
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Complexity Phase Transitions Generated by Entanglement
Soumik Ghosh, Abhinav Deshpande, Dominik Hangleiter, Alexey V. Gorshkov, and Bill

Fefferman
Phys. Rev. Lett. 131, 030601 — Published 18 July 2023

DOI: 10.1103/PhysRevLett.131.030601

https://dx.doi.org/10.1103/PhysRevLett.131.030601


Complexity phase transitions generated by entanglement

Soumik Ghosh,1 Abhinav Deshpande,2 Dominik Hangleiter,3 Alexey V. Gorshkov,3 and Bill Fefferman1

1Department of Computer Science, University of Chicago, Chicago, Illinois 60637, USA
2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA

3Joint Center for Quantum Information and Computer Science and Joint Quantum Institute,
University of Maryland & NIST, College Park, Maryland 20742, USA

(Dated: May 31, 2023)

Entanglement is one of the physical properties of quantum systems responsible for the computa-
tional hardness of simulating quantum systems. But while the runtime of specific algorithms, notably
tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is
unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-
independent complexity. In this work, we quantitatively connect the entanglement present in certain
quantum systems to the computational complexity of simulating those systems. Moreover, we com-
pletely characterize the entanglement and complexity as a function of a system parameter. Specifi-
cally, we consider the task of simulating single-qubit measurements of k–regular graph states on n
qubits. We show that, as the regularity parameter is increased from 1 to n − 1, there is a sharp transi-
tion from an easy regime with low entanglement to a hard regime with high entanglement at k = 3,
and a transition back to easy and low entanglement at k = n − 3. As a key technical result, we prove
a duality for the simulation complexity of regular graph states between low and high regularity.

A fundamental question since the inception of quantum
computing has been to understand the physical mecha-
nisms underlying the computational speedup of quan-
tum computers. One of the most widely studied re-
sources for quantum speedups is entanglement [1, 2].
However, understanding precisely how much entangle-
ment is necessary and sufficient for a quantum system
to be intractable to arbitrary classical simulation tech-
niques has remained elusive. Quantum computations
involving next to no entanglement can be hard to sim-
ulate classically [3–5] and relatively little entanglement
can be universal for quantum computation [6–8], while
states with very high entanglement can be useless for
quantum computation [9, 10].

One way the relation between entanglement and
hardness has been studied is by considering the perfor-
mance of specific simulation methods, like tensor net-
works [11–14]. The runtime of tensor-network algo-
rithms depends exponentially on the amount of a certain
type of entanglement [1, 11, 12], as it determines how
efficiently we can contract the tensor network. How-
ever, it is an open problem to characterize the situations
where tensor network algorithms are optimal. When
can we find another algorithm that could do better in
situations where tensor networks are inefficient? More-
over, when does the failure of tensor networks coincide
with an inherent hardness of the problem itself? This es-
sentially is the content of the second of Aaronson’s “Ten
Semi-Grand Challenges for Quantum Computing The-
ory” [15].

The effect of the presence of entanglement on hard-
ness of classical simulation has been considered in var-
ious settings including measurement-based quantum
computing (MBQC) [9, 10, 16, 17], the one-clean-qubit
model [18], and more recently in a line of research
considering the time evolution under certain classes of
Hamiltonians [19, 20]. However, we lack a quantitative

connection between the entanglement present in certain
quantum states and the inherent computational com-
plexity of simulating them.

In this paper, we answer Aaronson’s question quan-
titatively with respect to the entanglement of regular
graph states. For a simple graph G = (V, E) given by
vertex set V and edge set E, the corresponding graph
state |G⟩ is defined as

|G⟩ = ∏
(i,j)∈E

(CZ)i,j|+⟩⊗n, (1)

where CZi,j is the controlled-Z operator acting on ver-
tices i and j. The action of the CZi,j gate is invari-
ant to changing the control and target qubits. Graph
states [21] are a very well-motivated class to investi-
gate the interplay of classical simulability and entangle-
ment. On one hand, a graph state directly maps to a
tensor network, and one can invoke the measurement-
based model of quantum computing [6, 22, 23] to argue
that certain graph states are not efficiently simulable and
are, moreover, universal resources for quantum compu-
tations. On the other hand, their entanglement can be
conveniently analyzed using graph theory [7].

