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Particle-like excitations, or quasi-particles, emerging from interacting fermionic and bosonic quan-
tum fields underlie many intriguing quantum phenomena in high energy and condensed matter sys-
tems. Computation of the properties of these excitations is frequently intractable in the strong
interaction regime. Quantum degenerate Bose-Fermi mixtures offer promising prospects to eluci-
date the physics of such quasi-particles. In this work, we investigate phonon propagation in an
atomic Bose-Einstein condensate immersed in a degenerate Fermi gas with interspecies scattering
length aBF tuned by a Feshbach resonance. We observe sound mode softening with moderate at-
tractive interactions. For even greater attraction, surprisingly, stable sound propagation re-emerges
and persists across the resonance. The stability of phonons with resonant interactions opens up
opportunities to investigate novel Bose-Fermi liquids and fermionic pairing in the strong interaction
regime.

Interactions between excitations of bosonic and
fermionic quantum fields play an important role in un-
derstanding fundamental processes in high energy and
condensed matter physics. In quantum electrodynamics,
for example, the coupling between the photon and virtual
electron-positron pairs polarizes the vacuum, which con-
tributes to Lamb shifts [1] and the anomalous magnetic
moments of the electron and the muon [2]. In condensed
matter, interactions between phonons and electrons are
central to Cooper pairing in conventional superconduc-
tors [3], as well as charge ordering and superconductivity
in strongly correlated materials [4, 5].

Ultracold mixtures of atomic Bose and Fermi gases of-
fer a complementary experimental platform for elucidat-
ing these quantum phenomena. Cold atoms are excep-
tionally flexible, allowing for the control of interactions
between the atomic species using Feshbach resonances
[6]. These capabilities have been used to study phase
transitions in lattices [7–9], polarons [10, 11], and super-
fluid mixtures [12, 13]. Many exciting theoretical predic-
tions for quantum simulation remain to be tested, e.g.
Refs. [14–16].

In this work, we investigate sound propagation in a
quantum degenerate Bose-Fermi mixture from the weak
to the strong interaction regime. We optically excite den-
sity waves in the gases and measure their velocities and
damping rates from in situ images of the Bose-Einstein
condensate (BEC). We see significant changes in the
speed of sound for interspecies attraction and negligi-
ble shifts for repulsion. This asymmetry indicates strong
deviation from the perturbation prediction. Intriguingly,
we find stable propagation of sound waves in mixtures
with resonant interspecies interactions. This observa-
tion offers promising prospects to explore new quantum
phases of Bose-Fermi mixtures in the strong interaction
regime.

The Hamiltonian for the phonons coupled to a single-
component Fermi gas is given by [17, 18]
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FIG. 1. Bosonic quasi-particles (phonons) coupled to a
fermionic quantum field. (a) Diagrammatic representation
of phonons (blue) coupled to excitations of a fermionic field
(red). The lowest order diagram contains a single loop and is
second order in the phonon-fermion coupling gk. Higher or-
der corrections are indicated by the hatched area. (b) In our
experiment, a cigar-shaped Bose-Einstein condensate (BEC)
of cesium-133 is immersed in a much larger degenerate Fermi
gas of lithium-6. (c) As a phonon with momentum k (black
dashed ellipse) propagates, the coupling results in the density
modulation of both species and the modification of the sound
speed c.
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where ϵFk is the dispersion of the fermions, ℏ is the re-
duced Planck’s constant, ωk is the phonon dispersion, gk
is the phonon-fermion coupling constant, ck and αk re-
fer to fermion and phonon annihilation operators respec-
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FIG. 2. Excitation and in situ imaging of density waves. (a) A local density depletion ϵ is created in the center of the cesium
BEC by a projected laser beam (bottom panel, red shaded area). The optical potential is abruptly switched off at t = 0 and
the density dip splits into density waves propagating in opposite directions (top panel, black arrows). Average column densities
are shown for three values of the hold time t = 0, 2, 4 ms along with sample normalized one-dimensional (1D) densities n′

1 for
t = 0 ms and t = 4 ms. Data is shown for the Cs-Li Bose-Fermi mixture with interspecies scattering length aBF = −335 a0.
(b) Normalized 1D densities n′

1 show density wave dynamics for mixtures prepared at various interspecies scattering lengths.
Red dashed lines are guides to the eye.

tively, and k and q are momenta (see Fig. 1a). In our de-
generate Bose-Fermi mixture, the kinetic energy of a bare
fermion is ϵFk = ℏ2k2/2mF, wheremF is the fermion mass.
The bare phonons are low energy excitations of the BEC
with the Bogoliubov dispersion [19] ωk ≈ c0k, where the

sound velocity c0 =
√
gBBnB/mB is determined by the

boson-boson coupling constant gBB, condensate density
nB, and boson mass mB. The phonon-fermion coupling
constant is gk = gBF

√
nBℏk2/2mBωk [18, 20], where

gBF = 2πℏ2aBF/mr is the interspecies coupling constant,
aBF is the interspecies scattering length and mr is the re-
duced mass of the two unlike atoms. The phonon-fermion
coupling gk can thus be tuned by controlling aBF using
an interspecies Feshbach resonance (see Fig. 1c).

