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Thermalization (generalized thermalization) in nonintegrable (integrable) quantum systems re-
quires two ingredients, equilibration and an agreement with the predictions of the Gibbs (generalized
Gibbs) ensemble. We prove that observables that exhibit eigenstate thermalization in single-particle
sector equilibrate in many-body sectors of quantum-chaotic quadratic models. Remarkably, the same
observables do not exhibit eigenstate thermalization in many-body sectors (we establish that there
are exponentially many outliers). Hence, the generalized Gibbs ensemble is generally needed to
describe their expectation values after equilibration, and it is characterized by Lagrange multipliers
that are smooth functions of single-particle energies.

Introduction. The past 15 years, we have improved
significantly our understanding of quantum dynamics in
isolated many-body quantum systems [1–4]. A paradig-
matic setup for these studies is the quantum quench, in
which a sudden change of a tuning parameter pushes
the system far from equilibrium. Following quantum
quenches, observables in nonintegrable systems have been
found to equilibrate to the predictions of the Gibbs en-
semble (GE) [1, 5], while in integrable systems they
have been found to equilibrate to the predictions of
the generalized Gibbs ensemble (GGE) [6, 7]. The va-
lidity of the GGE has been tested in many theoreti-
cal studies of integrable models that are mappable onto
quadratic ones [6–16], integrable models that are not
mappable onto quadratic ones [17–28] (see Ref. [29] for
reviews), and it is a starting point for the recently intro-
duced [30, 31] and experimentally tested [32, 33] theory
of generalized hydrodynamics.

Quadratic fermionic models, which are central to un-
derstanding a wide range of phenomena in condensed
matter physics, can be thought as being a special (nonin-
teracting) class of integrable models. Their Hamiltonians
consist of bilinear forms of creation and annihilation op-
erators. The infinite-time averages of one-body observ-
ables after quenches in these models are always described
by GGEs [7, 34–36]. However, there are one-body ob-
servables that generically fail to equilibrate because the
one-body density matrix evolves unitarily [37], i.e., gen-
eralized thermalization fails to occur. Such equilibration
failures have been discussed in the context of localization
in real [13, 34–36] and momentum [36, 37] space. Equi-
libration in quadratic models has been argued to occur
for local observables in the absence of real-space localiza-
tion. In particular, it has been shown to occur for initial
states that are ground states of local Hamiltonians [38],
as well as for initial states that exhibit sufficiently rapidly
decaying correlations in real space [39–41].

In this Letter, we show that there is a broad class of
quadratic fermionic models for which generalized ther-
malization is ensured by the properties of the Hamil-
tonian. Hence, it is robust and resembles (general-

ized) thermalization, which occurs in interacting (inte-
grable) nonintegrable models. The class in question is
that of quantum-chaotic quadratic (QCQ) Hamiltoni-
ans, namely, quadratic Hamiltonians that exhibit single-
particle quantum chaos [42, 43]. Paradigmatic exam-
ples of local QCQ models are the three-dimensional
(3D) Anderson model in the delocalized regime [42, 44]
and chaotic tight-binding billiards [45], while their non-
local counterparts include variants of the quadratic
Sachdev-Ye-Kitaev (SYK2) model [46, 47] and the power-
law random banded matrix model in the delocalized
regime [46]. The single-particle sector of those models
exhibits random-matrix-like statistics of the energy lev-
els [44, 48, 49], as well as single-particle eigenstate ther-
malization [43], i.e., the matrix elements of properly nor-

malized one-body observables Ô [50] in the single-particle
energy eigenkets are described by the eigenstate thermal-
ization hypothesis (ETH) ansatz [1, 51]

⟨α|Ô|β⟩ = O(ϵ̄)δαβ + ρ(ϵ̄)−1/2FO(ϵ̄, ω)RO
αβ , (1)

where ϵ̄ = (ϵα+ϵβ)/2, ω = ϵβ−ϵα, O(ϵ̄) and FO(ϵ̄, ω) are
smooth functions of their arguments, and ρ(ϵ̄) = δN/δϵ|ϵ̄
is the single-particle density of states (typically propor-
tional to the volume) at energy ϵ̄. The distribution
of matrix elements is described by the random vari-
able RO

αβ , which has zero mean and unit variance. The
many-body energy eigenstates, on the other hand, exhibit
eigenstate entanglement properties typical of Gaussian
states [42, 46, 47, 52, 53], see also [54].