Examples of universal resource states are graph states
on hexagonal, square, or triangular lattices [24, 25].
Under closed boundary conditions these resource states
correspond to 3–, 4–, and 6–regular graphs, respectively.
Conversely, graph states on a 2–regular graph, i.e., a
one-dimensional cluster state, and the graph state on
an (n− 1)–regular graph on n qubits, i.e., the complete
graph, are also well studied: both are efficiently sim-
ulable and at the same time have low entanglement
[7, 25, 26]. However, for all other values of the reg-
ularity parameter k, it is unknown exactly when, if
at all, classical simulation is intractable, and how the
regularity parameter relates to the entanglement of the
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Figure 1. (a) The family of quantum states we consider are graph states on a k–regular graph G on n qubits with arbitrary single
qubit rotations U1, U2, . . . , Un. The measurements are done in the standard basis. (b) Phase transitions of the entanglement (as
measured by entanglement width) and computational complexity—whether classical simulation is easy or hard—as a function
of the regularity parameter k. For both the entanglement width and the computational complexity, we take the worst case over
all k–regular graphs G as well as U1, U2, . . . , Un.

corresponding graph state.

Our contributions.—In this work, we completely char-
acterize the computational complexity of simulating k–
regular graph states in arbitrary product bases and their
entanglement as a function of the regularity parameter
k; see Fig. 1. We also identify new resource states for
MBQC: a result of independent interest. Our construc-
tions reach all the way to almost fully connected graphs
that may be more natural for some experimental archi-
tectures such as ion traps [27] or cavity quantum elec-
trodynamics [28] than low-degree lattices.

Our two main results are summarized as follows and
are illustrated in Fig. 1(b).

• As the regularity parameter k is increased from its
minimal value of 1 to its maximal value of n− 1,
the simulation complexity first sharply changes
from easy to provably hard precisely at k = 3,
but then changes sharply back to easy again at
k = n− 3.

• The entanglement scaling, measured by entangle-
ment width [25], one-to-one correspond one-to-one
with simulation complexity, changing from con-
stant to at least logarithmic to constant at the same
values of k at which the simulation complexity
changes from easy to hard and back to easy.

Qualitatively, entanglement width measures the en-
tanglement of “tree-like” bipartitions of the state: this
directly determines the runtime of tensor-network algo-
rithms. It is also an LOCC (Local Operations and Classi-
cal Communication) monotone and hence a meaningful
measure of entanglement [6].

We consider simulation of quantum states in terms of
both sampling from their output distributions and com-
puting output probabilities up to constant multiplica-
tive error in an arbitrary local product basis. Indeed,
in the case where simulation is hard, the two notions of

simulation are intricately linked: given that computing
output probabilities to constant multiplicative error is
harder than any problem in the complexity class GapP,
the sampling task cannot be efficiently solved. This can
be shown by a standard reduction due to Stockmeyer
[29].

No general tool exists to pinpoint when entangle-
ment produces simulation hardness. What we can say
is something weaker: there is no known class of circuits
such that computing output probabilities is GapP-hard
but the circuit does not produce entanglement.

However, even for those instances, it is not clear that
entanglement is what is producing the hardness, as
there are other quantum resources present. Our work
provides one of the first examples where entanglement
can justifiably be said to produce simulation hardness.

We do this by appending single-qubit rotations at
the end to perform the measurement in arbitrary local
bases. This ensures all known classical simulation algo-
rithms for quantum circuits that exploit specific quan-
tum resources—in particular, low stabilizer rank or T-
count [30, 31] and low negativity in quasiprobability
representations [32–36]—are rendered inefficient. But,
the last layer of local rotations does not affect the entan-
glement of the quantum state. So, local rotations enable
us to understand to what extent entanglement present
in a state serves as a necessary and sufficient criterion
characterizing simulation complexity.

We have thus identified a setup where all known
easy cases are efficiently simulable precisely because of
the state having little entanglement. Additionally, all
other cases are provably hard to simulate because the
entanglement present in the system facilitates universal
measurement-based quantum computation, as we de-
tail below. To the best of our knowledge, this is the first
setup where both features are simultaneously demon-
strated; moreover, the entanglement and complexity
transitions, as a function of a natural system parameter,
are sharp.
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Main results.—In the hard regime, our proofs also rely on
showing GapP-hardness of estimating probabilities—of
a specific family of k–regular graphs in a specific fam-
ily of local bases—implying the hardness of sampling.
Conversely, easiness of sampling and computing output
probabilities up to constant multiplicative error are in-
dependent properties and not implied by one another.
However, our proofs in the easy regimes show that both
tasks are efficiently possible for our particular setup.
Specifically, we prove the following results.

Theorem 1 (The easy regime). In the regimes of very low
(k ≤ 2) and very high (k ≥ n− 3) regularity, locally rotated
k–regular graph states (a) have constant entanglement width,
and (b) can be simulated by a polynomial time classical algo-
rithm.

For all other values of k, we show that classical simula-
tions are not efficiently possible:

Theorem 2 (The hard regime). For every 3≤ k ≤ n− 4,
there exist locally rotated k–regular graph states such that
(a) these states cannot be simulated classically in polynomial
time, assuming the PH is infinite, (b) the entanglement width
scales at least logarithmically.

