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Polarized quarks and antiquarks in high-energy heavy-ion collisions can lead to the spin alignment
of vector mesons formed by quark coalescence. Using the relativistic spin Boltzmann equation for
vector mesons derived from Kadanoff-Baym equations with an effective quark-meson model for
strong interaction and quark coalescence model for hadronizaton, we calculate the spin density
matrix element ρ00 for ϕ mesons and show that anisotropies of local field correlations with respect
to the spin quantization direction lead to ϕ meson’s spin alignment. We propose that the local
correlation or fluctuation of ϕ fields is the dominant mechanism for the observed the ϕ meson’s
spin alignment and its strength can be extracted from experimental data as functions of collision
energies. The calculated transverse momentum dependence of ρ00 agrees with STAR’s data. We
further predict the azimuthal angle dependence of ρ00 which can be tested in future experiments.

Introduction. In noncentral heavy-ion collisions,
the system carries a large initial orbital angular momen-
tum (OAM) perpendicular to the reaction plane. Part of
the OAM can be converted to the vorticity fields of the
quark-gluon plasma which in turn lead to the global spin
polarization of partons and final hadrons [1–6] (see, e.g.
[7–11], for recent reviews), similar to the Barnett effect
[12] and the Einstein-de Haas effect [13] in materials. The
global spin polarization of Λ and Λ hyperons has been
observed in Au+Au collisions at

√
sNN =7.7-200 GeV by

the STAR Collaboration [14, 15]. According to the quark
coalescence model [1, 16], the spin polarization of Λ and
Λ is carried by the constituent strange s and antistrange
s quark, respectively. Therefore, STAR’s measurement
indicates that s and s quarks are also globally polarized
along the OAM direction before hadronization.

Shortly after the prediction of global quark spin polar-
ization [1] in heavy-ion collisions, it was also suggested
[2] that the polarized s and s quarks can recombine and
form polarized vector mesons such as ϕ(1020) whose spins
align in the OAM direction. For vector mesons, the spin
density matrix ρλ1λ2 is used to describe its spin states
with λ1, λ2 = 0,±1, labeling the spin state along a spe-
cific spin quantization direction. The spin density matrix
has unit trace and its diagonal elements are probabilities
for spin states with λ = 0,±1. However, the spin polar-
ization of vector mesons, proportional to ρ11 − ρ−1,−1,
cannot be directly measured through strong interaction
decays. Instead, ρ00 can be measured through the an-
gular distribution of its strong decay daughters [2, 16–
19]. On average, the polarization vector ϵµ(λ) of vector
mesons is in the plane perpendicular to the spin quan-
tization direction if ρ00 <1/3, while it is aligned in the

quantization direction if ρ00 >1/3.

Such spin alignment of the ϕ meson in the OAM direc-
tion was indeed observed recently by STAR experiment
[20]. However, the measured positive deviation from 1/3

of ρϕ00 is orders of magnitude larger than what one would
expect from the same vorticity that causes the measured
Λ and Λ polarization in the same collisions. Contri-
butions from electromagnetic fields and other possible
conventional mechanisms are also orders of magnitude
smaller [16, 21–24].

In this Letter we propose that the local fluctuations or
correlations of the ϕ meson fields during hadronization
can be responsible for the observed spin alignment of the
final-state ϕ meson in the framework of relativistic quan-
tum transport theory. The effect of ϕ’s mean field on
the hyperon polarization was proposed before [25]. But
its magnitude should be very small implied by the negli-
gible difference between the observed global polarization
of Λ and Λ [14, 15], since the sign of the polarization by
the ϕ field is opposite for s and s quarks [21]. Using the
relativistic spin Boltzmann equation for vector mesons
derived in this study, we will show that the deviation
from 1/3 of the spin density matrix ρ00 is proportional
to the spatially anisotropic short distance correlations or
fluctuations of the vector meson fields. One can therefore
extract the strength of the field fluctuations or correla-
tions from the experimental data and predict the trans-
verse momentum and azimuthal angle dependence of the
spin alignment.

