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We uncover a dynamical entanglement transition in a monitored quantum system that is heralded
by a local order parameter. Classically, chaotic systems can be stochastically controlled onto unstable
periodic orbits and exhibit controlled and uncontrolled phases as a function of the rate at which
the control is applied. We show that such control transitions persist in open quantum systems
where control is implemented with local measurements and unitary feedback. Starting from a
simple classical model with a known control transition, we define a quantum model that exhibits
a diffusive transition between a chaotic volume-law entangled phase and a disentangled controlled
phase. Unlike other entanglement transitions in monitored quantum circuits, this transition can
also be probed by correlation functions without resolving individual quantum trajectories.

The dynamics of quantum many-body systems hosts
phenomena usually inaccessible to the classical world.
In particular, the measurement and control of such sys-
tems enables quantum technologies such as efficient state
preparation [1–4], quantum error correction [5, 6], and
non-destructive measurements [7, 8]. Enriching unitary
dynamics with such nonunitary operations has also led to
the discovery of entanglement phase transitions arising
from competition between entangling unitary dynamics
and projective local measurements [9–12].

The measurement-induced phase transition (MIPT) in
its original formulation entails a fundamental change of
entanglement scaling from volume- to area-law that is
connected to percolation [11, 13, 14], but it has grown
past that paradigm [14–57]. While numerous incarna-
tions of the transition exist, it can only be witnessed by
quantities that are nonlinear in the density matrix; cor-
relation functions averaged over measurement outcomes
are unaffected by the local measurements in the long-
time limit. This makes observing MIPTs in experiment
a significant challenge requiring either postselection or
decoding.

However, augmenting each local measurement with
control [58, 59] (i.e., unitary feedback conditioned on the
measurement outcome) could stabilize a dynamical phase
transition that is observable in quantities that are linear
in the density matrix. In this work, we identify such a
control transition in an open quantum many-body sys-
tem. Unlike previously studied MIPTs, incorporating lo-
cal feedback leads to a unique control transition visible
in both entanglement measures and correlation functions,
making it observable using current experimental setups.

The central idea stems from classical dynamical sys-
tems, where methods to control chaotic dynamics have
been developed [60, 61, 63]. We focus on probabilistic

control [61, 63], which entails the coupled stochastic ac-
tion of a chaotic map (with probability 1− p) and a con-
trol map (with probability p). These two maps share a
periodic orbit, unstable for the chaotic map and stable
for the control map. Under the combined stochastic map,
the periodic orbit becomes the global attractor at some
critical control rate pctrl. Prima facie, this control transi-
tion mirrors aspects of MIPTs, albeit at a purely classical
level, with the control map as a classical proxy for quan-
tum measurements. The question then arises of whether
we can construct a quantum version of probabilistic con-
trol transitions and contrast these with quantum MIPTs.
In this letter, starting from a classically chaotic map

with a control transition, we construct a quantum model
involving measurements and feedback in which the con-
trol transition is enriched by quantum entanglement.
The phase transition in the quantum model can be
probed by a local order parameter, and is diffusive with
dynamic exponent z ≈ 2 and correlation length expo-
nent ν ≈ 1, similar to the classical case. Further, the
transition is observed in entanglement and purification
measures traditionally used to diagnose MIPTs. In con-
trast to feedback-free MIPTs, the entanglement entropy
grows diffusively at the transition before saturating to an
area-law value. Many properties of the transition are un-
derstood through the dynamics of an emergent semiclas-
sical domain wall, which undergoes an unbiased random
walk at the transition [64], see Fig. 1.
Model. We consider a control transition in the classical

Bernoulli map [65], given by

x 7→ 2x mod 1, (1)

for x ∈ [0, 1). Any rational number x0 = a/b undergoes
a finite-length periodic orbit; for instance, x0 = 1/3 7→
x1 = 2/3 7→ x0 is a periodic orbit of length 2. However,
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FIG. 1. Control transition. The quantum transition is
seen in the dynamics of single trajectories, shown above for
L = 16. (left) A realization of the stochastic quantum circuit
composed of unitary dynamics Uα

chaotic and a nonunitary con-
trol map C. (right) The phase diagram as a function of the
control probability p (black horizontal line). For p < pctrl,
the domain wall between controlled and uncontrolled regions
(red) is swept left; entanglement (color scale with brighter
colors indicating higher entanglement) grows behind it in a
volume-law fashion. For p > pctrl, the domain wall is pinned
to the right edge, and the region to its left is controlled and
disentangled. At p = pctrl, the domain wall undergoes an un-
biased random walk and the entanglement grows to an O(1)
value.

