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The mechanisms that generate “seed” magnetic fields in our Universe and that amplify them
throughout cosmic time remain poorly understood. By means of fully-kinetic particle-in-cell sim-
ulations of turbulent, initially unmagnetized plasmas, we study the genesis of magnetic fields via
the Weibel instability and follow their dynamo growth up to near-equipartition levels. In the kine-
matic stage of the dynamo, we find that the rms magnetic field strength grows exponentially with
rate γB ≃ 0.4 urms/L, where L/2π is the driving scale and urms is the rms turbulent velocity. In
the saturated stage, the magnetic field energy reaches about half of the turbulent kinetic energy.
Here, magnetic field growth is balanced by dissipation via reconnection, as revealed by the appear-
ance of plasmoid chains. At saturation, the integral-scale wavenumber of the magnetic spectrum
approaches kint ≃ 12π/L. Our results show that turbulence—induced by, e.g., the gravitational
build-up of galaxies and galaxy clusters—can magnetize collisionless plasmas with large-scale near-
equipartition fields.

Magnetic fields are everywhere, shaping the Universe
on all scales. They pervade even the most rarefied spaces
in our cosmos [1, 2], i.e., cosmic voids and filaments, and
the intracluster medium (ICM) of galaxy clusters. Yet,
the mechanisms that generate magnetic fields in the Uni-
verse and govern their amplification throughout cosmic
time are still poorly constrained by observations [3–6].

It is generally accepted that weak “seed” magnetic
fields can be amplified by dynamo processes [7–11], yet
the mechanisms that generate these seed fields in ini-
tially unmagnetized plasmas are poorly understood. In
collisionless unmagnetized plasmas, magnetic fields can
be generated from scratch by the Weibel instability [12–
20], which taps into the free energy of temperature
anisotropies. Hybrid simulations with kinetic ions and
fluid electrons [21, 22] could not capture the physics of
the Weibel instability and needed to start from a pre-
scribed initial seed field. Recent fully-kinetic simulations
have shown that the Weibel instability can grow in colli-
sionless plasmas subject to externally-driven turbulence
[23] or the action of a shear flow [24]. Still, Weibel-
generated fields saturate at small amplitudes and small
scales. It is yet to be determined whether, under the con-
tinuous action of a turbulent flow, Weibel fields can be
dynamo-amplified and reach near-equipartition with the
turbulent kinetic energy.

In this Letter, we perform the first fully-kinetic
particle-in-cell (PIC) simulations capturing both the gen-
esis of magnetic fields via the Weibel instability and their
dynamo growth up to near-equipartition levels in turbu-
lent, initially unmagnetized plasmas. Our simulations
show that in the saturated dynamo stage the magnetic
field energy is about half of the turbulent kinetic energy
and the integral-scale wavenumber of the magnetic spec-
trum approaches kint ≃ 12π/L (where L/2π is the driving
scale). Thus, turbulence can magnetize collisionless plas-
mas with near-equipartition fields on scales much larger

than characteristic kinetic scales.

Method—We perform large-scale 3D PIC simulations
[25–27] with TRISTAN-MP [28, 29] in a periodic cube
of size L3. We consider a pair plasma, which excludes
field generation via Biermann battery [30], so the only
source of seed fields is the Weibel instability [31, 32].
We drive turbulence on the box scale using an Orn-
stein–Uhlenbeck process, adding an external acceleration
term to the equations of motion of PIC macro-particles
(see Suppl. Mat. and [33]). The acceleration term is
charge-independent and meant to mimic the effect of tur-
bulent external gravitational forces; its strength is such
that the target rms velocity is urms ∼ 0.2 c. We de-
fine the turnover time tL ≡ (L/2π)/urms, and set the
decorrelation rate of the driver to γcorr ≃ 1.5/tL. In
most of our runs, we drive purely vortical (solenoidal)
turbulence, but we also present simulations with differ-
ent ratios of solenoidal and compressive power, which
we quantify by the dimensionless parameter ζ defined in
Suppl. Mat. and [33].

The simulations are initialized with a Maxwellian
pair plasma having uniform density n0 (including both
species) and temperature kT/mc2 = 0.04. We initialize
8 particles per cell per species and resolve the electron
skin depth with 1.5 cells, so the Debye length is only
marginally unresolved (see Suppl. Mat. for convergence
tests). We define de = (mc2/4πn0e2)1/2 = 1 cell, and ex-
plore domain sizes from L/de = 250 to L/de = 2000. The
speed of light is 0.45 cells/timestep. We evolve our sim-
ulations for 120 tL. Our reference box has L/de = 1000.

