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Inspired from electronic systems, topological photonics aims to engineer new optical devices with
robust properties. In many cases, the ideas from topological phases protected by internal symmetries
in fermionic systems are extended to those protected by crystalline symmetries. One such popular
photonic crystal model was proposed by Wu and Hu in 2015 for realizing a bosonic Z2 topological
crystalline insulator with robust topological edge states, which led to intense theoretical and exper-
imental studies. However, rigorous relationship between the bulk topology and edge properties for
this model, which is central to evaluating its advantage over traditional photonic designs, has never
been established. In this work we revisit the expanded and shrunken honeycomb lattice structures
proposed by Wu and Hu and show that they are topologically trivial in the sense that symmetric,
localized Wannier functions can be constructed. We show that the Z and Z2 type classification of
the Wu-Hu model are equivalent to the C2T protected Euler class and the second Stiefel-Whitney
class respectively, with the latter characterizing the full valence bands of Wu-Hu model indicating
only a higher order topological insulator (HOTI). Additionally, we show that the Wu-Hu interface
states can be gapped by a uniform topology preserving C6 and T symmetric perturbation, which
demonstrates the trivial nature of the interface. Our result reveals that topology is not a necessary
condition for the reported helical edge states in many photonics systems and opens new possibilities
for interface engineering that may not be constrained by topological considerations.

Topological photonics began with the seminal work by
Raghu and Haldane [1, 2] where the idea of topology in
the electronic band structures were generalized to waves
in periodic media, leading the way for realizing topolog-
ical phenomena in artificial structures [3–5]. The early
explorations of topological photonics were focused on the
photonic Chern insulators where the time-reversal sym-
metry is explicitly broken [6, 7]. With the discovery of
topological crystalline insulators (TCIs) [8], the topologi-
cal phases were significantly enriched beyond the ten-fold
way classification of topological insulators and supercon-
ductors [9] which opened new opportunities in engineer-
ing topological phases in bosonic systems.

However, one has to be cautious when generalizing the
ideas from the early examples of topological phases, espe-
cially to those that are protected by crystalline symme-
tries. For example, due to the fact that crystalline sym-
metry is often broken at a physical boundary, some TCIs
only exhibit robust boundary states at certain crystal ori-
entations [8]. Moreover, with the discovery of novel states
such as fragile topological phases [10–13] and higher or-
der topological insulators (HOTIs) [14, 15], the notion of
bulk-boundary correspondence of codimension 1 may not
have any direct generalization to TCIs at all.

The topological photonic crystal proposed by Wu and
Hu [16], which we refer to as the Wu-Hu model, is an
elegant structure for realizing a proposed bosonic analog
of the fermionic Z2 TI (Fig. 1). Hence it is claimed to
host symmetry protected edge states which enable robust
light transport free from back-scattering. The simplic-
ity of the model triggered innumerous experimental and
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theoretical studies after its discovery [17–37]. However,
the exact bulk-boundary correspondence has never been
identified, therefore the robustness of the edge states and
their relation to the bulk topology remain unclear. Here
we revisit the Wu-Hu model and analyse the nature of its
topology with a special emphasis on the edge properties.
We briefly review the original formalism of the Wu-Hu

model as the foundation of discussion. The tight-binding
model of an expanded or shrunken honeycomb lattice
provides a faithful description of the Wu-Hu model, in
which the unit cell for a graphene lattice is enlarged to
include six atomic sites, and the couplings are divided
into intra- (t1) and intercell (t2) couplings (Fig. 1a).
When t1 = t2, a four-fold degeneracy appears at the Γ
point, which gives rise to a “double Dirac-cone”. The
cell-periodic part of the degenerate Bloch functions have
the symmetries of |p±⟩ and |d±⟩ orbitals, and a gap open-
ing and band inversion can be achieved by tuning the
relative magnitudes of t1 and t2 (Figs. 1c,e).
At certain high symmetry momenta, a composite

pseudo-fermionic time-reversal symmetry T̃ 2 = −1 was
constructed and the Z2 topology was derived through the
analogy to the spinful case. For example, at the Γ point
in the (|px⟩ , |py⟩) basis, the pseudo time-reversal opera-
tor is given by