since the rational numbers are a set of measure zero in the
interval [0, 1), almost every initial state undergoes chaotic
dynamics. To control this dynamics onto a periodic orbit
of our choosing (with points {xj}), we define connected
regions ∆j such that xj ∈ ∆j and ∪j∆j = [0, 1), yielding
the control map [61]

x 7→ (1− a)xj + ax if x ∈ ∆j . (2)

Note that xj are attractive fixed points of the control map
for |a| < 1. We consider a stochastic dynamics which, at
each time step, applies the chaotic map (1) with prob-
ability 1 − p and the control map (2) with probability
p. For a critical control rate pctrl, there is a phase tran-
sition, with properties that are known exactly [63, 64],
between an uncontrolled phase where the system never
reaches the periodic orbit and a controlled phase where
it always reaches the orbit.

To build a quantum model, we map the above to qubits
as follows. Write x ∈ [0, 1) in base 2 as x = 0.b1b2b3 · · ·
where bi ∈ {0, 1}. The Hilbert space is then spanned
by computational basis (CB) states |b1b2b3 · · ·⟩ ≡ |x⟩.
Now, |2x mod 1⟩ = |b2b3b4 · · ·⟩, i.e., Eq. (1) implements
a leftward shift of the bitstring. Next, we truncate the
Hilbert space to bitstrings of length L and implement
Eq. (1) via the unitary operator

T |b1b2 · · · bL⟩ = |b2b3 · · · bLb1⟩ , (3)

which is identical to (1) up to an error O(2−L). How-
ever, in this formulation, every initial state belongs to

a periodic orbit of length ≤ L. To restore a notion of
chaos in the thermodynamic limit L → ∞ requires the
typical orbit length to be exponential in L [66–68]. To
accomplish this, we compose Eq. (3) with a scrambling
operation Sα on the last few qubits. We consider two
options for Sα: a “classical” (α = cl) and a “quantum”
(α = qm) one. The former acts as a permutation on the
8-dimensional space of bitstrings bL−2bL−1bL, while the
latter is a Haar-random unitary acting on the last two
qubits. The chaotic unitary is then

Uαchaotic = SαT. (4)

The unitary map U cl
chaotic is classical in that it maps CB

states to CB states—it is a reversible cellular automaton
(CA). We choose Scl such that U cl

chaotic is a chaotic CA

with typical orbit length eO(L) [64]. This construction
mimics the dynamics of a dense subset of the real num-
bers, called normal numbers [69], that can rigorously be
shown to recover the ergodic behavior of the Bernoulli
map [64]. Contrariwise, Uqm

chaotic generates chaotic quan-
tum dynamics in the sense that an initial CB state de-
velops volume-law entanglement in O(L2) time owing
to the locality of the scrambler Sqm [64]. Crucially, in
the quantum-chaotic implementation the dynamics is no
longer that of a single bitstring, but rather of an entan-
gled superposition of such strings and hence no longer
corresponds to the representation of a single number.
We implement the (inherently nonunitary) control map

via measurement and feedback. We choose the period-2
orbit {x0 = 1/3, x1 = 2/3} and a = 2−1 in Eq. (2). For
this a, the classical control transition occurs at pctrl =
0.5 [63]. We then break up the control map,

C = ActrlT
−1RL, (5)

into the multiplication |x⟩ 7→ |2−1x⟩ (T−1RL) followed
by the the addition |2−1x⟩ 7→ |2−1x+ 2−1xj⟩ (Actrl). RL
projectively measures qubit L in the CB and flips it if the
outcome is |bL⟩ = |1⟩:

RL |ψ⟩ =


P 0

L|ψ⟩
∥P 0

L|ψ⟩∥ with probability
∥∥P 0

L |ψ⟩
∥∥2 ,

XLP
1
L|ψ⟩

∥P 1
L|ψ⟩∥ with probability

∥∥P 1
L |ψ⟩

∥∥2 , (6)

where P 0
L and P 1

L project the Lth qubit onto |0⟩ and
|1⟩, respectively, and XL is the Pauli-X operator at site
L. Subsequently, T−1 |b1b2 · · · bL−10⟩ = |0b1b2 · · · bL−1⟩
completes the multiplication operation. Finally, we apply
the controlled adder circuit

Actrl |x⟩ =

{
|x+ 0.00101 · · · 011⟩ if b2 = 0

|x+ 0.01010 · · · 101⟩ if b2 = 1
, (7)

which can be built from local unitary operations as de-
scribed in [64]. The conditional on b2 determines whether
to push CB states |x⟩ towards |x0⟩ or |x1⟩.
The stochastic dynamics at each time step is gener-

ated by Uαchaotic with probability 1− p and C otherwise.
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FIG. 2. Classical transition. (left) Realization-averaged

order parameter ⟨O⟩ for various system sizes. The crossing
near p = 0.500(1) is where the transition occurs. (Inset)
Collapse indicates that ν = 1.00(2). (right) The position
of the FDW initialized at L/2 for L = 1000 in the controlled
phase (p = 0.75), the uncontrolled phase (p = 0.4) and at the
transition (p = 0.5). Gray curves are all 1000 realizations and
red curves are averages. (Inset) At p = 0.5 we see random
walk behavior in four orders of magnitude for r2 = t and a fit
confirms z = 2.04(8).

When the chaotic dynamics is generated by U cl
chaotic, this

dynamics occurs in the space of CB states, and is there-
fore equivalent to a probabilistic cellular automaton; the
dynamics is classical, despite being phrased quantum me-
chanically. For Uqm

chaotic, the chaotic dynamics becomes
entangling, and C disentangles the system by pushing
it towards the periodic orbit of the underlying classical
model. These dynamics can be formulated as a quantum
channel; with additional dephasing, the superoperator
that evolves the average density matrix reduces to the
Frobenius-Perron evolution operator for classical phase
space distributions [64].

Classical transition. Our first order of business is to
show that the classical control transition survives the
above mapping to qubits. To characterize the transi-
tion, we first note that the orbit {x0 = 1/3, x1 = 2/3}
is a two-dimensional subspace spanned by the CB states
|1/3⟩ = |0101 · · · 01⟩ and |2/3⟩ = |1010 · · · 10⟩. Thus, the
control map (2) steers the system’s dynamics onto Néel-
ordered antiferromagnetic states. We probe this order
using the order parameter

O = − 1

L

L∑
i=1

ZiZi+1, ZL+1 ≡ Z1, (8)

where Zi is the Pauli Z operator for bit i [Zi |bi⟩ =
(−1)bi+1 |bi⟩]. The two Néel states maximize ⟨O⟩ = 1, so
the controlled phase can be viewed as an ordered phase
characterized by ⟨O⟩ → 1 in the thermodynamic limit.
To probe the transition into the ordered phase in the clas-
sical case, we simulate the dynamics of CB states under
the stochastic action of U cl

chaotic and C out to 2L2 time
steps for a range of of p and L. For each p and L, we
calculate ⟨O⟩ at the final time, and average the result
over 1000 randomly chosen initial states and circuit in-
stances. We refer to this realization-averaged quantity as
⟨O⟩. Our results, shown in Fig. 2(left), show that Néel or-

der develops for p >∼ 0.5. Scaling collapse with an ansatz

⟨O⟩ = f(L1/ν(p − pctrl)) is consistent with a transition
point pctrl = 0.500(1), coinciding with the known result
for Eqs. (1) and (2) [63], and with a correlation length
critical exponent ν = 1.00(2) that also agrees with an-
alytic results for the classical transition [63, 64]. (For
details on our scaling collapse methodology and further
comparison with the classical map and control transition
studied in Refs. [61, 63], see [64].) Additionally, the fluc-
tuations of ⟨O⟩ over realizations peak at p = 0.5 (not
shown), serving as another indicator of the transition.
To further characterize the control phase transition,