We prove that single-particle eigenstate thermaliza-
tion ensures equilibration in many-body sectors of QCQ
Hamiltonians, and we also prove that eigenstate ther-
malization does not occur in those sectors. We then
show that the GGE is needed to describe observables
after equilibration, and that it is characterized by the
Lagrange multipliers which are smooth functions of the
single-particle energies. The latter is also a consequence
of single-particle eigenstate thermalization. Our analyti-
cal results are tested numerically in QCQ Hamiltonians,
and contrasted with results obtained for quadratic mod-
els that are not quantum chaotic.
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Quantum quench and equilibration. We consider a
quantum quench setup; the system is prepared in an
initial many-body pure state |Ψ0⟩, and evolves unitar-

ily under a quadratic Hamiltonian Ĥ =
∑V

i,j=1 hij ĉ
†
i ĉj ,

where ĉ†i (ĉi) creates (annihilates) a spinless fermion at
site i, and V denotes the number of lattice sites. In what
follows, we use uppercase (lowercase) Greek letters to de-
note quantum states in the many-body (single-particle)

Hilbert space. One can diagonalize Ĥ via a unitary trans-
formation of the creation and annihilation operators,

Ĥ =
∑

α ϵαf̂
†
αf̂α. The single-particle energy eigenstates,

with eigenenergies ϵα, can be written as |α⟩ ≡ f̂†α|∅⟩.
The many-body energy eigenstates, with eigenenergies

EΩ =
∑

{α} ϵα, can be written as |Ω⟩ =
∏

{α} f̂
†
α|∅⟩,

where {α} is the set of N occupied |α⟩ for any given lat-
tice filling n = N/V . Any initial many-body pure state
can be written as |Ψ0⟩ =

∑
Ω⟨Ω|Ψ0⟩|Ω⟩.

Our focus is on one-body observables with rank
O(1) [55], such as site and quasimomentum occupations,
which are experimentally relevant and have the follow-

ing form Ô =
∑

αβ Oαβ f̂
†
αf̂β with Oαβ = ⟨α|Ô|β⟩. Their

time evolution can be written in the many-body basis as

⟨Ô(t)⟩ =
∑

Ω⟨Ω|e−iĤtρ̂0e
iĤtÔ|Ω⟩, where ρ̂0 = |Ψ0⟩⟨Ψ0|

is the density matrix of the initial state. In quadratic
models, we can write it using the single-particle basis as

⟨Ô(t)⟩ =
∑
α

⟨α|e−iĤtR̂eiĤtÔ|α⟩ =

V∑
α,β=1

RαβOβαe
iωβαt,

(2)

where R̂ =
∑

αβ Rαβ f̂
†
αf̂β is the one-body density matrix

of the initial state, with Rαβ = ⟨Ψ0|f̂†β f̂α|Ψ0⟩ [56, 57],
and ωβα = ϵβ − ϵα.

The infinite time average of ⟨Ô(t)⟩, for a non-
degenerated single-particle spectrum, is given by

⟨Ô(t)⟩ ≡ lim
τ→∞

1

τ

∫ τ

0

⟨Ô(t)⟩dt =
∑
α

OααRαα. (3)

The density matrix in the GGE is defined as ρ̂GGE =
1

ZGGE
e−

∑
α λαÎα with ZGGE = Tr[e−

∑
α λαÎα ], the con-

stants of motion being Îα = f̂†αf̂α, and the Lagrange

multipliers fixed such that Rαα = Tr[ρ̂GGEÎα]. There-

fore, the infinite-time average of ⟨Ô(t)⟩ is reproduced by
the GGE prediction [7, 35, 36]

⟨Ô(t)⟩ =
∑
α

OααTr[ρ̂GGEÎα] = Tr[ρ̂GGEÔ], (4)

where we have used that ρ̂GGE is diagonal in
the single-particle energy eigenbasis, so that

Tr[ρ̂GGE

∑
αβ Oαβ f̂

†
αf̂β ] = Tr[ρ̂GGE

∑
αOααf̂

†
αf̂α].

Given that the infinite-time averages are guaranteed
to be described by the GGE, all one needs for general-
ized thermalization to occur is the temporal fluctuations
about the infinite-time average to vanish in the thermo-

dynamic limit. The temporal fluctuations can be charac-
terized by the variance [1]

σ2
t = ⟨Ô(t)⟩2 − ⟨Ô(t)⟩

2

. (5)

Recall that the standard derivation of the upper bound
for σ2

t , which is based on the time evolution written in the
many-body basis, requires that there are no gap degen-
eracies in the many-body spectrum [1]. This condition
need not be fulfilled in quadratic models. The deriva-
tion that we provide below, which is based on Eq. (2),
requires the absence of gap degeneracies in the single-
particle spectrum. The latter is satisfied by QCQ Hamil-
tonians. Specifically, one can write