Perturbation theory shows that the velocity of phonons
is reduced when the BEC interacts weakly with the
Fermi gas. This can be understood as a result of
a fermion-mediated interaction between bosons analo-
gous to the Ruderman-Kittel-Kasuya-Yosida mechanism
[21, 22]. The mediated interaction has been observed in
cold atom experiments [23, 24]. To leading order in gBF,
the sound velocity is predicted to be [25]

c = c0

√
1− 3

2

g2BF

gBB

nF0

EF0
, (2)

where nF0 and EF0 are the density and Fermi energy of
the Fermi gas in the absence of the condensate. This

correction is quadratic in the coupling strength gBF, and
corresponds to the one-loop diagram shown in Fig 1a.
The sound speed is expected to be reduced regardless of
the sign of the interspecies coupling strength gBF. The
perturbation result is valid in the weak coupling regime
|gBFnB| ≪ EF0.
At stronger interactions, the density profile of each

species can be significantly modified by the other species.
This effect can be captured in a mean-field model. Un-
der the Thomas-Fermi approximation for both species,
the local mean-field chemical potential of the bosons de-
pends on the fermion density as [20]

µTF = gBBnB + gBFnF0

(
1− gBFnB

EF0

)3/2

, (3)

where the second term is set to zero when the mean-field
interaction energy exceeds the Fermi energy, gBFnB >
EF0. In our system, it is a good approximation that the
light fermions (Li) follow the heavy bosons (Cs) adia-
batically. This permits the evaluation of the mean-field
sound speed c =

√
nB/mBκ in terms of the effective com-

pressibillity κ = ∂nB/∂µTF as

c = c0

√
1− 3

2

g2BF

gBB

nF0

EF0

√
1− gBFnB

EF0
. (4)

Compared to Eq. (2), the additional factor in Eq. (4)
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FIG. 3. Sound speeds and damping rates at different interspecies scattering lengths and boson densities. (a) Orange data
points indicate samples prepared on the attractive side of the Feshbach resonance aBF < 0. Red data points are prepared
on the repulsive side with aBF > 0. Measurement for a bare BEC without femions is shown as the blue square. The crosses
indicate samples with no stable sound propagation. Inset shows the ratio of density wave velocities for samples prepared with
and without the fermions. The ratios are obtained from the separation of density waves after 8 ms hold time. Calculations from
perturbation (black line) and mean-field (magenta line) theory are shown for comparison. The green shaded area represents the
phase separation region. The grey area indicates the region where no stable sound propagation is observed. (b) Damping rates
of the density waves are compared with the perturbative prediction (black line) evaluated for momentum k = 2π/(4µm) [20].
Insets: Cartoon representation of the Cs (blue) and Li (red) density profiles in different regimes. (c) Density wave velocities for
BECs prepared without the Fermi gas (black squares) and with the Fermi gas at aBF = −350 a0 (red circles) and aBF = −580 a0

(blue circles). Lines are fits of the data to a model with both two- and three-body effective interactions between bosons (see
text). (d) Colored circles are the effective scattering lengths and hypervolumes extracted from panel (c). The magenta lines
are the mean-field predictions and the black line is a cubic fit to the data. The vertical error bars on the data in (a)-(c) are
standard errors calculated from fits to averaged experimental density profiles. The horizontal error bars on the data in panels
(a), (b), and (d) represent the 1-σ uncertainty of the scattering length [20]. The shaded regions around the theory calculations
in panels (a) and (b) indicate the ranges of the predictions [20]. The error bars in panel (d) are standard errors calculated from
fits to the data in panel (c).

captures the density changes in the mixture caused by
interspecies interactions.

