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We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly
learn generalizable (i.e. not parameter-specific) dynamics from trajectories of multiple dynamical
systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the
functional variations of the force field of dynamical system instances without knowing the physical
parameters, by adopting a bi-level optimization framework: an outer level capturing the common
force field form among studied dynamical system instances and an inner level adapting to individual
system instances. A priori physical knowledge can be conveniently embedded in the neural network
architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the
learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal
knowledge on the physical parameters of a system, or as a Neural Gauge to “measure” the physical
parameters of an unseen system with observed trajectories. iMODE can be generally applied to a
dynamical system of an arbitrary type or number of physical parameters and is validated on bistable,
double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.

Building predictive models of dynamical systems is a
central challenge across diverse disciplines of science and
engineering. Traditionally, this has been achieved by first
manually deriving the governing equations with carefully
chosen state variables and then fitting the undetermined
physical parameters using observed data, e.g., [1–3]. In
order to avoid the painstaking formulation of analytical
equations, researchers have recently leveraged advances
in machine learning and the data-fitting power of neu-
ral networks (NNs) to make the modeling process both
automatic and more expressive [4]. This is achieved by
either adopting the conventional physics-based approach
as a starting point and then replacing various compo-
nents with data-driven modules [5, 6], or directly learn-
ing discrete dynamics using autoregressive models from
high-dimensional observations [7–9]. These works, while
promising, need to fit dedicated models separately for dif-
ferent system instances with different parameters, which
limits a model’s applicability to one specific instance.

In this letter, our goal is to learn meta-knowledge, the
form of dynamics that is unrestricted to specific physical
parameters or initial/boundary conditions, on dynamical
systems to reveal physical insights [10–12] and to signifi-
cantly improve the generalization ability of data-driven
models. Specifically, we learn the shared dynamics form
from the trajectories generated by a series of dynamical
system instances in spite of their diversified behaviors in
data, without knowing the system parameters. This sepa-
rates our work from Refs. [13, 14] and Neural Operators
[15–18], in which true parameters should be provided.
This goal aligns with that of multi-task meta-learning
[19], which aims to leverage the similarities between dif-
ferent tasks to enable better generalization and efficient
adaptation to unseen tasks.
We propose an efficient and interpretable method to

model a family of dynamical systems using their observed
trajectories, by combining gradient-based meta-learning

(GBML) [20–24] with neural ordinary differential equa-
tions (NODE) [6, 25, 26]. In recognizing that the systems
have shared dynamics form and varying physical parame-
ters, we separate the model parameters into two parts:
the shared parameters that capture the shared form of
dynamics, i.e. the meta-knowledge, and the adaptation
parameters that account for variations across system in-
stances. The method generalizes well on unseen systems
from the same family, and the adaptation parameters
show good interpretability. The intrinsic dimension of
the varying system parameters can be estimated by an-
alyzing the adaptation parameters. Given ground truth
of the system parameters, simple correspondence can be
established between the adaptation parameters and actual
physical parameters through diffeomorphism, which can
be utilized as a “Neural Gauge” to measure properties of
new systems through observed trajectories. We name our
method interpretable meta neural ODE (iMODE).

In a general autonomous second-order system, the state
of the system y contains the position (generalized coordi-
nates) x and the velocity ẋ. The dynamics of the second-
order system is expressed equivalently as a first-order
system

ẏ =

[
ẋ
ẍ

]
=

[
ẋ

M−1Fϕ(y)

]
, where y =

[
x
ẋ

]
(1)

where Fϕ is the force vector containing all the internal
and external forces, and M is the mass matrix. With
a set of physical parameters ϕ, the force function F(·)
dictates the dynamics of the system, which determines
a unique trajectory y(t) given an initial condition y(t0).
In the remainder of the letter, without loss of generality,
mass is normalized to an identity matrix, i.e., M = I.
It should be noted that, with this general formulation,
the proposed method is applicable to systems other than
second-order (e.g. first-order diffusion-reaction systems.
See Supplemental Material (SM) [27] S6) and can be
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Figure 1. (color online). (a) In iMODE, a neural module
Fθ parameterized by θ takes the concatenation of system
state y and the adaptation parameters η and generates the
estimated force as output. (b) The bi-level iteration process
in the iMODE method. The NN weights θ are shared across
system instances while η is adapted for each instance. The
meta gradient w.r.t. θ aggregates the gradients evaluated
with instance-adapted η. (c) Examples of estimated force field
fθ(·;η) for Van der Pol system instances that differ in their
ϵ parameter (in ascending order from top to bottom). The
estimation quality is further evaluated through the trajectories
generated by the fields as shown in (d). (d) The estimated
force field can be used to predict system trajectories for unseen
initial conditions through integration (Eq. (2)). The signature
limit cycles of Van der Pol systems are faithfully reproduced.

easily extended to non-autonomous systems (the forcing
term should be provided).

