all possible permutations of {a, 8, v}, e.g.
OTper, = 079 4+ Y + % This simplifies the expression
due to some cancellations between different tensor elements
o+ We note that the above expression is only valid when
the photocurrent is generated by the C3-symmetric BCL driv-
ing and E((IQ)E;;Q)E;_N) remains the same value regardless of
the permutations of the spatial indices {a, 3, y} because E®
and EY are proportional to each other.

In the two band limit (n = 1,2), the expressions for J*(Q)

and J¥(Q) reduce to
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with (@,8,C,s) = (x,y,cos8,—1) for J* and (,8,C,s) =
(v, x,sin 6, 1) for J7. Here, Av* = 5, —v5,) is the group ve-
locity difference for the two bands. In particular, the above
expression clearly indicates that one can control the direc-
tion of the photocurrent by tuning the phase difference 6 since
Jycp o cos@and Jy o sin6.

Applications to 1D SSH model and 3D Dirac/Weyl semimet-
als. — To demonstrate the BCL-induced photocurrent, we
first apply the above formula to the 1D Su-Schrieffer-Heeger
(SSH) model, which we adopt as a simple 1D model for sys-
tems with inversion symmetry and is described by the Hamil-
tonian (we set lattice constant to be a = 2),

H(k) = 2ty cos ko — 26ty sin kory, (6)

where #y * 6t is the amplitude of the nearest neighbor hop-
ping with bond alternation and o; (i = x,y,z) are Pauli ma-
trices [Fig. 2(a)]. The energy dispersion is given by E(k) =

+ \/4% cos? k + 4612 sin* k as plotted in Fig. 2(b). We note
that H(k) has an inversion symmetry, i.e., oy H(k)o, = H(-k)
which prohibits the conventional second order contribution to
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FIG. 2. BCL-induced photocurrent in 1D SSH model. (a) A

schematic picture of SSH model driven by 3-fold BCL. (b) The band
dispersion of the SSH model. The minimum/maximum input fre-
quency Qnin/max i depicted with the green/blue arrow. (c) Photocur-
rent dependence on the input frequency. (We set 87y = 0.5¢).

the photocurrent and makes the BCL-induced photocurrent a
dominant contribution.
Using the formula for two band systems in Eq. (5), we ob-
tain the photocurrent for the SSH model under the BCL as
o) = 220 o [1amiaton -var @
= ——— Co0s -
BCL 307 vial"(vir — vz

X (—%5(612 + hQ) + 5(en + 2719))

This shows that the photocurrent induced by BCL driving in-
volves two interband resonance terms: the Q-resonant term
o d(ep + hQ) and the 2Q-resonant term o« 6(ejp + 27Q) with
a sign change. Figure 2(c) shows the photocurrent induced by
BCL driving in the 1D SSH model when the Fermi energy lies
within the energy gap. For |61y < |t], the photo-excitation by
BCL driving occurs in the region 2|6fy| < 7Q < 2|tg| due to
the 2Q-resonant term, and 4|6fy| < AQ < 4|ty| due to the Q-
resonant term. The directions of the photocurrent are opposite
for the two regions reflecting the relative sign in the two delta
functions in Eq. (7). The minimum and maximum frequen-
cies for photocurrent generation are given by Qi = 2[07|
and 7Quin, = 4|f|. Also, we find that the intensity of the first
peak is four times larger than the second one due to the 1/Q
term in Eq. (7).