Our experiments begin with mixtures of a pure BEC of
30,000 133Cs atoms and a degenerate Fermi gas of 8,000
6Li atoms. Both species are spin polarized into their low-
est hyperfine ground states [20, 26]. For Cs, this state is
adiabatically connected to |F = 3,mF = 3⟩ and for Li
it is connected to |F = 1/2,mF = 1/2⟩ at low magnetic
fields, where F is the total angular momentum quan-
tum number and mF is the magnetic quantum number.
The mixture is trapped in a single beam optical dipole
trap at wavelength 1064 nm with trap frequencies ωCs =
2π× (6.53, 100, 140) Hz and ωLi = 2π× (36, 330, 330) Hz
in the axial and two transverse directions. The bosons
and fermions have a temperature of about 30 nK and
chemical potentials of about kB×30 nK and kB×300 nK
respectively, where kB is the Boltzmann constant. In the

dipole trap, the BEC is fully immersed in the degenerate
Fermi gas (see Fig. 1b). We tune the interspecies scatter-
ing length near a narrow Feshbach resonance at magnetic
field 892.65 G [20, 27, 28]. Across the resonance, the
boson-boson interactions are moderately repulsive with
a nearly constant scattering length aBB = 270 a0 [29],
where a0 is the Bohr radius. At these temperatures, the
interactions between the single component Li atoms are
negligible. In our experiment, the mixture is prepared in
the weak coupling regime, where the interspecies scatter-
ing length is |aBF| < 200a0.

To study sound propagation in our system, we opti-
cally excite density waves in the mixture [30–32]. We
introduce a narrow repulsive potential barrier of width
δ = 4 µm by projecting blue-detuned light onto the cen-
ter of the BEC, resulting in a density dip. We then switch
the magnetic field to the target scattering length. After
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FIG. 4. Sound propagation across the Feshbach resonance. (a) Normalized 1D densities illustrating the revival of sound
propagation at strong interactions based on the same experimental procedure as in Figs. 2 and 3. The arrows on each data
set indicate whether the system is ramped towards the resonance starting from the attractive side (orange arrow) or repulsive
side (red arrow). Red dashed lines are guides to the eye. (b) Density wave velocity of the Li-Cs mixture across the Feshbach
resonance. Data taken from samples prepared on the attractive (repulsive) side are orange (red) in color. The arrows indicate
the direction of the scattering length ramp. The blue and green regions indicate the resonant and phase separation regimes
respectively. (c) Damping from the same data set. The black and magenta lines are the same perturbation and mean field
predictions as shown in Fig. 3. The vertical error bars in panels (b) and (c) are standard errors from fits to averaged density
profiles. The shaded regions around the theory curves in panels (b) and (c) indicate the ranges of the predictions [20]. The
vertical dashed line shows the position of the Feshbach resonance. The vertical dotted line shows the position of the Efimov
resonance reported in Ref. [28].

5 ms, when the magnetic field stabilizes, we turn off the
optical barrier and record the dynamics of the density
waves after various hold times t [20]. We observe that
the initial density depletion splits into two density waves
that counter-propagate at the same speed along the ax-
ial direction (see Fig. 2a). From the images, we extract
the velocity v and damping rate Γ of the density waves
[20]. We repeat the experiment at different interspecies
interaction strengths (see Fig. 2b).

The density wave velocity v in a bare elongated con-
densate is given by the sound speed c0 through [20, 33]

v ≈ c0√
2

√
1− ϵ

2
, (5)

where ϵ is the initial density depletion due to the poten-
tial barrier (see Fig. 2a) and c0 is the sound speed at the
center of the BEC.

In the presence of fermions, we measure the depen-
dence of the density wave velocity on the initial density
depletion ϵ and find agreement with Eq. (5) [20]. Thus,
we adopt Eq. (5) to link the density wave velocity to the
sound speed. In the following experiments, the initial
density depletion is set to ϵ = 0.5.

We summarize the measured density wave velocities
and damping rates in Figs. 3a and 3b. As we increase the
interspecies attraction from zero, the density waves prop-
agate slower and decay faster. The enhanced damping
of the density waves is consistent with the perturbation
calculation for a zero-temperature Bose-Fermi mixture
[17, 20]. When the scattering length exceeds the criti-
cal value of ac = −790(10) a0 [20], we no longer observe
stable propagation of sound. Our finding is consistent
with the sound mode softening in the Bose-Fermi mix-
ture with increasing attraction. Our measured critical
value shows clear deviations from the perturbation pre-
diction −710 a0 and the mean field prediction −510 a0
for the collapse of the mixture [34].

For repulsive interspecies interactions, on the other
hand, the density waves propagate with low damping
and no significant change in velocity over the range we
explore (see Figs. 3a and 3b). This is in stark contrast
to our observations for attraction. The clear asymmetry
with respect to the sign of the interaction goes beyond
the perturbation prediction, see Eq. (2), which only de-
pends on the square of the scattering length a2BF.