⟨Ô(t)⟩2 =
∑

α,β,ω,ρ

OβαOρωRαβRωρei(ϵβ−ϵα+ϵρ−ϵω)t . (6)

which simplifies to (see Ref. [58])

⟨Ô(t)⟩2 =
∑
α̸=β

|Oαβ |2|Rαβ |2 + ⟨Ô(t)⟩
2

, (7)

We can therefore define the upper bound for the variance

σ2
t =

V∑
α̸=β=1

|Oαβ |2|Rαβ |2 ≤ max
{
|Oαβ |2

} V∑
α=1

(R2)αα .

(8)

Since the eigenvalues of R̂ belong to the interval [0, 1],
one can replace R2 → R in Eq. (8), and we obtain

σ2
t ≤ max

{
V |Oαβ |2

} 1

V

V∑
α=1

Rαα = max
{
V |Oαβ |2

}
n ,

(9)

where we used that
∑

αRαα = ⟨ψ0|
∑

α f̂
†
αf̂α|ψ0⟩ = N .

Because the properly normalized one-body observables
with rank O(1) can be written as Ô ≃ Ô

√
V [43], single-

particle eigenstate thermalization in QCQ models results
in max

{
V |Oαβ |2

}
∝ 1/V . Hence, the equilibration of

these one-body observables is guaranteed in the thermo-
dynamic limit. Notice that the polynomial scaling of the
upper bound for σ2

t with the system size is independent of
the details of the quantum quench, like the energy of the
initial state |Ψ0⟩ or the filling factor n. The above analy-
sis can be extended to one-body operators that have rank
O(V ). Furthermore, in Ref. [58] we show that equilibra-
tion also occurs for q-body observables (q = 2, 3, ...) that
are products of one-body observables, all of which ex-
hibit single-particle eigenstate thermalization. Remark-
ably, our analysis applies to arbitrary initial states [58].
Numerical tests of equilibration. We consider local

Hamiltonians that can be written as

Ĥ1 = −
∑
⟨i,j⟩

ĉ†i ĉj +

V∑
i=1

εiĉ
†
i ĉi . (10)

The first term describes hoppings between nearest neigh-
bor sites, and εi is the onsite potential. We focus on
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the 3D Anderson model on a cubic lattice with periodic
boundary conditions, for which εi = (W/2)ri with ri
being a random number drawn from a uniform distri-
bution in the interval [−1, 1] [59]. We study dynamics
in the two regimes of this model (which has a transi-
tion at Wc ≈ 16.5 [60, 61]), at the W = 5 (delocalized,
QCQ [42]) and W = 25 (localized) points. For the prepa-
ration of initial states in quantum quenches, which are
always taken to be ground states in this work, we intro-
duce a 3D superlattice model with εi = ±W in Eq. (10),
where the sign alternates between nearest neighbor sites.
This 3D superlattice model allows us to create highly
nonthermal distributions of momenta in the initial state
(in the spirit of the quantum Newton’s cradle experi-
ment [62]). We complement our analysis with a quadratic
model that is not quantum chaotic, i.e., 1D noninteract-
ing fermions in a homogeneous lattice with open bound-
ary conditions [εi = 0 in Eq. (10)]. To prepare the initial
states for the quenches, we use the Aubry-André model
[εi = −Λ cos(2πσi) with σ = (

√
5 − 1)/2] in Eq. (10).

We also consider a paradigmatic nonlocal QCQ model,
the SYK2 model in the Dirac fermion formulation [63],

Ĥ2 =

V∑
i,j=1

[(1 − γ)aij + γbij ] ĉ
†
i ĉj , (11)

where the diagonal (off-diagonal) elements of the ma-
trices a and b are real normally distributed random
numbers with zero mean and 2/V (1/V ) variance, while
γ ∈ [0, 1]. The choice of an unconventional form of the
SYK2 Hamiltonian (as a sum of two one-body operators)
allows us to distinguish between weak and strong quan-
tum quenches, as explained in Ref. [58].

In Fig. 1, we show results of numerical tests of equi-
libration for two observables, the occupation of a lattice

site, n̂1 = ĉ†1ĉ1, and the occupation of the zero quasi-

momentum mode, m̂0 = 1
V

∑
ij ĉ

†
i ĉj . Specifically, we plot

the time evolution of ⟨Ô(t)⟩−⟨Ô⟩GGE in Figs. 1(a)–1(d),
while the temporal fluctuations σt as functions of V are
shown in Fig. 1(e). For the quench from the 3D super-
lattice model at W = 1 to the 3D Anderson model at
W = 5, see Figs. 1(a) and 1(b), the temporal fluctu-
ations σt of both observables decrease with increasing
system size, and a scaling σt ∝ V −ζ with ζ ≈ 0.5 is ob-
served in Fig. 1(e). An exponent ζ = 0.5 is expected be-
cause max

{
V |Oαβ |2

}
∝ 1/V for those observables [43].

