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We model SYK (Sachdev-Ye-Kitaev) interactions in disordered graphene flakes up to 300 000
atoms (∼100 nm in diameter) subjected to an out-of-plane magnetic field B of 5-20 Tesla within
the tight-binding formalism. We investigate two sources of disorder: (i) irregularities at the system
boundaries, and (ii) bulk vacancies,—for a combination of which we find conditions which could be
favorable for the formation of the phase with SYK features under realistic experimental conditions
above the liquid helium temperature.

There has been significant recent interest in the con-
densed matter community of a holographic gravitational
description of correlated electron systems [1, 2]. A model
in this direction is the Sachdev-Ye-Kitaev (SYK) model
[3, 4], which describes from the condensed matter per-
spective a set of N electrons in a dispersionless quantum
state (a flat band), interacting strongly yet randomly all-
to-all,

HSYK =

N∑
ijkl

Jijkl c
†
i c

†
jckcl. (1)

Here c†i (ci) are fermionic creation (annihilation) opera-
tors, and Jijkl are random couplings in all indices (the
model works beyond the Gaussian randomness [5]). De-
spite its attractive mathematical properties such as ex-
act solvability in the large N limit with nearly conformal
properties [6, 7], mapping on the Jackiw-Teitelboim grav-
ity [8]), and importance for condensed matter physics (in-
cluding strange metallicity [9–11] and superconductivity
on the basis of SYK model [12–14]), a direct experimental
realization is currently missing.

Various theoretical simulations for the physical real-
ization of the SYK model had been discussed [15–20].
Among them, a promising potential experimental plat-
form for the electronic SYK model, given in Ref. [20],
is a graphene dot with irregular boundaries placed in an
external magnetic field. Ref. [20] studied ∼2000 atoms
(5 nm in radius) in a field of ∼3200 T. However, the
magnetic fields employed in Ref. [20] exceed capabilities
within the laboratory realm. Modern condensed matter
facilities operate with quantum transport at magnetic
fields up to 16-20 T, and the highest accessible magnetic
fields in DC operation are of 45 T [21]. At the same
time, graphene preparation and chemical etching proce-
dures pose limits on the controllable size and shape of a
flake, allowing flexible operational capabilities with the
flakes size of hundred nanometers and above, but not
for a few nanometers size. In this regard, a great chal-
lenge is to overcome these obstacles to engineer a realistic
graphene flake, which could host relevant interactions in

the experimentally accessible magnetic fields of 5-20 T.

In this paper we report large-scale calculations on large
graphene flakes involving up to 300 000 carbon atoms
(corresponding to flake size ≈ 100 nm) placed under re-
alistic experimental conditions. We find that upon choos-
ing a well-disordered flake, we can reach favorable experi-
mental conditions with SYK strength J∼45 meV (we use
standard normalization J2 = 2N3⟨|Jijkl|2⟩), and a meso-
scopic number of SYK fermions N , typically around 40
in our calculations in the magnetic fields of 10-20 T. We
further model: (i) the role of chemical etching [22], or
local anodic oxidation with an atomic force microscopy
(AFM) tip [23–25], by varying the shape of the flake and
the size of edge disorder. (ii) the role of bulk vacancies
created, for example, by focused ion beam (FIB) pattern-
ing [26] or hydrogen plasma treatment [27]. Our results
speak in favor of formation of SYK-like interactions in
the realistic range of parameters. In particular, we point
out how the relative effect of melonic diagrams can be en-
forced by controlling the atomic vacancies concentration
in the bulk. By comparing the relevant energy scales [28],
namely t2/J and J/N , we come to the conclusion that the
engineered system has a set of parameters where it could
realize the SYK phase in the vicinity of the liquid helium
operational temperatures, accessible magnetic fields, and
suitable graphene flake scales.

Setup. To construct the SYK model, one needs to
employ the dispersionless quantum states (flat bands).
The electronic states with nontrivial Bloch topology
are preferred for our purpose as they are spread over
multiple atomic sites and are immune to Anderson
localization.[29] Such flat band states have been classi-
fied in Ref. [30]. The simplest of this construction are the
Landau levels, which are characterized by Chern number
|C|=1. In principle, one can use numerous 2D mate-
rials for this purpose, however we here limit ourself to
the case of graphene [20] for two reasons: (i) graphene
monolayer is an intuitively understood system from both
analytical and numerical viewpoint; (ii) there are existing
experimental platforms satisfying criteria for this direc-
tion [31, 32].
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FIG. 1. Bulk and edge states in disordered graphene flake of 100 nm in strong magnetic fields. (a) Energy
spectrum as a function of magnetic field, expected in pristine graphene; inset shows the same spectrum in energy range [-50
meV; + 50 meV] to compare with panel (b); (b) De-facto energy spectrum, observed in a strongly disordered graphene flake
of size 100 nm; higher Landau levels (|n|>0) are not recognized in the energy range [-50,+50 meV]; (c) probability densities
|ψ|2 of exemplary bulk and edge states. Randomly localized bulk states shown in bottom of (c) are the building blocks for
constructing the SYK-like interactions (Fig. 2).