Next we study the BCL-induced photocurrent in 3D
Dirac/Weyl semimetals which host gapless linear dispersions.
For simplicity, we consider a model of a single Weyl fermion
with anisotropic velocity along the z direction,

H = hvp(koy + kyoy + nk.07;). ®)

Here vp is a Fermi velocity and 7 denotes the anisotropy along
the z direction. This model has two-fold rotational symmetry
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FIG. 3. BCL-induced photocurrent in Dirac/Weyl semimetals. (a)
A schematic picture of a single Dirac cone driven by 3-fold BCL.
Pauli blocking prohibits the photo-excitation with the Q (2€2) reso-
nant process for frequencies 71Q < 2|eg| (2K < 2|eg|) with the chem-
ical potential ez. The orange line indicates Pauli blocking for the
Q-resonant process. (b) Photocurrent dependence on the frequency.
We set n = 0.8. The green (blue) arrow represents the frequency
range where the Q (2€2) resonant process is allowed.

along the y direction C3. Thus, irradiation of Cs-symmetric
BCL perpendicular to the (010) surface induces the photocur-
rent in the x-z plane. From the two-band formula (5), we ob-
tain
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where O(x) is the step function. Note that when the anisotropy
is absent with 7 = 1, the system has continuous rotational
symmetry. In this case, the overall driven system still pos-
sesses the C§ symmetry of the BCL and the photocurrent van-
ishes. For a finite chemical potential, the photo-absorption
occurs only in the range 7Q > |eg| due to the Pauli block-
ing. The photocurrent behaves as J o 1/Q? with the input
light frequency Q. Since Weyl/Dirac semimetals are gapless,
this suggests an enhancement of photocurrent by applying the
BCL wave in the low frequency region, as shown in Fig. 3.
Also the direction of the photocurrent can be controlled with
the phase 6 of BCL, where (J*, J°) draws an ellipse by chang-
ing the relative phase 6 with the ratio of the minor and major
axes being n%. Since this photocurrent is independent of the
sign of the Weyl charge (i.e. sgn(7)), the photocurrent simply
doubles in the Dirac semimetals.

Nonperturbative effects with the Floquet approach. — Next
let us study nonperturbative effects for the BCL-induced pho-
tocurrent by using an approach based on the Floquet theory.
The Floquet theory describes periodically driven systems by
an effective band theory with a Floquet Hamiltonian. The Flo-
quet approach for nonlinear optical responses treats the opti-
cal resonance as a nonequilibrium steady state realized at an
anticrossing of the Floquet bands, and is able to incorporate
nonperturbative effects with respect to the electric field that



cannot be captured by diagrammatic approach [37].

We study the nonperturbative effect focusing on the SSH
model driven by the C3-symmetric BCL. The nonequilibrium
steady state given by the time-dependent Hamiltonian H(¢) =
Hy(k + eA(t)/h) with the vector potential of the C3-symmetric
BCL can be described by the following block of the Floquet
Hamiltonian

Hy+25Q Av  Ale®y
Hr = A'v Hy+hQ Av |, (10)
A’ey A'v Hy

with A" = eAy/2h. Here, we consider Floquet bands made of
photon-dressed states with 0, 1, and 2 photons, since the Cs-
symmetric BCL includes Q and 2Q frequency components.
Photocurrent in the driven system can be obtained by comput-
ing ieTr(vpG*)/h as detailed in Appendix. The lesser Green’s
function G< encodes information of occupation of Floquet
bands, where the nonequilibrium distribution function of elec-
trons is stabilized by attaching an effective particle bath to the
system. The current operator under the driving vg is defined
as vgp = 0Hg/0k when Hg is represented with k-independent
basis.

The photocurrent in the driven systems includes several
contributions depending on which Floquet bands are involved
in photoexcitation. One typical contribution for the photocur-
rent from the 2Q-resonant process is obtained by focusing on
three Floquet bands that consist of the valence band with one
photon, the valence band with two photons, and the conduc-
tion band, which reads

2 A/S 2 _
7= cost[dk]lmI M = va) oo,
hQ Y
(11)

.

where ¥’ is the effective relaxation rate in the presence of the
BCL with y, being the relaxation rate from the fermionic heat
bath (For details of the derivation, see Appendix). The fac-
tor A”/y’ gives a nonperturbative effect with respect to E.
This leads to a saturation of photocurrent for large intensity
with a crossover from J oc Ag/yo to J o Aj. The expo-
nent 7 in the high intensity region is expected to depend on
which term in |---|*> becomes dominant in Eq. (12). While
we have discussed the contribution from a specific three-band
model in Eq. (11), contributions from other combinations of
Floquet bands also show similar crossover behaviors. In ad-
dition, by adding up all the contributions and focusing on the
leading order in E, we can reproduce the formula for the BCL-
induced photocurrent that was derived from the diagrammatic
approach (For details of the full Floquet formulation, see Ap-
pendix).

