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Quantum many-body scarred systems host nonthermal excited eigenstates immersed in a sea of thermal ones.
In cases where exact expressions for these special eigenstates are not known, it is computationally demanding to
distinguish them from their exponentially many thermal neighbors. We propose a matrix-product-state (MPS)
algorithm, dubbed DMRG-S, to extract such states at system sizes far beyond the scope of exact diagonalization.
Using this technique, we obtain scarred eigenstates in Rydberg-blockaded chains of up to 80 sites and perform
a finite-size scaling study to address the lingering question of the stability for the Néel state revivals in the
thermodynamic limit. Our method also provides a systematic way to obtain exact MPS representations for
scarred eigenstates near the target energy without a priori knowledge. In particular, we find several new scarred
eigenstates with exact MPS representations in kinetically constrained spin and clock models. The combination
of numerical and analytical investigations in our work provides a new methodology for future studies of quantum
many-body scars.

Quantum many-body scars (QMBS) appear in many-body
systems with weak ergodicity breaking [1–4]. These anoma-
lous scarred eigenstates violate the eigenstate thermalization
hypothesis [5–9], yet only comprise a vanishing fraction of the
Hilbert space, as opposed to the strong ergodicity breaking
in integrable [10] or many-body localized systems [11, 12].
Typical many-body scarred eigenstates possess sub-volume-
law entanglement entropy, and are immersed in a sea of ther-
mal eigenstates [see Fig. 1(a)]. Many models exist in which a
set of scarred eigenstates can be calculated analytically [13–
25], but there are other examples in which their appearance re-
mains mysterious. For instance, experiments in Rydberg-atom
quantum simulators realizing the “PXP model” [1, 26] found
evidence of QMBS in the dynamics of an initial Néel state,
which exhibited coherent revivals for unexpectedly long time
owing to its high overlap with a tower of scarred eigenstates.
Motivated by these experiments, a flurry of theoretical and ex-
perimental works have emerged to explain the rich properties
of these special eigenstates [16, 27–38] and find other models
hosting many-body scars [30, 39–48].

In such cases without exact analytical expressions for the
scarred eigenstates, their existence can be confirmed by full
diagonalization of the Hamiltonian followed by a calculation
of some diagnostics, e.g. the entanglement entropy, across
the whole spectrum. The exponential computational cost of
exact diagonalization (ED) poses a substantial challenge to
faithfully addressing the fate of QMBS in the thermodynamic
limit. Examples of questions that are difficult to address us-
ing ED include the ultimate fate of periodic revivals for the
Néel state in the PXP model [1, 16] and the robustness of
scarred eigenstates under various perturbations [49–52]. Mat-
ters can be further complicated by the fact that highly excited
eigenstates of many-body Hamiltonians can have exponen-
tially large degeneracy in the presence of certain symmetries
[44, 45, 53–55]. This renders the task of finding scars using
ED methods extremely difficult in general.

-10 -5 0 5 10
0
1
2
3
4(a)

(b)

FIG. 1. Schematic illustration of the DMRG-S algorithm for extract-
ing quantum many-body scars with matrix product states. (a) Den-
sity plot showing the bipartite entanglement entropy S versus en-
ergy eigenvalue E for the PXP model. DMRG-S effectively serves
as a magnifier to discover low-entanglement scar states within a
target energy window. (b) Schematic of the variational procedure
for obtaining the updated matrix product state |ψt〉 (blue circles)
from |ψt−1〉 (green circles) by locally solving the linear equation
A[i,i+1]

t,eff ψ
[i,i+1]
t = ψ̃

[i,i+1]
t−1 , whereAt = (H− ξt)2 (yellow blocks).

Scarred eigenstates in one dimension often have entangle-
ment entropy scaling at most logarithmically with the system
size [15, 18, 20, 28, 56], suggesting that they could be de-
scribed using matrix product state (MPS) representations at
system sizes inaccessible to ED [57, 58]. In this paper, we
propose an MPS-based algorithm to extract quantum many-
body scarred eigenstates with high accuracy (see Fig. 1 for a
pictorial illustration). To demonstrate its power, we compute
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the tower of scarred eigenstates for system sizes up to L = 80
in the PXP model [27, 28] and a deformation thereof [16, 29].
With a detailed finite-size scaling study, we find that the co-
herent revivals of the Néel state vanish in the thermodynamic
limit in the PXP model, whereas they remain stable in the de-
formed PXP model.