Spin Boltzmann equation and spin density ma-
trices. Nonrelativistic quark coalescence or recombina-
tion models have been employed to describe ρ00 from the
spin polarization of the quark and antiquark [2, 16, 21].
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Recently the spin Boltzmann equation (SBE) for vector
mesons has been derived by us in the framework of rel-
ativistic quantum transport theory [26]. At the leading
order in ℏ, the collision terms can be expressed in terms
of matrix-valued spin dependent distributions (MVSDs)
of the quark, antiquark [27], and vector meson [28] in
the effective quark-meson model [29–34] for strong inter-
action during hadronization. This provides a more rig-
orous framework to calculate spin observables for vector
mesons such as ρ00 for the ϕ meson.

TheWigner functions for massless vector particles such
as gluons and photons [24, 35–39] have been studies for
many years, but to our knowledge there are few works
about Wigner functions for massive vector mesons in the
context of spin polarization (see Ref. [40] for a recent
study). From the Kadanoff-Baym equation [36, 41–43]
for Wigner functions, the spin Boltzmann equation for
the vector meson’s MVSD fV

λ1λ2
with coalescence and

dissociation collision terms reads [26],

k · ∂xfV
λ1λ2

(x,k) =
1

16

∑
λ′
1,λ

′
2

[
ϵ∗µ(λ1,k)ϵν(λ

′
1,k)δλ2λ′

2

+δλ1λ′
1
ϵ∗µ(λ

′
2,k)ϵν(λ2,k)

]
Cµν
λ′
1λ

′
2
(x,k), (1)

where λ1, λ2, λ
′
1, and λ′

2 denote the spin states of vector
mesons along the spin quantization direction. We con-
sider coalescence as the main process for primary particle
production in heavy-ion collisions [44–49]. The collision
kernel Cµν

λ′
1λ

′
2
(x,k) is an integral over the quark’s and anti-

quark’s momenta which contains in the integrand a delta
function for energy-momentum conservation, a gain and
a loss term involving MVSDs for the quark, antiquark
and vector meson, fq

rs, f
q
rs and fV

λ′
1λ

′
2
respectively, and

a matrix element squared involving Dirac spinors of the
quark and antiquark with spin indices. One can find
the explicit form of Cµν

λ′
1λ

′
2
(x,k) in Ref. [26]. In the

matrix element squared there are also qqV vertices in
the form Γα ≈ gV B(k − p′,p′)γα, where gV is the cou-
pling constant of the vector meson and quark-antiquark,
and B(k − p′,p′) denotes the covariant Bethe-Salpeter
wave function of the vector meson [50, 51]. Note that
fq
rs and fq

rs (r and s denote spin indices) are related to
the spin polarization four-vectors of quark and anti-quark
[27, 28, 52, 53], Pµ

q and Pµ
q , respectively,

fq(q)
rs (x,p) =

1

2
fq(q)(x,p)

[
δrs − P q(q)

µ (x,p)nµ
j (p)τ

j
rs

]
,

(2)
where fq(q)(x,p) is the unpolarized distribution for the
quark (antiquark), nµ

j (p) (j = 1, 2, 3) are four-vectors of
three basis directions for spin states in the (anti-)quark’s
rest frame with the j = 3 component denoting the spin
quantization direction [28], and τ j (j = 1, 2, 3) denote
three Pauli matrices in the space of spin states denoted
by r and s.

The gain and loss terms in Cµν
λ′
1λ

′
2
(x,k) correspond to

the coalescence and dissociation processes, respectively.
During the hadronization stage of heavy-ion collisions,
the distribution functions for vector mesons and con-
stituent (anti-)quarks are normally much less than 1,
which allows us to take the dilute gas limit fV

λ1λ2
∼ fq

rs ∼
fq
rs ≪ 1. Then Eq. (1) can be expressed as

k · ∂xfV
λ1λ2

(x,k) =
1

8

[
ϵ∗µ(λ1,k)ϵν(λ2,k)Cµν

coal(x,k)

−Cdiss(k)fV
λ1λ2

(x,k)
]
, (3)

where the dissociation kernel Cdiss is independent of the
MVSDs. The coalescence kernel Cµν

coal can be obtained by
substituting the MVSDs for quarks and antiquarks into
the gain term of Cµν