T̃ = UK = [DE1
(C6) +DE1

(C2
6 )]/

√
3 · K = −iσyK (1)

in which E1 is the irreducible representation (irrep) for
6mm1′ (the little co-group at Γ) furnished by (|px⟩ , |py⟩)
orbitals and DE1

(C6) is the corresponding matrix repre-
sentation of C6, K is the bosonic time-reversal operator.
Eq.(1) satisfies T̃ 2 = −1 and thus protects Kramer’s de-
generacy at Γ point.
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FIG. 1. (a) A schematic of the Wu-Hu lattice, the shadowed
area indicates the hexagonal unit cell, t1 (t2) correspond to
intracell (intercell) couplings. When each site moves away
from (towards) the unit cell center, t1 < t2 (t1 > t2), and is
referred to as an expanded (shrunken) phase. (b) (top) 1a,
2b, 3c Wyckoff positions of the unit cell color coded in black,
dark gray and light gray, that located at the center, vertices
and edges, respectively. (bottom) Brillouin zone of a trian-
gular lattice. (c,d) The band structure of an expanded phase
and its corresponding Wilson loop. (e,f) The band structure
of a shrunken phase and its corresponding Wilson loop. Ir-
reps are noted in the band diagrams at each high symmetry
point. Note in (c) and (e), Γ5 and Γ6 are representations of d
and p orbital states, respectively, therefore showing the band
inversion. In (d) and (f), both phases show trivial Wilson
loop without winding from −π to π.

The Z2 index was obtained through the parity of spin-
Chern number for each pseudo-spin channel where the
|p+⟩ (|p−⟩) and |d+⟩ (|d−⟩) orbitals are assigned with
pseudo-spin up(down) [16, 32]. The bulk-boundary cor-
respondence of the 2D spinful TI was directly applied in
the original proposal. The interface states between differ-
ent phases of Wu-Hu model were claimed to be gapless
(with a tiny gap due to the C6 breaking at the inter-
face), immune from back-scattering and possessing spin-
momentum locking.

It is however not fully justified why Eq.(1) would con-
strain the global algebraic classification of Bloch func-
tions and imply physical consequences exactly the same
as the time-reversal symmetry in spinful systems. Here,
we examine the topology of the Wu-Hu model using TQC
[38–42] and Wilson loop methods [12, 43, 44]. Which
are two important tools to diagnose non-trivial topology
with Wannier obstruction when crystalline symmetry is
involved. The Wannier obstruction is important because
it can be directly related to the topological boundary
states [45, 46]. It has been recently shown that for con-
tinuum experimental systems the Wannier obstruction

is a necessary condition for robust interface states [47],
which is of utmost importance.
In TQC, the symmetry properties of the Bloch func-

tions of Wannier-representable bands is equivalent to a
direct sum of elementary band representations (EBRs).
Throughout the BZ, the symmetry properties can be well
described by the collection of irreducible representations
(irreps) furnished by the Bloch functions for the little
groups at high symmetry momenta. In Figs. 1c,e, we
calculate the irreps at high symmetry momenta for both
shrunken and expanded phases in the Wu-Hu model and
the relevant EBRs are listed in Table.I [48–51]. For the
valence bands (VBs), we obtain (A1 ↑ G)1a ⊕ (E1 ↑ G)1a
for the shrunken case and (A1 ↑ G)3c for the expanded
case, respectively. The VBs for both phases transform as
a direct sum of EBRs, which suggests the trivial nature
of the bulk topology.
We also calculated the phase of the eigenvalues of the

Wilson loop operator, which is defined by the following
path ordered integral [43],

WC = P exp

[
i

∮
C

A(k) · dk
]

(2)

where [A(k)]mn = i ⟨um(k)| ∇k |un(k)⟩ is the non-
Abelian Berry connection for the full VBs. Fig. 1b shows
the geometry of the Wilson loop, where the closed loop
C is defined by the reciprocal lattice vector G1 and the
spectra is plotted as the loop moves alongG2 (Figs. 1d,f).
For both phases of the Wu-Hu model, no winding is ob-
served, which also suggests that the whole VBs can be
smoothly deformed into a trivial atomic insulator.
Next, we briefly discuss the topological invariants for

the VBs of the Wu-Hu model. In Supplementary ma-
terials [52] we prove that the spin-Chern number and
the Z2 index defined for Wu-Hu model are equivalent to
the Euler class and the second Stiefel-Whitney class pro-
tected by C2T symmetry [13, 54–59]. In 2D systems with
C2T symmetry, two-band subspaces are classified by the
Z type Euler class. A non-zero Euler class forbids the
construction of symmetric localized Wannier functions,
however, this obstruction may be lifted by adding trivial
bands. In this many-band limit, the parity of the Euler
class becomes the well defined Z2 type second Stiefel-
Whitney class ω2. The expanded phase belongs to this
category and is characterized by a non-trivial ω2 = 1
which indicates that the Wannier functions cannot be