In contrast, for the quench from the 3D Anderson model
at W0 = 30 to the same model (with a different disorder
realization) at W = 25 in Fig. 1(c) [Fig. 1(d)], the tempo-
ral fluctuations σt do not decrease (do decrease) with in-
creasing system size for n̂1 (m̂0), and a scaling σt ∝ V −ζ

with ζ ≈ 0 (ζ ≈ 0.5) is observed in Fig. 1(e). This a
consequence of the fact that m̂0, but not n̂1, exhibits sig-
natures of single-particle eigenstate thermalization in the
localized regime of the 3D Anderson model [43]. Qual-
itatively similar results to those for W = 25 were re-
ported in the presence of real-space localization in the
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FIG. 1. (a)–(d) Time evolution of ⟨Ô(t)⟩−⟨Ô⟩GGE after quan-
tum quenches in 3D models. The numerical results for system
with V = 63, 83, 143, and 183 are marked with black, red,
blue, and green, respectively. We show results for two (solid
and dashed) quench realizations for each V . (a), (b) Quenches
from the 3D superlattice model at W = 1 and n = 1/4 to the
3D Anderson model at W = 5. (c), (d) Quenches from the
3D Anderson model at W0 = 30 and n = 1/2 to the same
model (with a different disorder realization) at W = 25. Two
operators are considered (a), (c) n̂1 and (b), (d) m̂0. (e)
Temporal fluctuations σt calculated within the time interval
t ∈ [102, 105] and averaged over 20 quench realizations. The
lines show the outcome of two parameter fits κ/V ζ . We get
ζ ∈ [0.46, 0.5] for (a), (b), and (d).

1D Anderson model [34, 35], and in the 1D Aubry-André
model [13, 36].

Stationary state. Since eigenstate thermalization oc-
curs in single-particle eigenstates of QCQ models, it is
natural to wonder whether it also occurs in the many-
body eigenstates of those models. If this is the case,
the predictions of the GGE will be identical to those of
the GE in the thermodynamic limit, ⟨Ô⟩GGE = ⟨Ô⟩GE,

where ⟨Ô⟩GGE = Tr[ρ̂GGEÔ] and ⟨Ô⟩GE = Tr[ρ̂GEÔ],

with ρ̂GE = 1
ZGE

e−
∑

α(ϵα−µ)/(kBT ) f̂†
αf̂α , and ZGE =

Tr[e−
∑

α(ϵα−µ)/(kBT )f̂†
αf̂α ]. kB , T , and µ are the Boltz-

mann constant, the temperature, and the chemical po-
tential, respectively.

We address this question in the context of the quenches
to the 3D Anderson model with W = 5. We focus on
m̂0. The finite-size scaling of the difference |∆⟨m̂0⟩| =
|⟨m̂0⟩GGE−⟨m̂0⟩GE| is reported in Fig. 2. Each point was
calculated for a single quench realization, and then aver-
aged over 100 quench realizations. It is apparent that the
difference |∆⟨m̂0⟩| rapidly converges to a nonzero value.
Therefore, the GGE is expected to be different from the
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FIG. 2. Finite-size scaling of the difference |∆⟨m̂0⟩| for
quenches from the 3D superlattice model with W ∈ {1, 7.5}
and n = 1/4 to the 3D Anderson model with W = 5. Horizon-
tal lines mark the mean values for the five largest system sizes
V ∈

{
163, ..., 243

}
. The results were averaged over M = 100

quench realizations. The error bars are standard deviations

σ =
(∑M

i=1 |∆⟨m̂0⟩|2i /M − (
∑M

i=1 |∆⟨m̂0⟩|i/M)2
)1/2

.

GE in the thermodynamic limit. (Qualitatively similar
results as in this section and the previous one were ob-
tained for other models, quenches and observables.)

Absence of eigenstate thermalization in many-body en-
ergy eigenstates. The numerical results from the previ-
ous section suggest that the many-body eigenstates of
QCQ Hamiltonians do not exhibit eigenstate thermal-
ization [the infinite time averages from Eq. (3) disagree
with the predictions of the GE]. We can understand this
analytically as follows (see Ref. [58] for a proof).