λ′
1λ

′
2
(x,k) and carrying out a summa-

tion over spin indices of the quark and antiquark,

Cµν
coal(x,k) =

∫
d3p′

(2πℏ)2
1

Eq
p′E

q
k−p′

δ
(
EV

k − Eq
p′ − Eq

k−p′

)
× Tr

{
Γν (p′ · γ −mq)

[
1 + γ5γ · P q(x,p′)

]
×Γµ [(k − p′) · γ +mq] [1 + γ5γ · P q(x,k− p′)]}
× fq(x,p

′)fq(x,k− p′), (4)

where kµ = (EV
k ,k) and p′µ = (Eq

p′ ,p′) denote the on-
shell four-momenta of the vector meson and the anti-
quark respectively, andmq = mq are masses for the quark
and antiquark.
Schematically, the formal solution to Eq. (3) reads

fV
λ1λ2

(x,k) ∼ 1

Cdiss(k)

[
1− e−Cdiss(k)∆t

]
× ϵ∗µ(λ1,k)ϵν(λ2,k)Cµν

coal(x,k), (5)

where ∆t is the formation time of the vector meson and
we assume fV

λ1λ2
(x,k) is zero at the initial time. We note

that fV
λ1λ2

(x,k) is actually the unnormalized spin density
matrix, from which the normalized one, ρλ1λ2

, is given
as

ρλ1λ2
(x,k) =

ϵ∗µ(λ1,k)ϵν(λ2,k)Cµν
coal(x,k)∑

λ=0,±1 ϵ
∗
µ(λ,k)ϵν(λ,k)C

µν
coal(x,k)

. (6)

We see that ρλ1λ2
is fully determined by the coalescence

kernel Cµν
coal(x,k). The vector meson’s spin density ma-

trix depends on the spin states of its constituent quark
and antiquark, similarly as in nonrelativistic coalescence
models [16, 21].
Spin alignment for ϕ mesons. In order to apply

Eq. (6) to calculate ρ00 for the ϕ meson from coalescence
of s and s quarks, we assume that the chemical freeze-out
occurs shortly after the ϕ meson’s formation through co-
alescence, so one can neglect the effect from hadronic in-
teraction on its spin states. We also neglect polarization
mechanisms such as by electromagnetic fields or fluid gra-
dients [54–59] which are not essential in our study here.
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We will only consider spin polarization of quarks and an-
tiquarks by the vorticity field ωµν and the ϕ field Fϕ

ρσ.
Quarks and antiquarks are assumed to be surrounded by
SU(3) pseudo-Goldstone bosons in hadronization. Ac-
cording to the chiral quark model [29], the ϕ field is just
the 33 element (coupled to s and s) of the vector field Vµ

(3 × 3 matrix) induced by currents of pseudo-Goldstone
bosons. Effects from vorticity fields are also negligible
[21] but still included just as a contrast in the formalism
to ϕ fields. The spin polarization four-vectors as phase
space distributions for s and s are given by [16, 27, 60–
62],

Pµ
s (x,p) ≈

1

4ms
ϵµνρσ

(
ωρσ +

gϕ
(u · p)Th

Fϕ
ρσ

)
pν ,

Pµ
s (x,p) ≈

1

4ms
ϵµνρσ

(
ωρσ − gϕ

(u · p)Th
Fϕ
ρσ

)
pν , (7)

where pµ = (Ep,p) denotes the on-shell four-momentum
of s or s, gϕ is the effective coupling constant of the
ssϕ vertex, Th is the local temperature when ϕ mesons
are formed through coalescence, and fs and fs are ne-
glected as compared to 1 at Th. In Eq. (7) we have
introduced a reference frame vector uµ, which ensures
Pµ
s/s to be Lorentz pseudovectors. Usually uµ is taken

as the local fluid velocity. In the calculation, we will
take uµ = (1, 0, 0, 0) in the rest frame of the ϕ meson for
simplicity.