Before proceeding to disordered graphene flakes, let us
recall the physics of pristine (homogeneous and bound-
less) graphene in low-energy approximation. Upon ap-
plication of out-of-plane magnetic field B, the electronic
spectrum of pristine graphene is given by [33]

En = ±vF
√
2ℏeB|n|, (2)

where e is electronic charge and vF≈106 m/s is the Fermi
velocity. The lowest Landau level (LLL) is characterized
by zero modes in the bulk (n=0). In the presence of chiral
symmetry, the Aharonov-Casher argument [34] sets the
number of electronic states in LLL as

N0 =
BA

Φ0
, (3)

where A is the flake area, and Φ0 = h/e = 4.136 · 10−15

Wb is the magnetic flux quantum. N0 in Eq. (3) sets
the order of magnitude for the number N of SYK states
in the Hamiltonian in Eq. (1), however we see that N
within bandwidth t = 2 meV around the Fermi level N
is fluctuating around N0 due to strong disorder effects
in considered graphene flakes (see Fig. 2). Still there is
a certain qualitative similarity with the ideal LLL case,
even that the flake is strongly disordered.

The typical electronic spectrum of a strongly disor-
dered graphene flake is illustrated in Fig. 1. The flake
has a disorder-free inner region of radius R1, followed by
disordered edge up to radius R2 (46 nm and 50 nm in
Figs. 1, 2). Tight-binding (TB) calculations are per-
formed with the conventional graphene model in mag-
netic fields [35], taking into account nearest-neighbors

hoppings with Peierls substitution. Disorder is modeled
by the random on-site term

∑
i Vic

†
i ci with Vi → ∞,

where the Vi is either applied to the i-th site in the bulk
region (defined by the radius R1) or at the edge (within
R2 −R1) [36]. Figure 1 shows the results obtained from
diagonalization of the TB model describing the 100 nm
flake consisting of around 270 000 of atoms. The first
observation is that the electronic spectrum of a realis-
tic disordered flake in the relevant energy range deviates
significantly from its pristine counterpart, given by Eq.
(2): in all the realistic magnetic fields 0 to 20 T, we no
longer observe the square-root behavior of eigenenergies
as expected for pristine graphene; instead, the spectrum
acquires a quantum-dot-like distribution [37].

We distinguish the bulk states from the edge states
through the analysis of their localization properties. For
this, we integrate |Ψ|2 within radius R1 + δ (δ→0) [38].
Due to the presence of irregularies on the boundaries, all
the states are showing certain localization at the edge;
however bulk stats have significant weight in bulk. If at
least 50% of weight is localized in bulk, we label this state
as a bulk state. While, as expected, the edge states are
strongly localized at the irregular boundaries, the bulk
states sway over all the flake diameter, being spread on
the length scale of ∼100 nm. With such large length
scale over which the bulk states are spread, the notion of
distance is lost, and these states are interacting randomly
all-to-all, in the SYK spirit.

Calculation of the SYK terms. With the bulk states
randomly localized, and the kinetic energy quenched to
t < 2 meV, we construct the SYK-like states by introduc-
ing the Coulomb interaction in the basis of randomized
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FIG. 2. SYK-like interactions in the graphene flake of
size 100 nm (268’510 Carbon atoms) under realistic mag-
netic fields 5-20 T. (a) The geometry of the flake used for
numerical modeling, together with the visualization of a typ-
ical bulk state near the Fermi level. (b-c) Distribution of real
and imaginary parts Jijkl terms computed from Eq. (4) with
Re⟨Jijkl⟩ ≈ 0 and Im⟨Jijkl⟩ ≈ 0. (d) The value of SYK inter-
action J , determined by the second moments in Eq. (5). For
calculation, we take bulk states distributed between [-1 meV,
+1 meV] around the Fermi level. Panel (e) shows number of
bulk states in the range [−1 meV,+1 meV] involved into Jijkl
calculation; gray dashed line depicts ideal LLL case Eq.(3).

bulk states [20, 39]. We compute Sachdev-Ye-Kitaev in-
teraction terms through [40]

Jijkl =
1

2

∑
r1

∑
r2

Ψ∗
i (r1)Ψ

∗
j (r2)U(r1 − r2)Ψk(r1)Ψl(r2)