The diagonal matrix elements of Ô in the many-body
energy eigenstates |Ω⟩ can be written as

⟨Ω|Ô|Ω⟩ =

V∑
α,β=1

Oαβ⟨Ω|f̂†αf̂β |Ω⟩ =

V∑
α=1

Oαα⟨Ω|f̂†αf̂α|Ω⟩ ,

(12)

where the expectation values ⟨Ω|f̂†αf̂α|Ω⟩ are equal 0 or 1.
Hence, the behavior of the diagonal many-body matrix
elements [and so the infinite time averages from Eq. (3)]
is governed by an extensive (in V ) sum of the diagonal
single-particle matrix elements Oαα.

The diagonal matrix elements Oαα exhibit O(1/V )
fluctuations about their smooth function O(ϵα) [43]. For
simplicity, let us consider O(ϵα) = 0. We can build
many-body eigenstates |Ω⟩, for which V/a and V/b of

Oαα⟨Ω|f̂†αf̂α|Ω⟩ are positive and negative, respectively.
The corresponding diagonal matrix elements read

⟨Ω|Ô|Ω⟩ =

V/a∑
β=1

|Oββ | −
V/b∑
β=1

|Oββ | ∼
(
V

a
− V

b

)
O

(
1

V

)
,

(13)
where 1/a + 1/b = n. These diagonal matrix elements
are O(1) when a ̸= b, so they do not approach the mi-
crocanonical average in the thermodynamic limit. Fur-
thermore, the number of such many-body states increases
exponentially with the system size

N =

(
V/2
V/a

)(
V/2
V/b

)
≥

[
V/2

V/a

]V
a
[
V/2

V/b

]V
b

= 2κV , (14)

FIG. 3. Lagrange multipliers λα plotted versus single-particle
energies ϵα. Black and gray (blue and red) points depict re-
sults for V = 103 (V = 283) and a single quench realiza-
tion. These quenches are: (a) the 3D superlattice model with
W = 1 and 7.5 to the 3D Anderson model with W = 5 (main
panel), and the change of b to a new random realization in
the SYK2 model with γ = 0.25 and 0.5 (inset); (b) the 3D
Anderson model at W0 = 30 to the same model (with a dif-
ferent disorder realization) at W = 25 (main panel), and the
Aubry-André model with Λ = 1.5 to free fermions (inset).
In all cases n = 1/2, except for the main panel in (a) where
n = 1/4.

where we have introduced κ = 1
a log2

(
a
2

)
+ 1

b log2

(
b
2

)
.

Smoothness of Lagrange multipliers. To conclude, let
us explore the properties of the GGE in QCQ Hamil-
tonians. Note that whenever the Lagrange multipliers
are linear functions of the single-particle energies, i.e.,
λα = (ϵα − µ)/(kBT ), the GGE is the same as the GE.

The Lagrange multipliers λα are plotted as functions of
the single-particle energies ϵα in Fig. 3(a) for quenches in
which the final Hamiltonian exhibits single-particle quan-
tum chaos: the 3D Anderson model with W = 5 (main
panel) and the SYK2 model (inset). It is notable that
λα are smooth functions of ϵα, and that they are not
linear in ϵα, even in the quench within the SYK2 model
with an arbitrary γ < 1 (the exception is γ = 1, which
is at “infinite temperature”, see Ref. [58]). In Fig. 3(b),
we plot the Lagrange multipliers λα vs ϵα for quenches
in which the final Hamiltonian does not exhibit single-
particle quantum chaos: the 3D Anderson model in the
localized regime with W = 25 (main panel) and 1D non-
interacting fermions in a homogeneous potential (inset).
In the former, λα exhibits fluctuations that do not ap-
pear to vanish when increasing system size V , while in
the latter λα exhibits jumps. In Ref. [58], we quantify the
eigenstate-to-eigenstate fluctuations δλα = λα − λα−1,
and show numerically and analitically that λα is a smooth
function of ϵα for QCQ Hamiltonians.
Summary. Generalized thermalization is expected to

occur for interacting integrable models. Here we proved
that it is guaranteed to occur for quadratic Hamiltoni-
ans that exhibit single-particle eigenstate thermalization,
namely, for QCQ Hamiltonians. Furthermore, we showed
that the many-body eigenstates of QCQ Hamiltonians
do not exhibit eigenstate thermalization. Consequently,
the GGE is generally needed to describe the expectation
values of observables after equilibration, and we showed
that it is characterized by Lagrange multipliers that are
smooth functions of the single-particle energies.
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