Substituting Eq. (7) into Eqs. (4) and (6) and by a
lengthy but straightforward calculation [26], we obtain
ρ00 in ϕ meson’s rest frame,

ρ00(x,k) ≈
1

3
+ C1

[
1

3
ω′ · ω′ − (ϵ0 · ω′)2

]
+ C2

[
1

3
ε′ · ε′ − (ϵ0 · ε′)2

]
−

4g2ϕ
m2

ϕT
2
h

C1

[
1

3
B′

ϕ ·B′
ϕ − (ϵ0 ·B′

ϕ)
2

]
−

4g2ϕ
m2

ϕT
2
h

C2

[
1

3
E′

ϕ ·E′
ϕ − (ϵ0 ·E′

ϕ)
2

]
, (8)

where ϵ0 denotes the spin quantization direction for the
ϕ meson, ε′ and ω′ denote the electric and magnetic part
of ω′

µν , E
′
ϕ and B′

ϕ the electric and magnetic part of F ′µν
ϕ

in the meson’s rest frame. C1 and C2 are two coefficients
depending only on quark and meson masses,

C1 =
8m4

s + 16m2
sm

2
ϕ + 3m4

ϕ

120m2
s(m

2
ϕ + 2m2

s)
,

C2 =
8m4

s − 14m2
sm

2
ϕ + 3m4

ϕ

120m2
s(m

2
ϕ + 2m2

s)
. (9)

The above simple and highly nontrivial result is remark-
able in that all mixed terms of different fields and differ-
ent components of the same field disappear due to parity

and reflection symmetry of ρ00 for quarkonium vector
mesons. What remain are short-distance correlations be-
tween same components of vorticity and meson fields. If
we neglect variations of these fields within the hadron
size, these field correlations become local field fluctua-
tions during the hadronization. Any spatial anisotropy
of these field fluctuations in the meson’s rest frame with
respect to the spin quantization direction ϵ0 will lead to
the spin alignment, i.e. ρ00 ̸= 1/3.

In order to calculate the momentum dependence of
ρ00, one can express it in terms of fields in the lab frame
through the Lorentz transformation of ωµν and Fµν

ϕ with

the boost factor γ = Eϕ
k/mϕ and the ϕ meson’s velocity

v = k/Eϕ
k . As a result, ρ00 can be expressed by a fac-

torization form [26], ρ00(x,k) = 1/3 +
∑

i,α Iαi (k)O
α
i (x),

where Iαi (k) (i = x, y, z) denote momentum-dependent
functions and Oα

i (x) field fluctuations, Oα=1−4
i (x) = ε2i ,

ω2
i , (gϕE

ϕ
i /Th)

2 and (gϕB
ϕ
i /Th)

2, respectively. To ob-
tain the observed ρ00 in experiments, we have to take the
space-time average of Oα

i (x) on the hadronization hyper-
surface and the momentum average of Iαi (k) weighted by
ϕ meson’s momentum spectra including the azimuthal
anisotropy through the elliptic flow v2(k) given by ex-
perimental data [26]. The effect of v2 is reflected in the
difference between out-of-plane ρ00 and in-plane ρ00 in
Fig. 1.

Extracting field fluctuations and predictions.
Since one can safely neglect contributions from local
vorticities to the ϕ meson’s spin alignment as com-
pared to the experimental data [21], the dominant con-
tributions can come from the ϕ field’s fluctuations in
terms of six parameters ⟨(gϕBϕ

i /Th)
2⟩ and ⟨(gϕEϕ

i /Th)
2⟩

(i = x, y, z). Considering the geometry of the fireball in
heavy-ion collisions, we assume that the fluctuations of
transverse and longitudinal fields are different, as repre-
sented by

〈
(gϕB

ϕ
x,y/Th)

2
〉
=

〈
(gϕE

ϕ
x,y/Th)

2
〉
≡ F 2

T and〈
(gϕB

ϕ
z/Th)

2
〉
=

〈
(gϕE

ϕ
z/Th)

2
〉
≡ F 2

z . Such an assump-
tion is consistent with the numerical estimates of the
usual electromagnetic fields [63–66].