(4)
where U(r) is the screened Coulomb potential. Our re-
sults stand for different forms of the screened Coulomb
potentials. To be specific, we adopt the values of renor-
malized interaction potentials for graphene as it was re-
ported in Refs. [41]. In particular, we adopt UNN = 5.5
eV, UNNN = 4.1 eV, UNNNN = 3.6 eV, where (N)NN
stands for (next)-nearest neighbor interactions. In calcu-
lation of Jijkl terms (4), we take only bulk states within
the energy range [−1 meV, +1 meV] around the neu-
trality. This qualitatively corresponds to focusing on the
states associated with what used to be LLL (see dashed
line in Fig.2e), similar to Ref. [20]. For medium size
flakes, we check that changing the bulk states range [−1

meV,+1 meV] to [−5 meV,+5 meV] does not change sig-
nificantly the results for Jijkl calculations, since most of
the bulk states are situated near the zero energy, and
higher excited bulk states contribute marginally to SYK
interactions Jijkl. Hence, in what follows we proceed
with bulk states within [−1 meV,+1 meV].
The key results for the large flake are summarized in

Fig. 2. The statistical distribution of the complex-valued
Jijkl terms is illustrated in Fig. 2(bc). The mean is zero,
(Re ⟨Jijkl⟩ ≈ 0, Im ⟨Jijkl⟩ ≈ 0), which indicates that real
and imaginary parts of Jijkl are independent. The over-
all distribution of the absolute values of Jijkl is quasiran-
dom, but non-Gaussian as in conventional SYK models
[6, 7]; however, this is not the problem for construct-
ing SYK-like models [5]. We introduce the real-valued
strength of SYK interactions J as with normalization
from counting melonic diagrams [7]

J =
√
2N3/2 ⟨JijklJ∗

ijkl⟩
1/2

. (5)

We operate this quantity in meV and Kelvin for practical
convenience. The results for the large flake are encourag-
ing, with extracted J of around 35 meV at 15 T (see Fig.
2(d)). The number of SYK fermions peaks to 50-60 and
we typically take around 40 of them for our calculations.
Dependence on edge disorder scale. We next address

the question of how the edge disorder χ = (R2 −R1)/R2

influences the SYK interaction strength J . This ques-
tion is vital for the experiments, where only a limited
number of methods is available for shaping the flake of
the size of 100-200 nm (chemical etching, FIB, hydrogen
plasma treatment). To optimize the numerical costs, we
now turn to the medium size flakes of diameter 80 nm
(∼ 150 000 atoms); these results are rescalable towards
large graphene flake of size 300 000 atoms and more as

Edge disorder strength,Edge disorder strength,

(nm)

0

20

40

60

80

0% 5% 10% 15%

J 
(m

eV
)

40 38 36 34 32 40 38 36 34 32

0

25

50

75

100

125

150

175

0% 5% 10% 15% 20%20%

(a) (b) (nm)

FIG. 3. Enhancing SYK interactions through edge dis-
order χ. (a) SYK coupling strength J , (b) dimensionless
ratio J/|⟨Jijkl⟩| as a function of edge disorder scale χ for the
medium size flake at B = 20 T (approx. 150 000 atoms, 80
nm in diameter). Solid lines correspond to the average over
up to 20 disorder realizations (marked with grey points, some
outside of plot range). In this figure, the flake has dimensions
R2=40 nm (outer radius), and R1 changes from 33 nm to 38.5
nm (inner radius).
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FIG. 4. Tuning SYK strength J with vacancy patterning. (a) illustration of the graphene flake with 10% bulk atomic
vacancies (diameter 80 nm, approx. 156 000 atoms); (b) SYK strength J and (c) J/|⟨Jijkl⟩| ratio as a function of the vacancies
concentration in the range from 0 % to 15 % of vacancies. Solid blue lines correspond to arithmetic average over 20 disorder
realizations in the medium size flake with R1 = 37 nm and R2 = 40 nm at B = 20 T (some sample points (grey) are outside of
the plot range). Above 15 %, the long-range order is destroyed for some disorder realizations and around 30 %, all the systems
are close to the percolation threshold for hexagonal lattice p ≈ 0.7 [42, 43].