we consider the behavior of the “first” (i.e., leftmost)
Néel domain wall in the chain—for example, the first do-
main wall (FDW) in the following configuration is high-

lighted with a box: |01010 11 0110 . . .⟩. The position of
the FDW bounds the distance from a point x ∈ [0, 1)
to the periodic orbit: if the FDW is on the rth bond
in the chain, then minj |x − xj | <∼ O(2−r) for j = 0, 1.
The FDW thus constitutes the boundary between con-
trolled and uncontrolled regions of the qubit chain, see
Fig. 1. We simulate the dynamics of the FDW when
initialized at r0 = L/2 and find averaged displacement
and mean-squared displacement consistent with a ran-
dom walk with bias 2p− 1 [see Fig. 2(right)]:

⟨r − r0⟩ = (2p− 1)t, ⟨(r − r0)2⟩|p=0.5 = t. (9)

Fitting ⟨(r − r0)2⟩ ∼ t2/z at p = 0.5 confirms that z =
2.04(8), consistent with an unbiased random walk and
with exact results for the original Bernoulli map [63, 64].
Thus, our finite size bit string representation of the con-
trol transition in the Bernouli map preserves the univer-
sality class of the transition.
Quantum transition. Next, we examine the fate of the

control transition when the classical scrambler Scl is re-
placed by the Haar-random scrambler Sqm. Since the
hybrid control circuit (2) distributes over superpositions
of CB states, we hypothesize that the control transition
survives. Then, above some critical p, the control circuit
drives the system to a disentangled state with ⟨O⟩ → 1
as L→ ∞, while below this critical value the system en-
ters a volume-law entangled steady-state with ⟨O⟩ → 0
as L → ∞. Thus, in addition to a control transition, we
expect to see an entanglement transition along the lines
of those encountered in feedback-free MIPTs, but with a
distinct universality class.
Exact numerical results confirm this simple picture.

Fig. 3(left) shows the realization-averaged order parame-

ter ⟨O⟩ as a function of p. ⟨O⟩ is measured at t = 2L2 to
ensure that the system reaches a steady state [64]. Sim-
ilar to the classical case, there is a crossing near p = 0.5.
The inset of Fig. 3(left) shows a scaling collapse assum-
ing ν = 1.0(1) and pctrl = 0.48(1), suggesting a control
transition near the expected location. In the SM, we
show that the fluctuations over realizations of ⟨O⟩ peak
at p = 0.5, similar to the classical transition.
We further investigate this transition using tools de-
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FIG. 3. Quantum transition. (left) Order parameter ⟨O⟩ at t = 2L2 averaged over initial states and circuit realizations.
Inset shows scaling collapse assuming ν = 1.0(1) and pctrl ≈ 0.48(1). (middle) Ancilla entanglement order parameter Sanc (in
units of ln 2) at time L2/2 averaged over initial states and circuit realizations. Inset shows scaling collapse assuming ν = 0.9(1)
and pctrl ≈ 0.51(1). (right) Dynamics of Sanc collapsed as a function of rescaled time t/Lz near the control transition (p = 0.5)
with z = 2.1(1). Data are averaged over 2000 realizations for L = 10, . . . , 16, and 1000 realizations for L = 18, 20. (For Sanc

data, 500 realizations are used for L = 20.) All points have error bars indicating standard error of the mean; where not visible,
they are smaller than the points.

veloped for MIPTs. Certain MIPTs are viewed as purifi-
cation transitions with one phase able to purify mixed
states in a finite time [15]. This purification transition is
probed by preparing the system in a maximally entangled
state with one ancilla qubit and tracking the ancilla’s en-
tanglement entropy Sanc as a function of time [70] for
varying L and p. At the purification transition, we ex-
pect a crossing of the Sanc-vs.-p curves for different L
at times of order L2; Fig. 3(middle) shows this crossing
near p = 0.5 with the inset showing data collapse assum-
ing ν = 0.9(1) and pctrl = 0.51(1). These data are taken
after evolving the system for a time t = L2/2, but the
results are insensitive to small variations of this hyperpa-
rameter. To characterize the quantum dynamics at the
transition, we consider Sanc(t) in Fig. 3(right) at p = 0.5.
We find that the curves for various L nearly collapse upon
rescaling t → t/Lz with z = 2.1(1), consistent with the
dynamical exponent of the classical transition.