We can determine the two parameters on field fluctua-
tions by fitting the STAR data on momentum-integrated
ρy00 (out of plane) and ρx00 (in plane), corresponding to
the spin quantization direction ϵ0 = (0, 1, 0) and (1,0,0),
respectively. In our calculation of the momentum-
integrated ρy00 and ρx00, we have used the ϕ meson’s trans-
verse momentum spectra and v2(kT ) from STAR’s exper-
iments at

√
sNN = 11.5-200 GeV [67–70] as the weight

function in ranges of kT =1.2-5.4 GeV and rapidity
|y| < 1. The difference between ρy00 and ρx00 is driven by
the momentum anisotropy via v2(kT ). We will consider
0-80% Au+Au collisions in all our calculations and com-
parisons with the experimental data in this study. Since
there are no data available for ϕ meson’s kT spectra in
0-80% Au+Au collisions, we will use the data in 30-40%
centrality instead. Since the weighted momentum aver-
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FIG. 1. (a) The STAR’s data [20] on ϕ meson’s ρy00 (out-of-
plane, red stars) and ρx00 (in-plane, blue diamonds) in 0-80%
Au+Au collisions as functions of collision energies. The red-
solid line (out-of-plane) and blue-dashed line (in-plane) are
calculated with values of F 2

T and F 2
z from fitted curves in (b).

(b) Values of F 2
T (magenta triangles) and F 2

z (cyan squares)
with shaded error bands extracted from the STAR’s data on
the ϕ meson’s ρy00 and ρx00 in (a). The magenta-dashed line
(cyan-solid line) is a fit to the extracted F 2

T (F 2
z ) as a function

of
√
sNN (see the text).

age is only sensitive to the shape of the spectra, the errors
from such substitute should be small. The constituent
quark mass is set to ms = 419 MeV [71] with mϕ = 1020
MeV. The fits to the STAR’s data on the momentum-
integrated ρy00 and ρx00 and the extracted values of F 2

T and
F 2
z as functions of colliding energies are shown in Fig. 1.

The energy dependence of F 2
T and F 2

z can be fitted with a
function ln(F 2

T,z/m
2
π) = aT,z − bT,z ln(

√
sNN/GeV), with

aT = 3.90± 1.11, bT = 0.924± 0.234, az = 3.33± 0.917,
and bz = 0.760 ± 0.189. The shaded areas in Fig. 1(b)
reflect errors of the momentum-integrated ρy00 and ρx00 in
STAR’s measurement. Errors of the STAR data for ϕ’s
spectra and v2 are negligible in extracting F 2

T and F 2
z as

compared to those of ρ00 and will be omitted in the fol-
lowing calculations. A variation of ms from 419 to 486
MeV [72] gives an increase in the extracted values of F 2

T

and F 2
z by about 37% through C1 and C2 in Eq. (9).

With the extracted values of F 2
T and F 2

z at each col-
liding energy, we can look at the transverse momentum
and azimuthal angle dependence of ρ00(k). In Fig. 2,
we show the contour plot of ρy00 − 1/3 in kx and ky at√
sNN = 200 GeV, averaged over the central rapidity re-

gion |y| < 1. We can see a strong modulation of ρy00
in the azimuthal angle. If we integrate ρ00(k) over kT
weighted by its spectra in the range kT =1.2-5.4 GeV,
we can obtain the modulation of ρy00 and ρx00 with the
azimuthal angle φ in Fig. 3. This is an interesting model
prediction for future experimental verification.

Averaging over the azimuthal angle at fixed kT and us-

FIG. 2. Contour plot of ρy00−1/3 for ϕ mesons as a function
of kx and ky in 0-80% Au+Au collisions at

√
sNN =200 GeV.

FIG. 3. Calculated ρy00 (out-of-plane) and ρx00 (in-plane)
of ϕ mesons as functions of the azimuthal angle φ in 0-80%
Au+Au collisions at

√
sNN=200 GeV. Shaded error bands are

from the extracted parameters F 2
T and F 2

z .

ing the v2(kT ) data to describe the azimuthal anisotropy,
we obtain the kT dependence of ρy00 in Fig. 4 as compared
to STAR’s data for six colliding energies (11.5, 19.6, 27,
39, 62.4, 200 GeV). For large kT beyond the range of the
v2(kT ) data, we use a linear extrapolation between the
data value of v2 at the highest kT and v2 =0 at a larger
kT outside the experimental range which we set to 10
GeV/c. The error bands in the calculation are mainly
due to those of the two parameters F 2