in prototypes [31]. We observe that the strength of the
SYK interaction J can be tuned by increasing the edge
disorder χ (see Fig. 3). To quantify this effect we per-
form disorder averaging over dozens of flakes (Fig 3 uses
up to 30-40 flake realizations) [44]. Typically J scatters
from 20 meV to nearly 60 meV upon increasing χ from
0 to 20%, but some samples may exhibit even larger val-
ues of J above a hundred meV (outside of plot range in
Fig. 3) at moderate edge disorders. For 40 nm flakes
presented in Fig. 3, we cannot access data for R1 ≈ 39
nm, as it is hard to separate contributions from the edge
states and the bulk states; the edge states have finite pen-
etration depth into the bulk of the flake, see 1). Phys-
ically, the value of J should drop to zero for a pristine
flake (R1=R2), this is depicted with a dashed line which
serves as a guide for eyes. Comparing Fig. 3 with Fig.
2, we come to the conclusion that the energy scale J ∼
20-40 meV is the most robust for the experiments, as it
persists in the broad range of edge disorder (the value
and uncertainties of which is hard to control experimen-
tally). Moreover, the ratio of J/|⟨Jijkl⟩| in Fig. 3(b),
which qualitatively points to the dominance of the mel-
onic diagrams in the large-N limit, increases under edge
disorder.

Enhancing the role of melonic diagrams. Another
mechanism of control is behavior vacancies implanting
as in Fig 4(a), performed e.g. via FIB tools. In this
case, the sample patterning can provide additional tun-
ing knob to improve the properties towards SYK-like be-
havior. We here perform the calculations for the medium
size flakes of 80 nm in B = 20 T. The results are shown in
Fig. 4. We start with the flake which has only moderate
(non-optimized) edge disorder, reflected in J ≈ 20 meV,
and gradually increase the number atomic vacancies (in-
dicated in per cents %). Fig 4(b) gives the dependence

of the SYK interaction J versus vacancy concentration
in the bulk. The SYK coupling strength J is around
20 meV throughout the disorder range. The number of
bulk states slowly grows with a vacancy concentration;
we check that the bulk states are not exponentially lo-
calized on the atomic vacancies. Fig. 4(c) presents the ra-
tio of couplings J/|Jijkl|. While the coupling strength J
fluctuates moderately around it’s original value, the ratio
J/|⟨Jijkl⟩| is significantly improved by adding a moderate
amount of vacancies (at 0 % this ratio is J/|⟨Jijkl⟩| ≈ 50,
at 5 % it is J/|⟨Jijkl⟩| ≈ 200), hence promoting the role
of melonic diagrams [7]. Therefore, we come to conclu-
sion that even a modest vacancy concentration of 5% can
improve the properties of the SYK flake. For the flakes of
size 100 nm (∼ 300000 atoms) , we recommend removing
∼15000 to ∼30000 Carbon atoms.

Discussion of the temperature scales. Finally, we per-
form the analysis of the relevant energy scales. The key
energy scale is J ≈ 35meV (taken at experimentally
relevant B =16 T from Fig. 2). The SYK model is
well-defined in the region T ≪ J . Furthermore, there
are lower bounds on the temperature coming from (i)
finite bandwidth of the flat band, and (ii) mesoscopic
effects in the SYK Hamiltonians. Both these tempera-
tures scales appear in quantum transport treatment of
the SYK island [28]. The first temperature bound is
set by the bandwidth t. However, the question of the
bandwidth for strongly-disorder flakes is not well defined;
from from Fig. 1b we estimate the upper bounds as ±15
meV, from which we estimate t ≈ 7.5 meV; similar up-
per bounds are imposed by experiment [45]. This gives
T1 = t2/J ≈ 19K. Around this value, the SYK dynam-
ics crossover to conventional Fermi liquid behavior in a
universal manner. The second temperature scale is set
by the mesoscopic number of SYK states. In our case
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of a large flake (N ≈ 35), T2 = J/N ≈ 10K. Below
T2, mesoscopic fluctuations are described by the univer-
sal Schwarzian theory of the SYK model (with possible
perturbations from t) [28]. Therefore, we come to con-
clusion that in the magnetic fields of 16 T, flake sizes of
order 100 nm, the SYK dynamics is most favorable in the
regime 20K ≲ TSYK ≪ 300K. We hence expect the sig-
natures of SYK model [7] in this temperature range, and
probe the relevant quantum transport, namely anoma-
lies in thermopower in this setup [28]; see also [46–50]
for a similar setup. This allows to operate the 100 nm
graphene flakes of Figs. 1, 2 above the point of the liquid
helium temperature (THe = 4.2 K), a relevant experimen-
tal benchmark.

Conclusions. In conclusion, by performing large-scale
calculation on up to 300 000 atomic sites, we have demon-
strated that the SYK interactions can be controllably en-
gineered and enhanced in the disordered graphene flake in
realistic magnetic fields 5-20 T, when the flake enters the
quantum dot regime. The obtained results speak in favor
of underlying SYK dynamics in the disordered graphene
flakes, establishing realistic experimental conditions in
terms of length scales, temperatures, and magnetic fields.
Further theoretical modelling of transport across such
disordered graphene flakes is required to interpret the
graphene prototypes behavior in experiments [31].
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