The energy injected by the turbulent driver eventually
heats the plasma. To study the field evolution while the
plasma remains in quasi-steady state, we add an artifi-
cial cooling term such that, when a particle’s momen-
tum exceeds pcut, it is reset to pcut, keeping the momen-
tum direction unchanged. We choose pcut/mc = 0.7 (in
Suppl. Mat. we show that our results are the same for
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FIG. 1. Time evolution of the reference simulation with
L/de = 1000. (a) Box-averaged magnetic (ǫM), bulk kinetic
(ǫK), and internal (ǫint) energy fractions; ǫint is the differ-
ence between the total energy and the bulk energy. Dot-
ted, dashed, and dot-dashed blue lines denote time evolu-
tion of magnetic spectral power at kde = 0.2, 0.04, and
0.015, respectively. The dashed black line shows Brms ∝
exp(0.4 urmst/L). (b) Wavevectors characterizing the mag-
netic field geometry (colored), and rms wavenumber of the
velocity field (black), see text. (c) Angle-integrated magnetic
spectrum M(k) =

∫

dΩkk2〈|B(k)|2〉/8π. Dotted black indi-

cates the Kazantsev scaling M(k) ∝ k3/2 [34], whereas dashed

black is the Kolmogorov scaling M(k) ∝ k−5/3 [35]. Vertical
arrows denote π〈ρ−1

e 〉 at various times (same color coding as
the magnetic spectrum), where ρe is the particle Larmor ra-
dius and we average over all particles. (d) Same as (c), but for
the bulk kinetic spectrum K(k) =

∫

dΩkk2〈|w(k)|2〉, where

w =
[

Γ2

unm/(Γu + 1)
]1/2

u such that w2 = (Γu − 1)nmc2.

The integrals of M(k) and K(k) are respectively ǫM and ǫK.

larger pcut), so in quasi-steady state the ratio of turbulent
kinetic energy to internal energy is ∼ 0.3 (i.e., moderately
subsonic turbulence).

Results—The magnetic field evolution, starting from
an unmagnetized plasma, is illustrated in Fig. 1 for our

FIG. 2. Representative 2D slices from the 3D reference simu-
lation. Left: density fluctuations n/n0 − 1. Right: Bz in (b)
and (d), By in (f). Top row refers to t/tL = 1.4 (Weibel stage),
middle row to t/tL = 27 (kinematic dynamo stage), bottom
row to t/tL = 120 (saturated dynamo stage). Each panel is
normalized to the maximum value of the corresponding quan-
tity. White arrows in the bottom row point to reconnection
plasmoids. See Suppl. Mat. for a zoom-in.

reference simulation (see a zoom-in at early times in
Suppl. Mat.), and can be divided into four stages: (i)
the Weibel growth (t/tL . 2), (ii) the Weibel filament
merging phase (2 . t/tL . 10), (iii) the dynamo kine-
matic stage (10 . t/tL . 40), (iv) and the saturated
state (t/tL & 40).

Turbulence in a collisionless plasma leads to phase mix-
ing and velocity-space anisotropies, providing free energy
for the Weibel instability [12], which, for sufficiently large
domains [24], grows faster than the turbulence turnover
time. Weibel generates magnetic energy from scratch and
saturates at a volume-averaged magnetic fraction ǫM =
〈B2〉/8πn0mc2 ≃ 3 × 10−4, much below the mean turbu-
lent energy fraction ǫK = 〈(Γu − 1)n/n0〉 ≃ 0.02, where
n indicates particle density and Γu ≡ 1/

√

1 − (u/c)2,
with u the mean velocity (Fig. 1(a)). The Weibel growth
peaks at a scale k−1 ∼ 5 de (black in Fig. 1(c)), compa-
rable to the mean particle Larmor radius [24] at the time
of Weibel saturation (vertical black arrow in Fig. 1(c)).
The fastest growing Weibel mode accounts for most of
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the overall field growth (compare solid and dotted blue
at t/tL ∼ 2 in Fig. 1(a) and zoom-in in Suppl. Mat.).
The typical filamentary pattern of Weibel fields is shown
in Fig. 2(b). Despite saturating at small amplitudes, the
Weibel stage is essential to provide the seed fields that
magnetize the plasma and feed the dynamo [36].

The Weibel saturation is followed by a stage (2 .
t/tL . 10) where the magnetic spectrum broadens to-
wards larger scales as a result of the merging of Weibel
filaments (blue in Fig. 1(c)), while the overall magnetic
energy grows only by a factor of two. This is followed
by the kinematic stage of the dynamo, from t/tL ∼ 10
to t/tL ∼ 40, which amplifies the magnetic energy by
a factor of more than ten, up to ǫM ≃ 10−2. The
spectrum-integrated field grows exponentially (solid blue
in Fig. 1(a)) with rate γB = d ln Brms/dt ≃ 0.4 urms/L
(dashed black in Fig. 1(a)). The low-k end of the mag-
netic spectrum grows at the same rate (dashed and dot-
dashed blue in Fig. 1(a), see caption; also, blue and
green in Fig. 1(c)) and approaches the Kazantsev scal-
ing, M(k) ∝ k3/2 [34]. Concurrently with the magnetic
growth, a Kolmogorov-like kinetic spectrum develops be-
low the driving scale (Fig. 1(d)); its normalization falls
well below the power at the driving scale, indicating that
not all fluid motions cascade to small scales, as already
noticed in hybrid simulations [22].