We also get the following corollary.

Corollary 3. For every 3≤ k ≤ n− 4, assuming
BPP⊊P#P, there exist k–regular graph states satisfy-
ing Theorem 2(a) such that their entanglement width is
superlogarithmic.

Assuming stronger hardness conjectures, the lower bounds
on the entanglement width can be sharpened to Ω(nδ) for
some constant δ> 0 (assuming the exponential time hypoth-
esis) and to Ω(n1/2) (assuming the strong exponential time
hypothesis.)

The complexity class P#P is as defined in [38]. Let
us note that our hardness results—while stated for the
worst case—are in fact also valid on average over the
local rotations via worst-to-average case reductions
[41, 75] (see Section 5 of the Supplemental Material [39]
for details.) Together, our results completely character-
ize the classical simulability of locally rotated regular
graph states as a function of the regularity parameter in
terms of both sampling and computing probabilities.

Proof of easiness results.—In order to prove our easiness
results, we utilize connections between entanglement
width and classical simulations of graph states. Let
the entanglement width of a graph G be ew(|G⟩); see
Refs. [25, 39] for the precise definition.

First, note that for k ∈ {1, 2, n− 3, n− 2, n− 1},
ew(|G⟩) is a constant for every G ∈Gk, where Gk is the
set of all k–regular graphs. To see this, we make use of
relations between entanglement width of a graph state
|G⟩ and width measures of the underlying graph G.
Particularly, entanglement width is equal to the rank

width of the underlying graph for graph states. Fur-
thermore it can be related to the tree width and clique
width of G [25]. All these width measures express how
“tree-like” the graph is from different perspectives [43].
1– and 2–regular graphs have bounded tree width,
which implies they have bounded rank width and
therefore bounded entanglement width. Additionally,
rank width, and hence, entanglement width, satisfy a
duality property: if it is bounded for a graph G, it is
also bounded for the complement G of G [44, 45]. This
fact allows us to argue that (n− 3)– and (n− 2)–regular
graphs have bounded entanglement width.

Qualitatively, graph states with low entanglement
width are efficiently simulable via tensor network
simulation methods by the technique of Ref. [17]. For a
graph G, the idea is to construct a tree-tensor-network
decomposition of a graph state |G⟩. This takes time
poly(n, 2ew(|G⟩)). Given this decomposition, and using
techniques of Refs. [11, 12, 17], one can compute any
output probability under any set of local rotations.
Additionally, one can also sample from the resulting
output distributions.

Hamming weight symmetry for the complete graph. For
the complete graph—i.e, the (n− 1)–regular graph—we
construct a new recursive algorithm that allow us to
simulate arbitrary single-qubit product measurements.

Specifically, our approach requires an inherent sym-
metry of the complete graph: the fact that any output
probability of the complete graph on n vertices has a
Hamming weight symmetry—it can be written as a lin-
ear combination of n+ 1 many terms, one for each Ham-
ming weight, such that each of them is efficiently com-
putable. See the Supplemental Material [39] for details.

While it is known that output probabilities of the
complete graph can be computed efficiently [7, 25, 26],
to the best of our knowledge, our approach is novel and
might have applications elsewhere to prove easiness,
especially in problems having a Hamming weight
symmetry. Some recent works have used this symmetry
to devise classical algorithms for quantum simulation
[46, 47].

Proof of hardness for 3≤ k ≤ n/2. In order to prove
hardness, we use the fact that certain graph states
are resources for MBQC. Using Aaronson’s result that
postBQP = PP [48], the output probabilities of a re-
source state for MBQC with local rotations are GapP-
hard to compute [6, 49–51]. Then, using Stockmeyer’s
theorem, it is not possible to efficiently sample from
their output distribution unless the polynomial hierar-
chy collapses [29]; see [52] for an overview of this argu-
ment. In particular, this is true for the square lattice and
the hexagonal lattice [24].

Furthermore, we exploit the fact that certain single-
qubit Clifford operations on a graph state |G⟩, with clas-
sical communication and standard basis measurements,
result in vertex deletion and local complementation of G
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Figure 2. (a) A grid graph with closed boundary conditions is a torus, which is a 4–regular graph. This is a resource state for
MBQC: “cutting open” the torus along the pink lines gives back a grid graph. (b) Two tori connected together to construct a
5–regular graph. The pink vertices are ones we delete to recover a grid graph, which proves that this is a valid resource state for
MBQC.

[53]. Local complementation flips the neighborhood of a
vertex: connected vertices in the neighborhood are dis-
connected, and any two disconnected vertices are joined
by an edge. This is illustrated in Fig. 3. It is known
that if we transform a parent graph G to a hexagonal
or grid graph by vertex deletion and local complemen-
tation, then |G⟩ is a universal resource for MBQC and
hence hard to simulate [25, 50].