Trajectories are collected from multiple system in-
stances into a dataset D. Consider Ns instances that
share the dynamics form Fϕ(·), but have distinct phys-
ical parameters, {ϕ1, . . . ,ϕNs

} respectively. From each
system instance, Ntr trajectories are observed, each con-
taining observations across T time steps. In summary,
D =

{
{yi,j(tk)}Tk=0|i = 1, . . . , Ns, j = 1, . . . , Ntr

}
. The

data-driven model is trained on D, knowing which tra-
jectories are from the same system instance (i.e. given
both the index i and j of trajectories), but is not given
the knowledge of {ϕi}

Ns
i=1. Take the pendulum system as

an example. An instance is a pendulum with a specific
arm length (since the inertia is normalized), therefore ϕ
includes only the arm length. A trajectory contains the
location and speed of the pendulum during a time period.

In our framework, a neural network fθ(y;η) (Fig. 1(a).
See SM [27] S7 for detailed description) replaces Fϕ(y) in
Eq. (1) to approximate the observed trajectories, where
η is adapted to each system instance such that with a
certain ηi, fθ(y;ηi) approximates the force function of
the ith system instance Fϕi

(y). After training, η becomes
a proxy for the physical parameters ϕ. θ is the model
parameters that capture the functional form of dynamics
shared across system instances. The predicted trajectory
starting from an initial condition y0 is given by integration
(the 5th-order Dormand-Prince-Shampine solver is used
throughout this letter to compute integrals)

ŷ(t,y0,θ,η) = y0 +

∫ t

t0

fθ (ŷ(τ);η) d τ (2)

For brevity, we denote the trajectory yi,j(t) as
yi,j , the corresponding prediction ŷ(t,yi,j(t0),θ,η)
as ŷi,j(θ,η), and use ∥yi,j − ŷi,j(θ,η) ∥2 to denote∑T

k=0

(
yi,j(tk)− ŷ(tk,yi,j(t0),θ,η)

)2
, the squared dif-

ference between yi,j and ŷi,j(θ,η) across all time steps.
The goal of the modeling is formulated as a bi-level

optimization (Fig. 1(b)),

outer: min
θ
L̃(θ) = 1

Ns

Ns∑
i=1

Li(θ,η
(m)
i ), where (3)

Li(θ, ζ) =
1

NtrT

Ntr∑
j=1

∥yi,j − ŷi,j(θ, ζ) ∥2, (4)

inner: η
(l+1)
i = η

(l)
i − α∇ηLi(θ,η

(l)
i ), η

(0)
i = η (5)

where the inner-level involves an m-step gradient descent
adapting η for each instance, while the outer-level finds
the optimal initialization for θ. α is the inner-level stepsize

and η
(m)
i is the adaptation parameters for the ith system

instance after m steps of adaptation. For short, we denote
such ith adaptation result as ηi. Note that ηi depends
on both θ and η as shown in Eq. (5). To avoid higher-
order derivatives, we simplify such dependency following
the first-order Model Agnostic Meta-Learning (first-order
MAML) [20] and use the outer-level step as

θ ← θ− β

Ns

∑
i

∇θLi(θ,ηi), (assuming that
∂ηi

∂θ
= 0) (6)

where β is the outer-level stepsize. At both the inner-
level and outer-level, the gradient calculation for functions
involving integrals is enabled by NODE [6, 25, 26].

As shown in Fig. 1(c), fθ(·;η) specifies a force field that
morphs as η changes. Note that m is normally quite small
(e.g. 5), so given trajectories of a previously unseen sys-
tem, η can be efficiently updated with few gradient steps,
adapting the NN to specify a force field explaining behav-
iors of the new system, which is one order-of-magnitude
faster compared to training from scratch (Fig. 3(a)). Tra-
jectories with arbitrary initial conditions can be inferred
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based on the force field (Fig. 1(d)). Generally speaking,
there is no restriction to the dimension of ϕ, i.e. the num-
ber of physical parameters of the system. However, as it
increases, more system instances (larger training dataset)
and hence longer training time of iMODE is expected.
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Figure 2. (color online). (a) The meta-learning results for
the pendulum. The iMODE trajectory prediction (circles)
with different arm lengths (different colors) match those of
the ground truth (solid lines). (b) The learned η is in good
correlation with the effective stiffness of different pendulums
(1/L). (c) The predicted trajectories (circles) match those of
ground truth (solid lines) with different initial conditions (black
stars) and different system parameters (different colors) for
the bistable system. (d) Two principal axes can be identified
from the latent space of the learned η, each regarding the
variation of one physical parameter. (e) Similar to (c) but for
the Van der Pol system. (f) The principal axis regarding to
the variation of ω for the Van der Pol system.