Application of the above Floquet formulation to the 1D
SSH model shows a nonperturbative correction to the pho-
tocurrent (Fig. 4). Figure 4(a) shows the amplitude depen-
dence of the photocurrent with several relaxation rate values

A/2 2
Ale vy + otV Yo (12)

(a) (b)

hQ = 1.2t
10" ‘ ‘ ‘ 0100

Joc AYT

0.5l 0.010

larger o

0.0

J/Jmax

-0.5} )

Jox A3

-1.0 ‘ | ‘ _‘H\"

-1.0 -0.5 0.0 0.5 1.0 0.01
Ag x 1072 [eBa/hQ)

0.65 0.i0 0.50 1
A x 1072 [eEa/hQ)

FIG. 4. Nonperturbative effect on the BCL-induced photocurrent.
(a) The amplitude dependence of the photocurrent with several re-
laxation rate values . (b) The amplitude dependence of the pho-
tocurrent at y/ty = 0.02 with fitting curves of J o AS (red line) and
J oc A7 (blue line). We set 1Q/t = 1.2.

vo. At small yy, the crossover of photocurrent from J o A?) /Y0
to J o« A(l)'7 occurs as shown in Fig. 4(b). The exponent 1.7 in
the high intensity region falls in between 1 and 2 as expected
from Eq. (12). We note that the present Floquet approach can
be also applied to 2D/3D systems, where the BCL-induced
photocurrent is obtained in a similar way and shows a similar
saturation effect.

Discussions. — The BCL-induced photocurrent is a third
order response with respect to the electric field, J o« A3, as
seen in Eq. (5). While the presence of inversion symmetry
forbids the second order responses such as the BPVE with
monochromatic light, the third order responses are not forbid-
den in centrosymmetric systems generally. In this regard, the
appearance of the BCL-induced photocurrent is not contra-
dicting the presence of inversion symmetry in the unperturbed
system. Our finding is that application of the BCL introduces
a polarity to the centrosymmetric system and the phase of the
two frequency lights can control the direction of the polar-
ity, and hence, the photocurrent. Such controllability of BCL
paves a novel venue for searching optoelectronic functional-
ity.

Since Dirac/Weyl semimetals show a diverging photocur-
rent at low frequencies, those topological semimetals are a
promising platform to observe the BCL-induced photocurrent.
In particular, a tetragonal 3D Dirac semimetal Cd;As; [38, 39]
and a hexagonal 3D Dirac semimetal Na;Bi [40] will be good
candidate materials. Both materials host 3D Dirac fermions
with anisotropic Fermi velocities along the z direction and
the anisotropies are reported to be  ~ 0.25. In these cases,
the magnitude of the BCL-induced photocurrent density is
estimated as J ~ 10° A/m? with realistic parameters 7iQ =
0.1eV, Ey = 1kV/cm, vg = 10°m/s and 7 = 7i/yy = 1ps.
Considering a sample with the width L = 100 um and pene-
tration depth 6 = 1 um, the magnitude of the photocurrent is
estimated as / = JLo ~ 100 uA, which gives a large photocur-
rent in the mid-infrared region. Such enhancement of J orig-
inates from the gapless nature of Dirac semimetals. Finally,



the field strength exhibiting the crossover due to the nonper-
turbative effect can be estimated as follows. From Fig. 4(b),
we can estimate the value at which the photocurrent begins to
deviate from J oc Ag as Ag ~ 0.01 [eEpa/h€2] corresponding
to Eo = 0.4 MV/cm with a typical lattice constanta = 3 A and
a photon energy Q2 = 1.2eV.
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