Another perspective on MIPTs is that they constitute
a volume-to-area-law transition in the entanglement en-
tropy of a pure state. In Fig. 4, we show that the sys-
tem’s entanglement entropy is also sensitive to the control
transition. We calculate the von-Neumann entanglement
entropy of the half-chain, SA, taking region A to be the
leftmost L/2 sites of the chain. In Fig. 4(left) we show SA
as a function of p for different L, finding that it increases
with L for p <∼ 0.51 and decreases with L for p >∼ 0.51.
At the transition, we find that the wavefunction is area-
law entangled on average, as indicated by a data col-
lapse (inset) assuming ν = 0.9(4) and pctrl = 0.50(2).
In Fig. 4(right), we plot SA(t) for L = 10, . . . , 18. The

results collapse as a function of
√
t/L2 (see also Fig. 3)

consistent with the classical expectation. In the early-
time regime t ≪ L, the realization-averaged entangle-
ment grows diffusively, SA(t, L) ∼

√
t/L.

The entanglement properties at the transition also fol-
low from the FDW dynamics. In the quantum model,
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FIG. 4. Entanglement structure and dynamics. (left)
Realization-averaged von-Neumann entanglement entropy SA

at time 2L2 for various L and p. At large p SA decreases with
L, while at small p it increases linearly with L. There is a
crossing near p = 0.5, suggesting area-law entanglement at the
transition. Inset: Scaling collapse of SA assuming ν = 0.9(4)
and pctrl = 0.50(2). The data collapse near and above the
control transition. (right) SA as a function of rescaled time√

t/L2 near the quantum transition (p = 0.5). The entangle-
ment dynamics nearly collapse, and there is an intermediate-
time regime where SA ∼

√
t (red line).

the FDW becomes a wavepacket with average position
⟨r(t)⟩ =

∑
x|⟨x|ψ(t)⟩|2 rx, where rx is the position of the

FDW in the CB state |x⟩. In the quantum setting, the
uncontrolled region to the right of the FDW develops
entanglement due to the action of the local scrambler
Sqm (see Fig. 1). The FDW thus constitutes a front
between entangled and disentangled regions, so its dy-
namics govern the half-cut entanglement. At the transi-
tion the transport of the FDW is diffusive, so the entan-
glement dynamics must also be diffusive. Furthermore,
since volume-law entanglement can only develop when
the FDW “sticks” to the left edge of the chain for at
least an O(L) time [64], which is exponentially unlikely
in an unbiased random walk, the average entanglement
is at most area-law at the transition.

Discussion and outlook. In this letter, we construct a
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quantum model that generalizes the stochastic dynam-
ics associated with the probabilistic control of classical
chaos. The model exhibits a dynamical entanglement
transition reminiscent of MIPTs as well as a control tran-
sition that is witnessed by a local order parameter. We
present an analytical argument based on the dynamics of
the FDW that the entanglement and control transitions
coincide, and our finite-size scaling analysis [64] finds that
the two transitions are not distinguishable. Our numeri-
cal results indicate a diffusive transition at a critical con-
trol rate pctrl = 0.5 ± 0.02, consistent with both large-
system numerics and previous analytical results for the
classical version of the transition. We note, however, that
the control and entanglement transitions need not coin-
cide in general, and indeed models can be designed where
the transitions are pulled apart by separately adjustable
measurement and control rates [71, 72]. Control transi-
tions like the one studied here open the door to probing
ordered phases and phase transitions in monitored quan-

tum dynamics without the need for postselection onto
individual quantum trajectories [73]. We therefore ex-
pect that such transitions can be observed in a variety of
noisy intermediate-scale quantum experiments.
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M. Schiró, Measurement-induced entanglement transi-
tions in the quantum Ising chain: From infinite to zero
clicks, Phys. Rev. B 103, 224210 (2021).

[45] P. Sierant, G. Chiriacò, F. M. Surace, S. Sharma,
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