TABLE I.The EBRs for space group P6mm1′ (the sym-
metry of the Wu-Hu model). The EBRs are induced rep-
resentations of localized orbitals and are labeled by (ρ ↑ G)p
in which p is the Wyckoff position where the orbitals sit, ρ is
the irrep furnished by the orbitals and G is the space group
of the system.

Band-rep. (A1 ↑ G)1a (E1 ↑ G)1a (A1 ↑ G)3c
Γ Γ1 Γ6 Γ1 ⊕ Γ5

K K1 K3 K1 ⊕K3

M M1 M3 ⊕M4 M1 ⊕M3 ⊕M4
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FIG. 2. (a),(b) Demonstration of two distinct edge configura-
tions. Red (blue) sites correspond to the expanded (shrunken)
phase, and a complete hexagonal unit cell is marked in the
figure. In (a), the edge cuts through 3c Wyckoff position
whereas in (b) through 1a Wyckoff position. The hopping
across the cut is zero so that the expanded and shrunken
regions are decoupled and the dispersion are calculated indi-
vidually for each region. (c),(e) Energy dispersion in a strip
geometry with edge configuration shown in (a). The gapped
edge states only show up in the expanded phase. (d),(f) En-
ergy dispersion with edge configuration shown in (b). The
gapped edge states only show up in the shrunken phase.

localized at the center of the unit cell. The associated
physical consequence is a quantized quadrupole moment
and fractional corner charges, in other words, ω2 = 1
characterizes a HOTI [35, 36, 54, 58–60].

In fact, it can be shown that the VBs for both phases
of Wu-Hu model are adiabatically connected to decou-
pled atomic clusters by selectively turning off intra- or
inter-cell couplings (referred to as ‘strong binding limit’),
which agrees well with the above analysis. With all these
observations we conclude that both phases of the Wu-
Hu model are topologically trivial in terms of Wannier
obstruction, therefore neither of the two phases are re-
sponsible for the gapless interface states. This can be
demonstrated in the tight binding calculation. Starting
with the gapless interface and adiabatically turning off
the couplings connecting two phases to form two open
boundary conditions (OBCs), the edge states would be
in general gapped and pushed towards the bulk bands.
If the interface or edge states were results from the non-
trivial bulk topology, we can keep track of them and they
should be localized exactly at the non-trivial half of the
system. However, depending on the edge configuration,
the edge states can be localized at different phases. The
edge inevitably breaks the integrity of at least one type of
the decoupled clusters in the strong binding limit, which
is referred as ‘cutting’ through the corresponding Wan-
nier center in the following context. In Fig. 2, we show
that for the shrunken phase where the Wannier center

sits at 1a Wyckoff position, the gapped edge states ap-
pear when the boundary cuts through 1a position; for
the expanded case where the Wannier center sits at 3c
Wyckoff position, the gapped edge states appear when
the edge cuts through 3c Wyckoff position. This ob-
servation strongly suggests that the interface states are
originated from the local defects in contrast to the well-
known topological boundary states arising from the bulk
Wannier obstruction [45, 46].
Typically, the interface states are explained by the di-

rect generalization of the bulk-boundary correspondence
of the 2D spinful TI. However, the Kramer’s degener-
acy in 1D BZ cannot be protected by the composite
pseudo-fermionic time-reversal operator in the Wu-Hu
model, thus invalidating the generalization. An alter-
nate interpretation explains the interface states as the
Jackiw-Rebbi soliton eigen-solutions that arise from a lo-
cal band inversion [32]. However, since the Jackiw-Rebbi
solutions give one set of interface states for each pseudo-
spin, spin-mixing can potentially gap out the interface
states. And the symmetry that protects the bulk topol-
ogy in the Wu-Hu model, namely C6 and T 2 = 1, does
not imply spin-conservation. Consider the Wu-Hu model
in its quasi-orbital basis, where |p±⟩ and |d±⟩ orbitals
sit at 1a Wyckoff position of a triangular lattice. The
spin flipping terms are locally forbidden by C6 symme-
try, but the following non-local spin-flip channel is always
allowed,