T and F 2
z extracted

from experimental data at each colliding energy. We find
that our predicted ρy00 is nearly a constant at kT < 2
GeV and increases slightly at higher kT .
Summary. Based on a relativistic quantum trans-

port theory for spin dynamics, we have formulated the
spin density matrix element ρ00 for ϕ mesons employing
the spin Boltzmann equation with the effective quark-
meson model for interaction and quark coalescence model
for hadronization. Neglecting effects of hadronic interac-
tion after the hadronization, the final ρ00−1/3 is found to
be proportional to local correlations or fluctuations of the
ϕ field. The effective ϕ field’s fluctuation parameters can
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FIG. 4. Calculated ρy00 for ϕ mesons (solid lines) as functions
of transverse momenta in 0-80% Au+Au collisions at different
colliding energies as compared to STAR data [20]. Shaded
error bands are from the extracted parameters F 2

T and F 2
z .

be extracted through comparison with the STAR data
on momentum-integrated ρ00. Their values and colliding
energy dependence may shed light on non-perturbative
properties of strong interaction. We further predicted
the transverse momentum and azimuthal angle depen-
dence of ρ00 that can be verified by future experiments.
Our theoretical method can also be applied to the spin
alignment of heavy quarkonia [73] and spin correlation of
hyperons [74].
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[18] K. J. Gonçalves and G. Torrieri, Phys. Rev. C 105,

034913 (2022), 2104.12941.
[19] B. Mohanty, S. Kundu, S. Singha, and R. Singh, Mod.

Phys. Lett. A 36, 2130026 (2021), 2112.04816.
[20] M. Abdallah et al. (STAR), Nature (online):

https://doi.org/10.1038/s41586-022-05557-5 (2023),
2204.02302.

[21] X.-L. Sheng, L. Oliva, and Q. Wang, Phys. Rev. D
101, 096005 (2020), [Erratum: Phys.Rev.D 105, 099903
(2022)], 1910.13684.

[22] X.-L. Xia, H. Li, X.-G. Huang, and H. Zhong Huang,
Phys. Lett. B 817, 136325 (2021), 2010.01474.

[23] J.-H. Gao, Phys. Rev. D 104, 076016 (2021), 2105.08293.
[24] B. Müller and D.-L. Yang, Phys. Rev. D 105, L011901

(2022), 2110.15630.
[25] L. P. Csernai, J. I. Kapusta, and T. Welle, Phys. Rev. C

99, 021901 (2019), 1807.11521.
[26] X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N.

Wang (2022), 2206.05868.
[27] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi,

Annals Phys. 338, 32 (2013), 1303.3431.
[28] X.-L. Sheng, N. Weickgenannt, E. Speranza, D. H.

Rischke, and Q. Wang, Phys. Rev. D 104, 016029 (2021),
2103.10636.

[29] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189
(1984).

[30] F. Fernandez, A. Valcarce, U. Straub, and A. Faessler, J.
Phys. G 19, 2013 (1993).

[31] Z.-p. Li, H.-x. Ye, and M.-h. Lu, Phys. Rev. C 56, 1099
(1997), nucl-th/9706010.

[32] Q. Zhao, Z.-p. Li, and C. Bennhold, Phys. Rev. C 58,
2393 (1998), nucl-th/9806100.

[33] A. Zacchi, R. Stiele, and J. Schaffner-Bielich, Phys. Rev.
D92, 045022 (2015), 1506.01868.

[34] A. Zacchi, L. Tolos, and J. Schaffner-Bielich, Phys. Rev.
D95, 103008 (2017), 1612.06167.



6

[35] H. T. Elze, M. Gyulassy, and D. Vasak, Phys. Lett. B
177, 402 (1986).

[36] J.-P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002),
hep-ph/0101103.

[37] Q. Wang, K. Redlich, H. Stoecker, and W. Greiner, Phys.
Rev. Lett. 88, 132303 (2002), nucl-th/0111040.

[38] X.-G. Huang, P. Mitkin, A. V. Sadofyev, and E. Sper-
anza, JHEP 10, 117 (2020), 2006.03591.

[39] K. Hattori, Y. Hidaka, N. Yamamoto, and D.-L. Yang,
JHEP 02, 001 (2021), 2010.13368.

[40] N. Weickgenannt, D. Wagner, and E. Speranza (2022),
2204.01797.

[41] L. P. Kadanoff and G. Baym, Quantum Statistical Me-
chanics (Benjamin, New York, 1962).