We further assess the field geometry by considering
characteristic wavenumbers of magnetic field variation
along (k‖) and across (kJ·B, kJ×B) the field [8, 22, 37],
see Suppl. Mat. During the kinematic dynamo stage
k‖ . kJ·B ≪ kJ×B, see Fig. 1(b) [38], suggestive of fields
arranged in folded sheets [37]. This is confirmed by the
2D slice in Fig. 2(d).

The kinematic dynamo phase terminates at t/tL ∼ 40,
and the system settles into a quasi-steady saturated
stage. Here, the magnetic energy is about half of the
turbulent kinetic energy (compare solid blue and green
in Fig. 1(a)), regardless of the plasma temperature (see
Suppl. Mat.). The magnetic spectrum peaks near k ≃
0.04 d−1

e ≃ 12π/L (red in Fig. 1(c)) and it is shallower
than the Kazantsev scaling at lower k. The spectral peak
can be approximated by the integral-scale wavenumber,

kint =

∫

M(k)dk
∫

k−1M(k)dk
, (1)

whose time evolution is shown by the yellow line in
Fig. 1(b). The kinetic spectrum displays a Kolmogorov-
like scaling at k & 6π/L, with a normalization that
is a factor of ten lower than the power at the driv-
ing scale (red in Fig. 1(d)). In the saturated stage,
k‖ ≪ kJ·B ∼ kJ×B (Fig. 1(b)). This is suggestive of
folded magnetic fields organized into flux ropes, a nat-
ural outcome of the tearing disruption of current sheets
[39]. In fact, Fig. 2(e) shows the presence of over-dense
plasmoids (indicated by the white arrows) within a cur-
rent sheet where By switches polarity (Fig. 2(f)). In the

FIG. 3. Dependence on box size: L/de = 250 (yellow),
L/de = 500 (green), L/de = 1000 (red), and L/de = 2000
(blue). (a) Kinetic (ǫK; dotted lines) and magnetic (ǫM; solid
lines) energy fractions. Dashed colored lines track the growth
of magnetic spectral power at large scales: kde = 0.09, 0.06,
0.04, and 0.03 from smallest to largest boxes. The dashed
black line shows Brms ∝ exp(0.4 urmst/L). (b) Time evolu-
tion of kintde (solid), kJ·B/k‖ (dashed) and kJ·B/kJ×B (dot-
dashed). Magnetic (c) and bulk kinetic (d) power spectra
right after the end of Weibel growth (dot-dashed) and in the
quasi-steady state at late times (solid). Dotted black in (c) is

the Kazantsev M(k) ∝ k3/2 [34], whereas dashed black in (c)

and (d) is the Kolmogorov M(k) ∝ k−5/3 [35].

saturated stage the rms wavenumber of the kinetic spec-
trum,

ku,rms =

(
∫

k2K(k)dk
∫

K(k)dk

)1/2

, (2)

approaches ∼ kJ·B ∼ kJ×B, indicating flows on the flux-
rope scale, as observed in high-resolution MHD simula-
tions and argued to be evidence of tearing modes [39].

Fig. 3 shows the dependence of our results on the box
size. In larger boxes the Weibel growth peaks at lower
kde (dot-dashed lines in Fig. 3(c)), and the field satu-
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rates at smaller amplitudes (see Fig. 3(a) and zoom-in in
Suppl. Mat.), in agreement with [24].

Beyond the Weibel phase, our results show excellent
convergence for sufficiently large boxes. In the kinematic
stage, the low-k end of the magnetic spectrum grows ex-
ponentially with rate γB ≃ 0.4 urms/L for L/de ≥ 500
(solid and dashed in Fig. 3(a)). The presence of flux
ropes — as inferred from kJ·B ∼ kJ×B at late times — is
manifested for large enough boxes, L/de ≥ 1000 (red and
blue dot-dashed in Fig. 3(b)). In the saturated stage, the
magnetic energy is roughly half of the turbulent kinetic
energy, regardless of box size. The magnetic spectrum
in the saturated stage is broad, with kM(k) extending
nearly over two decades (for L/de = 2000) and peaking at
kint ≃ 12π/L (solid in Fig. 3(c)). For our largest domain,
this corresponds to a wavelength ≃ 0.16 L ≃ 300 de, i.e.,
much larger than kinetic plasma scales.