First we validate the modeling capability of the iMODE
algorithm on 3 cases: oscillating pendulum, bistable oscil-
lator, and Van der Pol system (see SM [27] S1 for detailed
description). The oscillating pendulum has 1 physical
parameter, i.e. the arm length (rotational inertia nor-
malized). Fig. 2(a) shows that the predicted trajectories
using task-adapted NNs match the ground truth of each
system. Fig. 2(b) shows that the learned η correlates
well with the effective stiffness of the pendulum, i.e. 1/L.
Effectively η acts as a proxy of the true arm length and
can be used to infer such parameters of unseen systems.

The bistable system has a potential energy function
controlled by 2 parameters k1 and k3. Its potential en-
ergy has two local minima, or potential wells. When the

initial conditions vary, the bistable system can oscillate
intra-well or inter-well. Fig. 2(c) shows that the task
adapted trajectories (m = 5) match the ground truth
well. Fig. 2(d) shows that the identified η ∈ R2 has two
principal axes, along which k1 and k3 increases. As men-
tioned, η is effectively a proxy for k1 and k3. Later we
will show that the mapping from η to ϕ = [k1, k3] can be
constructed as a diffeomorphism with NODE.

The Van der Pol system has 3 physical parameters
ϕ = [ϵ, δ, ω]. It exhibits limit cycles due to the negative
damping for small oscillation amplitudes. Fig. 2(e) shows
that the evolution of limit cycles due to the change of
physical parameters is well predicted. Three principal axes
can be found for the identified η. The one for ω is shown
in Fig. 2(f) (see SM [27] S1 for the other two). Again,
the mapping from η to ϕ = [ϵ, δ, ω] can be constructed
as a diffeomorphism.

The fast adaptation of iMODE is demonstrated with
the bistable systems in Fig. 3(a). The iMODE is able to
adjust the adaptation parameters in 5 steps to learn the
dynamics of unseen system instances. Training the same
network from scratch (random initialization) on the same
test dataset requires much more epochs to achieve a com-
parable accuracy. When evaluated on trajectories with
unseen initial conditions (of distinct conserved energies),
the performance of iMODE-adapted models outperforms
that of the model trained from scratch by several or-
ders of magnitude, showing superior generalization ability
with limited data (see SM [27] S3 for a more disparate
comparison when data is scarce).

Second, we demonstrate the combination of the iMODE
algorithm with certain physics priors for efficient model-
ing of more complicated systems. Since iMODE does not
assume specific architecture of fθ, a wide range of neural
network architectures can be adopted to embed appro-
priate inductive biases. For example, in bistable and the
following wall bouncing and Slinky systems, the assump-
tion of conservative force is introduced, where the system
dynamics is determined by a potential energy function.
Accordingly we take a specific form for the neural force
estimator fθ(x;η) = ∂Eθ(x;η)/∂x. That is, the NN first
outputs an energy field and then induces the force field
from the energy field (using auto-differentiation [28]). In
this way, iMODE enables the fast adaptation of not only
the force field but also the potential energy field for the
parametric systems. The learned potential energy func-
tions are shown in Fig. 3(b). The wall bouncing system
has a potential energy well that is not a linear function
of the well’s (half-)width w or the particle position x (see
SM [27] S2). However, iMODE is still able to approximate
the discontinuous energy function. η correlates well with
the true width w, i.e., we can control the width of the
potential energy well by tuning η (see SM [27] S2).

The intrinsic dimension dϕ of the physical parameters
ϕ can be estimated by applying Principal Component
Analysis (PCA) to the collection of the η vectors, each
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Figure 3. (color online). (a) Comparison of iMODE test
adaptation v.s. training from scratch on (50) unseen bistable
system instances with randomly chosen physical parameters.
iMODE demonstrates fast adaptation and good generalization
within the first 5 adaptation steps. (b) The true and learned
potential energy functions for the wall bouncing system. The
width of the potential well increases as the adaptation param-
eter increases. (c) The number of top PCA components that
preserve a significant portion (> 99%) of the variance gives a
good estimation of the dimension of true physical parameters.
(d) The diffeomorphism constructed by NODE for the bistable
system. It shows how a grid in the physical space is continu-
ously deformed into the latent space of adaptation parameters.
(e) The mean error and computation time of Neural Gauge
for 100 systems with randomly generated unseen parameters.

adapted to one of the system instances. Using an “elbow”
method on the cumulative explained variance ratio curve
of the PCA result, the number of the principal compo-
nents that explain the most of the variance has a good
correspondence with dϕ, as long as dη ≥ dϕ, where dη
is the dimension chosen for η. The PCA results on the
pendulum, bistable system, and Van der Pol system are
shown in Fig. 3(c) (see SM [27] S4 for the results of other
systems). Taking the Van der Pol system as an example,
dη is respectively 3, 4 or 5 for the three curves with tri-
angle markers. In all three cases, the first three principal
components explain more than 99% of the variance, and
the “elbow” appears at 3, which corresponds well with
the fact that dϕ = 3 for the Van der Pol system.