The asymmetry can be understood from the mean-field
picture. For attractive interactions, fermions are pulled
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into the BEC, and the higher fermion density further
reduces the sound velocity. On the other hand, for re-
pulsion, fermions are expelled from the BEC, reducing
their effect on the sound propagation. For strong enough
repulsion, the bosons and fermions are expected to phase
separate [34–36]. The observed nearly constant sound ve-
locity for strong repulsion is consistent with the picture
that most fermions are expelled from the condensate. For
our system, the mean field model predicts phase separa-
tion near the scattering length aBF ≈ 180 a0.

This asymmetry comes fundamentally from effective
few-body interactions in the BEC that go beyond the
perturbation calculation [37, 38]. The change of the den-
sity overlap, described in the mean-field picture, is a
consequence of the few-body interactions. The effective
boson-boson-boson three-body interaction strength can
be experimentally characterized by writing the chemical
potential in orders of the boson density

µ = g2nB + g3n
2
B + ..., (6)

where g2 = 4πℏ2aeff/mB and g3 ≡ ℏ2νeff/mB are ef-
fective two- and three-body coupling constants between
bosons, aeff is the effective scattering length, and νeff
is the effective scattering hypervolume. From the effec-
tive chemical potential µ we obtain the sound speed as
c ≈

√
(g2nB + 2g3n2

B)/mB.
To determine the effective two- and three-body inter-

action strengths, we measure the density wave velocity at
various boson densities and scattering lengths. The re-
sults are shown in Fig. 3c. From fits to the density wave
velocities and Eqs. (5) and (6), we extract the effective
scattering length aeff and effective scattering hypervol-
ume νeff (see Fig. 3d).
As the interspecies attraction increases, we observe a

reduction of the effective scattering length, consistent
with Ref. [23], and an emerging scattering hypervolume.
Mean-field theory predicts νeff = λa3BF with λ ≈ 159k−1

F
set by the Fermi momentum and mass ratio [20]. Fitting
the data, we determine λ = 35(8)k−1

F , see Fig. 3d. This
value shows clear deviation from the mean field predic-
tion. Notably, the three-body interaction g3n

2
B ∝ a3BF

is the leading order process that breaks the symmetry
between positive and negative scattering length.

By ramping our magnetic field across the Feshbach res-
onance, we explore the sound propagation in the strong
interaction regime, where the scattering length exceeds
all length scales in the system. Surprisingly, we ob-
serve stable sound propagation with low damping for
all scattering lengths |aBF| > 3,000 a0 (see Fig. 4) re-

gardless of which side of the resonance the samples are
initially prepared on [20]. We label this range the res-
onant regime. Examples of the sound propagation in
the resonant regime are shown in Fig. 4a. An inter-
esting scenario occurs when we approach the resonance
from the attractive side. The damping rate increases
as the sound velocity approaches zero for stronger at-
traction until the sound propagation becomes unstable
at the critical value ac = −790(10) a0. Then, between
ac and aBF = −3,000 a0 the system does not exhibit
stable sound propagation. For even stronger attraction
aBF < −3,000 a0, intriguingly, stable sound propagation
re-emerges and persists across the Feshbach resonance
with a damping and sound velocity comparable to weakly
interacting samples. Additional data over this region is
presented in the supplement [20].

The stable sound propagation we observe across the
interspecies Feshbach resonance goes beyond the mean-
field picture and offers promising prospects for future dis-
coveries in the strong-coupling regime. The re-emergence
of the sound propagation occurs near the Efimov res-
onance at the scattering length aBF = −3, 330 a0 [28].
Theoretically an Efimov resonance can induce an effec-
tive two-body repulsion [38] and stabilize sound propaga-
tion. Also, at strong interactions, mean-field corrections
are predicted to support a novel quantum droplet phase
for scattering lengths aBF < −750 a0 [39]. Finally, at
strong coupling, p-wave fermionic superfluidity is conjec-
tured when fermions are paired through the exchange of
bosonic excitations [15, 18, 40], which we estimate would
occur in our system in the range aBF = −2, 000 a0 to
−10, 000 a0. The stable phonon propagation we observe
near the Feshbach resonance offers promising prospects
to explore these intriguing physics with strongly interact-
ing Bose-Fermi mixtures. For example, experimentally
probing the interspecies correlations can help elucidate
the mechanism that stabilizes the sound mode in the res-
onant regime.
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