∆ = ta†i,±aj,∓ + h.c., i ̸= j (3)

where i, j are labels of unit cells and ± are labels for
pseudo-spins and h.c. stands for hermitian conjugate.
Here we explicitly show that the interface states can be

gapped considerably even by a C6 and T 2 = 1 symmetric
perturbation that is uniform across the interface (Fig. 3).
The perturbation is added to ensure that when t1 = t2,
a double Dirac-cone appears at Γ point. The band inver-
sion is then achieved by tuning the relative magnitude of
t1 and t2 (see Supplementary materials [52]). Therefore
the original Wu-Hu Hamiltonian is explicitly included.
Also, no gap closing ever happened between the VBs
and CBs under the perturbation, thus the topology is
preserved. For a system with an interface, we write the
perturbed Hamiltonian as:

H ′ = H0 +∆H (4)

in which H0 describes the unperturbed interface of the
Wu-Hu model and ∆H is the perturbation. The spec-
tra of interface states for H ′ and H0 are shown in Fig.
3. For H0, there exists a gap at zero energy that is
hardly visible (as observed in the Wu-Hu model [16]),
whereas for H ′, the gap is comparable to the bulk band
gap. Pseudo-spin character of the interface states also
shows clear mixing for H ′ compared to H0, which is con-
sistent with the argument that C6 symmetry does not
imply spin-conservation. All these observations strongly
suggests that, aside from C6 symmetry breaking, other
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FIG. 3. The dispersion of interface states where the pseudo-
spin component is color coded. (a) The interface states of an
unperturbed Wu-Hu interface. The dispersion is nearly linear
and the gap is not visible in the figure. (b) Perturbed Wu-Hu
interface. An apparent gap is opened with magnitude com-
parable to the bulk band gap. The pseudo-spins are mixed
showing lighter color. a is the lattice constant.

mechanisms can open a gap for the interface states, there-
fore showing the absence of topological protection in the
system clearly.

In addition, we compare the Wu-Hu interface and the
edge of 2D TIs protected by T 2 = −1 to discuss the re-
lation between their properties and topology. The three
properties concerned here are spectral robustness, immu-
nity from back-scattering and spin-momentum locking.
For 2D TIs, the spectrally robust edge states can be un-
derstood by the topological equivalence between the edge
spectrum and the Wilson loop spectrum, which has a sta-
ble winding protected by Wannier obstruction [45, 46].
The immunity of back-scattering is then followed as a
combined effect of T 2 = −1 and the presence of odd
number of edge states [61]. Lastly, instead of a unique
topological phenomenon, the spin-momentum locking is
a prevalent feature in edge modes with strong spin-orbit
coupling. To conclude, only spectral robustness is di-
rectly related to topology, and in bosonic systems with
T 2 = 1, the immunity from back-scattering cannot be
expected. For the Wu-Hu interface, this agrees well with
the quantitative experimental results [62].

From a practical perspective, these gapless, back-
scattering free and spin-momentum locked interface
states are what make the Wu-Hu model promising for
photonic applications. Here we numerically demonstrate
helical edge states that solely stem from the trivial
phase of Wu-Hu model with OBCs that reproduce all
the features of the claimed “topological” Wu-Hu inter-
face. Structures applied and corresponding bulk band
diagrams can be found in Supplementary materials [52].

We start with the trivial phase of the Wu-Hu model
and create edge states by cutting through the Wannier
center of the VBs, namely 1a Wyckoff position (Fig. 4a).
Being of defect nature, the resulted edge states are highly
tunable that they can be tuned to be gapless by sim-
ply displacing the sites at the edge. We first calculated
the dispersion spectrum of a strip geometry of this triv-
ial edge (Figs. 4a, b), with Bloch boundary condition
applied in the x-direction and OBCs in the y-directions
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FIG. 4. (a) The schematic of the strip geometry applied for
the edge states of a shrunken phase, atoms from bulk com-
plete (edge incomplete) unit cell are colored in light blue (dark
blue). The edge is created by cutting through the 1a position,
then a slight tuning is applied to the incomplete unit cells at
the edge. The direction of δx, δy is also noted. (b) Nu-
merically calculated interface dispersion, showing two in-gap
linear modes. a is the lattice constant (c) Large scale simula-
tion of the propagation of a trivial edge state from a circularly
polarized source. The open boundary turning is marked in a
white dashed line.