The integral scale of the magnetic spectrum at satura-
tion is consistent with a dynamo hindered by fast mag-
netic reconnection. We define the reconnection timescale
trec = (βrecδvAkint)

−1, where βrec ∼ 0.1 [40, 41] is
the fast collisionless reconnection rate and δvA is the
Alfvén speed associated with Brms. Comparing this
with the turnover time tL = (L/2π)/urms, one infers
kint ∼ (2π/βrecL)(urms/δvA). Since δvA ∼ urms at sat-
uration, fast magnetic reconnection gives kint ∼ 20π/L,
which is close to the value observed in the simulations.

Lastly, we demonstrate that efficient dynamo growth
requires that a significant fraction of the turbulent en-
ergy is in vortical motions. In Fig. 4 we consider a box
with L/de = 500 and vary the parameter ζ defined in
Suppl. Mat. following [33], with ζ = 0 for purely com-
pressive modes and ζ = 1 for purely vortical modes (as
employed so far). We find that the Weibel phase pro-
ceeds similarly regardless of ζ, and the magnetic and ki-
netic spectra at t/tL = 2—dot-dashed in Fig. 4(c) and
(d), respectively—are nearly independent of ζ. Yet, the
subsequent evolution is markedly different. For ζ = 0,
the magnetic energy fraction stays nearly constant af-
ter the Weibel saturation (Fig. 4(a), black solid). The
magnetic spectrum broadens towards lower k as a re-
sult of filament merging (Fig. 4(c), compare solid and
dot-dashed black), but the integral-scale wavenumber,
kint, drops by only a factor of two from t/tL = 2 (the
time of Weibel saturation) to the end of the simulation
(Fig. 4(b), solid black). The case ζ = 0.1 resembles the
purely compressive case, ζ = 0, whereas evidence of dy-
namo growth appears for ζ = 0.2 or larger—the magnetic
energy fraction increases after the Weibel phase and kint

significantly drops. For ζ ≥ 0.2, the magnetic spectra at
saturation have nearly the same shape, albeit with differ-
ent normalization (Fig. 4(c)). We conclude that ζ ≥ 0.2
is necessary for some degree of dynamo action. Yet, only
for ζ = 0.5 (red lines) or above the magnetic energy
reaches near-equipartition with the turbulent kinetic en-
ergy. Earlier MHD simulations [42, 43] reached the same

FIG. 4. Same as Fig. 3, but exploring the dependence on the
driver, for a box with L/de = 500. We vary ζ (see Suppl. Mat.
and [33]), with ζ = 0 for compressive modes and ζ = 1 for
vortical modes. We show ζ = 0 (black), 0.1 (blue), 0.2 (green),
0.3 (yellow), 0.5 (red) and 1 (purple).

conclusion, i.e., compressive modes are unable to drive
dynamo growth. The agreement of our results with MHD
simulations confirms that the field evolution seen in our
vortical runs after Weibel saturation can be convincingly
attributed to MHD-like dynamo action (as opposed to a
nonlinear evolution of Weibel-generated fields, which also
occurs in the purely compressive case).

Conclusions—We drive turbulence in a collisionless,
initially unmagnetized pair plasma, mimicking the ef-
fect of turbulent gravitational forces generated by the
build-up of the large-scale structure. As shown in [12–
20, 23, 24], the Weibel instability generates seed magnetic
fields, which however saturate well below equipartition
with the turbulent kinetic energy. If most of the tur-
bulent energy is in vortical motions, Weibel saturation
is followed by dynamo amplification and the turbulent
dynamo brings the field energy up to near-equipartition
with the turbulent kinetic energy. For large boxes, the in-
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tegral scale of the magnetic spectrum is roughly an order
of magnitude smaller than the driving scale, consistent
with dynamo saturation controlled by fast collisionless
reconnection.

Our results have important implications for weakly col-
lisional plasmas in our Universe. Observations of Faraday
rotation and synchrotron emission [44] show that ICM
fields have strengths ∼ µG, with energy density compa-
rable to that of turbulent motions [45]. The magnetic
spectrum is inferred to peak on scales ∼ 10 kpc [46, 47],
a factor of 10 smaller than the turbulence driving scale
L ∼ 100 kpc, in good agreement with our findings. We
caution, though, that the scale separation, L/de, in our
simulations is many orders of magnitude smaller than
in the ICM. Further work is needed to confirm that our
findings hold for even larger values of L/de and to clarify
the interplay between the electron Weibel instability, the
ion Weibel instability, and the Biermann battery [30–32]
in the realistic case of electron-ion plasmas.
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