Neural Gauge: Without labels for the physical param-
eters, iMODE develops a latent space of adaptation pa-
rameters accounting for the variations in dynamics among

system instances. Given the physical parameter labels
of the system instances in the training data, a mapping
between the space of the physical parameters and the
latent space can be established so that the corresponding
physical parameters can be estimated given any point in
the latent space. iMODE therefore can be exploited as
a “Neural Gauge” to identify the physical parameters of
unseen system instances, and the establishment of such
mappings can be seen as a calibration process. We propose
to construct such mappings as diffeomorphism, which can
be learned with a neural ODE dz(t)/dt = gξ(z), such that
starting from a given point in the latent space, z(0) = ηi,
the state z at t = 1 gives the corresponding physical
parameters, z(1) = ϕi, i = 1, . . . , Ns. For simplicity, the
dimension of the latent space and that of the physical
parameter space are assumed to match (dη = dϕ); see
SM [27] S5 for more general treatment. gξ is a NN whose
weights are optimized by ξ = argminξ

∑
i ∥zi(1)− ϕi∥22.

Figure 3(d) shows the learned diffeomorphism for the
bistable system. The diffeomorphism establishes a bi-
jection between the physical space and the latent space
so that a grid in the physical parameter space can be
continuously transformed into the adaptation parameter
space (see SM [27] S9). The visualization highlights the
advantages of diffeomorphism mapping: (1) The transfor-
mation is smooth so that the local geometric structure is
preserved; (2) Invertible transformation allows a better in-
terpretation of the latent space compared to degenerating
ones.

After constructing the diffeomorphism, we test the
physical parameter identification performance on 100 ran-
domly selected unseen instances (with random physical
parameters). The identification error and time cost are
shown in Fig. 3(e) for pendulum, bistable, and Van der
Pol systems. The end-to-end identification starting from
data-feeding normally takes around 2 seconds (see SM
[27] S8 for details).

Complex systems : We further demonstrate that iMODE
applies to complex systems with two examples: a 40-cycle
Slinky (Fig. 4) and a reaction-diffusion system described
by the Kolmogorov-Petrovsky-Piskunov (KPP) equation.
In the Slinky case, we embed Euclidean invariance for
the energy field and induce equivariance for the force
field. iMODE is able to learn from 4 Slinky cases (of
Young’s modulus 50, 60, 70, and 80 GPa, dropping under
gravity from a horizontal initial configuration with both
ends fixed) and then quickly generalize (with 2 adaptation
steps) to an unseen Slinky (of Young’s modulus 56 GPa)
under unseen initial and boundary conditions. In the KPP
equation case, iMODE is able to learn the reaction term
with different reaction strength coefficients in 5 adaptation
steps under Neumann boundary conditions and directly
generalize to unseen Dirichlet boundary conditions. Refer
to SM [27] S6 for details.

We have presented the iMODE method, i.e., inter-
pretable meta NODE. As a major difference from existing
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Figure 4. (color online). (a) The testing performance of the
iMODE model on an unseen Slinky (of an unseen Young’s
modulus) with the same boundary condition as the training
dataset. The top row is ground truth and the bottom row
is the iMODE model prediction at 0.28, 0.47, 0.65, 0.83 s
(left to right). The mean squared error of the 3D Slinky
reconstruction over the entire trajectory is 8.0× 10−4m2. (b)
The testing performance of the iMODE model on unseen initial
and boundary conditions. The top row is ground truth and the
bottom row is the iMODE model prediction at 0.15, 0.32, 0.48,
0.65 s (left to right). The mean squared error of the 3D Slinky
reconstruction over the entire trajectory is 12.6× 10−4m2.

NN-based methods, iMODE learns meta-knowledge on a
family of dynamical systems, specifically the functional
variation of the derivative (force) field. It constructs a
parametrized functional form of the derivative field with a
shared NN across system instances and latent adaptation
parameters adapted for different instances. The NN and
adaptation parameters are learned from the difference be-
tween the ground truth and the solution calculated by an
appropriate ODE solver. We have validated with various
examples the generalizability, interpretability, and fast
adaptation ability of the iMODE method. iMODE could
open new possibilities for numerous potential applications.
Two examples are autonomous modeling of dynamical
systems where the underlying physics is difficult to express
as an explicit function of controllable experiment param-
eters: (1) the force-deformation constitutive relation of
cells as a function of ion concentrations in the culture
medium, and (2) agile maneuvering of dynamical systems
where the timely knowledge on the interaction between
the dynamical system and its external environment is
required, such as robotic control in a rapidly changing
and partially understood environment.
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