(see Supplementary materials [52] for detailed simulation
setup including the band dispersion and the eigenmodes
at Γ point). Two edge states emerge in the dispersion in-
side the bulk gap (Fig. 4b), showing a dirac-cone shaped
crossing. Then we performed a large scale simulation of
the edge states with a sharp bend excited with a cir-
cularly polarized source (Fig. 4c). The unidirectional
propagation is clearly observed along the sample edge
(see Supplementary materials [52] for the demonstration
of the unidirectional wave propagating modes), showing
that topology is not required for a helical photonic edge.

In conclusion, we re-examined the Wu-Hu model and
identified the algebraic nature of the topological in-
variants and the associated physical consequences. We
showed the lack of robustness of its interface states
against symmetry preserving perturbations and explic-
itly constructed a trivial defect edge that reproduces
all the “topological” properties. However, the follow-
ing question remains interesting and unanswered: for
TCIs, whether, and to what extent, Wannier obstruc-
tions would provide protection to the the interface in the
domain wall configuration similar to the Wu-Hu model
where the bulk symmetry is partially restored by the ad-
dition of a trivial phase. In fact, the existence of such
protection is an implicit assumption for the topologi-
cal interpretation of Wu-Hu interface. If this protection
does not exist even when one of the phases is stably ob-
structed, the topological interpretation of Wu-Hu inter-
face would fail at the first step. Based on our arguments,
one cannot distinguish whether the trivial nature of the
VBs or the absence of topological protection itself is the
fundamental reason that is responsible for the gap open-
ing. The rigorous discussions of similar questions has
only appeared recently [47], and we hope our results as
a case study can provide some insights to future studies.
For photonic waveguide engineering applications, our re-
sults show that there is no causal relation between the
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topology of Wu-Hu model and the desired properties at
its interface. In fact, perfect transmission at sharp bends
can be achieved in traditional photonic crystals and spin-
momentum locking is a prevalent feature for evanescent
electromagnetic waves [63]. The lack of bulk-edge corre-
spondence in the Wu-Hu model enables more flexible de-
signs of combining different bulk structures without any
symmetry consideration, which may lead to novel appli-

cations such as photonic on-chip logic and reconfigurable
light routing.
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photonics, Nature photonics 8, 821 (2014).

[4] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,
L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
berberg, et al., Topological photonics, Reviews of Modern
Physics 91, 015006 (2019).

[5] X. Zhang, M. Xiao, Y. Cheng, M.-H. Lu, and J. Chris-
tensen, Topological sound, Communications Physics 1, 1
(2018).

[6] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
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lattice, Physical review letters 119, 255901 (2017).

[28] H. Pirie, S. Sadhuka, J. Wang, R. Andrei, and J. E. Hoff-
man, Topological phononic logic, Physical Review Letters
128, 015501 (2022).



6

[29] J. Cha, K. W. Kim, and C. Daraio, Experimental realiza-
tion of on-chip topological nanoelectromechanical meta-
materials, Nature 564, 229 (2018).

[30] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu,
X.-P. Liu, and Y.-F. Chen, Acoustic topological insulator
and robust one-way sound transport, Nature physics 12,
1124 (2016).

[31] M. Li, I. Sinev, F. Benimetskiy, T. Ivanova, E. Khes-
tanova, S. Kiriushechkina, A. Vakulenko, S. Guddala,
M. Skolnick, V. M. Menon, et al., Experimental ob-
servation of topological z2 exciton-polaritons in transi-
tion metal dichalcogenide monolayers, Nature communi-
cations 12, 1 (2021).

[32] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and
M. Hafezi, Two-dimensionally confined topological edge
states in photonic crystals, New Journal of Physics 18,
113013 (2016).

[33] M. B. De Paz, M. G. Vergniory, D. Bercioux, A. Garćıa-
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