Our construction starts from the observation that
hexagonal and square lattices with closed boundary
conditions on the torus are, respectively, 3– and 4–
regular graphs. These are universal resources for
MBQC, since we can reach planar hexagonal and square
lattices by vertex deletion: we “cut” the torus open, see
Fig. 2(a). Consequently, computing the output probabil-
ities of G in an arbitrary local basis is GapP-hard for 3–
and 4–regular graphs.

For graphs with higher regularity, we need more in-
volved constructions. We reverse-engineer k–regular re-
sources by starting from the 4–regular resource state—
the square lattice on a torus—and boost it up to k–
regularity by adding gadgets, which can be removed by
local complementation or vertex deletion.

In light of this, starting from a grid graph on a
torus, i.e., an n vertex, 4–regular graph, we add just a
single gadget, namely another grid graph on a torus,
see Fig. 2(b). We then judiciously connect two grid
graphs in a way such that every vertex is k–regular. It is
nontrivial to argue that such a connection pattern even

G LC(G , )

Figure 3. To perform local complementation LC(G, a) of a
graph G with respect to vertex a (pink), we take the comple-
ment of the subgraph comprising the neighbors of the pink
vertex (green).

exists. We prove it does using the Gale-Ryser theorem
[54–56], for every 4< k ≤ n/2. The Gale-Ryser theorem
is constructive. Thus, our constructions prove that there
exists an explicit n–vertex, k–regular graph G such that
computing the output probabilities of G in an arbitrary
local basis is GapP-hard, for every 4 ≤ k ≤ n/2.

The duality property.—Finally, we show that the complex-
ity of simulating graphs with low regularity and graphs
with high regularity satisfies a duality. Specifically, we
prove that the complement of an n× n hexagonal graph
or grid graph is a resource state for MBQC. Hence, the
corresponding (n− 4)–regular graph state is universal
under postselection, and simulating product measure-
ments of it is classically intractable.

To see this, consider an n× n grid graph G, and mark
three vertices—a corner vertex of degree 2, and its two
neighbors, see Fig. 4. Denote these vertices by a (pink
vertex), b, and c (green vertices). Now, in the comple-
ment graph G, apply local complementation to vertex a,
that is, we take the complement of the neighborhood of
a. Then delete vertices a, b, c, and subsequently, delete
all vertices in the same row and column as a in G. We
are left with an (n− 1)× (n− 1) grid graph, which is a
resource state for MBQC. An analogous strategy shows
that the complement of an n× n hexagonal lattice is
also a resource state for MBQC.

Proof of hardness for n/2< k ≤ n− 4. We now extend
our hardness proof to the regime of n/2< k ≤ n− 4.
The idea is to take the hard graphs we constructed for
4≤ k ≤ n/2, comprising two copies of the grid graph on
the torus, and then complement those hard graphs. If
we started with a k–regular graph, after complementa-
tion, we are left with an (n− k − 1)–regular graph. We
then delete all vertices which were part of the second
grid graph in the original graph and then apply local
complementation to one of the vertices and vertex dele-
tion in the column and row of that vertex.

As a consequence, we obtain an explicit duality of
simulation complexity between regimes of high and low
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Figure 4. A visual proof that the complement of a grid graph is a resource state for MBQC. (a) A 3× 3 grid graph G. Consider
(b) G—the complement of G. (c) Apply a local complementation to vertex a. (d) Delete vertices b and c. (e) Delete some of the
gray vertices to finally reach a 2× 2 grid graph.

regularity. That is, we find that there is an explicit n–
vertex, k–regular graph G such that computing the out-
put probabilities of G in an arbitrary local basis is GapP-
hard, for every n/2< k ≤ n− 4.

Finally, we obtain bounds on entanglement width of
regular graphs in the easy regime using width measures
from graph theory [44, 45, 57–65], specifically tree
width, rank width, and clique width, which can be
related to the entanglement width.

Outlook.—We have completely resolved Aaronson’s
question for regular graph states, going significantly be-
yond initial results on the interplay between simulabil-
ity and entanglement in Refs. [16, 17, 25].

An immediate follow-up problem is to character-
ize the interplay between entanglement and simula-
tion complexity of more restricted, physical families of
graphs such as planar or bipartite graphs. Our gadgets
do not obviously generalize to more restricted cases.
Hence, we need new techniques to prove hardness.

Additionally, we can ask: can Aaronson’s question of
which systems are classically simulable be resolved gen-
erally, or even for slightly more general setups beyond
graph states? Beyond graph states, entanglement width
is not always related to classical simulation complexity:
it remains open if there is a universal single physical prop-
erty that fully determines simulation complexity.
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