[42] J. Berges, AIP Conf. Proc. 739, 3 (2004), hep-
ph/0409233.

[43] W. Cassing, Eur. Phys. J. ST 168, 3 (2009), 0808.0715.
[44] V. Greco, C. M. Ko, and P. Levai, Phys. Rev. Lett. 90,

202302 (2003), nucl-th/0301093.
[45] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys.

Rev. Lett. 90, 202303 (2003), nucl-th/0301087.
[46] V. Greco, C. M. Ko, and P. Levai, Phys. Rev. C 68,

034904 (2003), nucl-th/0305024.
[47] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys.

Rev. C 68, 044902 (2003), nucl-th/0306027.
[48] V. Greco, C. M. Ko, and R. Rapp, Phys. Lett. B 595,

202 (2004), nucl-th/0312100.
[49] W. Zhao, C. M. Ko, Y.-X. Liu, G.-Y. Qin, and H. Song,

Phys. Rev. Lett. 125, 072301 (2020), 1911.00826.
[50] Y.-Z. Xu, D. Binosi, Z.-F. Cui, B.-L. Li, C. D. Roberts,

S.-S. Xu, and H. S. Zong, Phys. Rev. D 100, 114038
(2019), 1911.05199.

[51] Y.-Z. Xu, S. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui,
and C. D. Roberts, Eur. Phys. J. C 81, 895 (2021),
2107.03488.

[52] N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang,
and D. H. Rischke, Phys. Rev. Lett. 127, 052301 (2021),
2005.01506.

[53] N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang,
and D. H. Rischke, Phys. Rev. D 104, 016022 (2021),
2103.04896.

[54] H.-Z. Wu, L.-G. Pang, X.-G. Huang, and Q. Wang, Phys.
Rev. Research. 1, 033058 (2019), 1906.09385.

[55] S. Y. F. Liu and Y. Yin, JHEP 07, 188 (2021),
2103.09200.

[56] F. Becattini, M. Buzzegoli, and A. Palermo, Phys. Lett.
B 820, 136519 (2021), 2103.10917.

[57] B. Fu, S. Y. F. Liu, L. Pang, H. Song, and Y. Yin, Phys.
Rev. Lett. 127, 142301 (2021), 2103.10403.

[58] F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko,
and A. Palermo, Phys. Rev. Lett. 127, 272302 (2021),
2103.14621.

[59] C. Yi, S. Pu, and D.-L. Yang, Phys. Rev. C 104, 064901
(2021), 2106.00238.

[60] F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and
S. Voloshin, Phys. Rev. C 95, 054902 (2017), 1610.02506.

[61] R.-H. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang,
Phys. Rev. C 94, 024904 (2016), 1604.04036.

[62] N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang,
and D. H. Rischke, Phys. Rev. D 100, 056018 (2019),
1902.06513.

[63] V. Voronyuk, V. D. Toneev, W. Cassing, E. L.
Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin,
Phys. Rev. C 83, 054911 (2011), 1103.4239.

[64] W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907
(2012), 1201.5108.

[65] H. Li, X.-l. Sheng, and Q. Wang, Phys. Rev. C 94, 044903
(2016), 1602.02223.

[66] I. Siddique, X.-L. Sheng, and Q. Wang, Phys. Rev. C
104, 034907 (2021), 2106.00478.

[67] B. I. Abelev et al. (STAR), Phys. Rev. C 79, 064903
(2009), 0809.4737.

[68] J. Adam et al. (STAR), Phys. Rev. C 102, 034909 (2020),
1906.03732.

[69] B. I. Abelev et al. (STAR), Phys. Rev. Lett. 99, 112301
(2007), nucl-ex/0703033.

[70] L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902
(2013), 1301.2348.

[71] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[72] D. Griffiths, Introduction to elementary particles (Wiley-

VCH, 2008), ISBN 978-3-527-40601-2.
[73] ALICE (ALICE) (2022), 2204.10171.
[74] W. Gong, G. Parida, Z. Tu, and R. Venugopalan, Phys.

Rev. D 106, L031501 (2022), 2107.13007.


	Spin alignment of vector mesons in heavy-ion collisions
	Abstract
	Acknowledgement
	References