Moreover, previous analytical studies have shown that
highly excited scarred eigenstates in several models possess
exact MPS representations [15, 17, 20, 54, 59], while the con-
structions of these scars are model-specific and lack general-
izability. In contrast, our method provides a systematic way to
find exact MPS representations for QMBS in generic Hamil-
tonians, without a priori knowledge. We use our algorithm to
discover several new zero-energy scarred eigenstates with ex-
act MPS representations in the kinetically constrained clock
[39] and higher-spin PXP models [30]. We also find a poste-
riori analytical derivations for these scars that apply to a wide
variety of kinetically constrained models.

DMRG-S Algorithm.– Our algorithm is inspired by the den-
sity matrix renormalization group (DMRG) method [60, 61],
which has been widely used to obtain modestly entangled
ground states of low-dimensional Hamiltonians. In the past
few years, DMRG methods relying on the MPS formalism
have been generalized to obtain highly excited eigenstates
of many-body localized systems [62–66]. In this work, we
modify and improve the shift-invert technique [65–67] to be
amenable for calculating scarred eigenstates. Below, we dub
the algorithm DMRG-S, where “S” stands for “scars”.

The algorithm is based on the intuition that repeatedly ap-
plying the inverse operator (H − ξ)−2 (more robust and effi-
cient in convergence compared to (H−ξ)−1 [68]) to an initial
state |ψ0〉 eventually yields an eigenstate of H with energy ξ,
provided |ψ0〉 has overlap with this eigenstate. In practice, we
define |ψ0〉 to be an MPS and consider the sequence of states
|ψt〉 = N−1A−1t |ψt−1〉, where At = (H − ξt)2 and N is a
normalization factor (We describe an update procedure for ξt
below). The state |ψt〉 is taken to be an MPS with bond dimen-
sion χ ≤ χmax. Restricting χmax to relatively small values
effectively serves as a filter for states with low entanglement
entropy. In the iteration step t, we circumvent the difficulty
of calculating the inverse operator A−1t by variationally op-
timizing |ψt〉 such that 〈ψt|At|ψt〉 = N−1 〈ψt|ψt−1〉. This
approach has the advantage thatAt can be expressed as a ma-
trix product operator. The optimization can be implemented
by locally solving the linear equation

A[i,i+1]
t,eff ψ

[i,i+1]
t = ψ̃

[i,i+1]
t−1 , (1)

where A[i,i+1]
t,eff is the local “effective Hamiltonian” for At,

ψ
[i,i+1]
t is the local tensor of |ψt〉 to be updated, and ψ̃[i,i+1]

t−1
is the environment tensor of the overlap 〈ψt|ψt−1〉 [see
Fig. 1(b)]. The optimized ψ

[i,i+1]
t is substituted back into

|ψt〉, which is then brought to the canonical form via singu-
lar value decomposition. We perform the local optimization
on each pair of sites [i, i + 1] sweeping back and forth, sim-
ilar to the two-site DMRG sweep procedure [60, 61]. Dur-

ing the iterations, we monitor the energy variance σ2
H =

〈H2〉 − 〈H〉2 of |ψt〉, which vanishes if and only if |ψt〉 is
an eigenstate. Initially we set ξ0 within the target energy win-
dow [E −∆E,E + ∆E], which may not contain the energy
of the initial state |ψ0〉. After a few iterations, if σ2

H reaches
a relatively small value (less than 10−3), we then begin to up-
date ξt = 〈ψt|H|ψt〉 during each iteration. The update of the
energy shift ξt is crucial for the convergence if we do not a
priori know the precise locations of scars in the energy spec-
trum [68]. These two stages correspond to the slow and fast
decay regions shown in Fig. 3(b). Eventually we expect |ψt〉
to converge, i.e. limt→∞ |〈ψt−1|ψt〉|2 = 1, and approach to
an eigenstate with energy close to the target one.

Tower of scars in PXP models.– The PXP Hamiltonian is
the effective Hamiltonian for a chain of spins satisfying the
Rydberg blockade constraint, which forbids configurations
containing |↑〉i |↑〉i+1 due to strong nearest-neighbor interac-
tions [1, 69, 70]. It is given by HPXP =

∑
i PiXi+1Pi+2,

where Pi = (1 − Zi)/2 projects onto |↓〉i and Xi, Zi are
Pauli matrices on site i. HPXP is nonintegrable accord-
ing to studies of its level statistics, and yet hosts a tower of
scars supporting the periodic revival dynamics of the Néel
state |Z2〉 = |↑↓↑ · · · ↓〉 [27, 28]. Numerical simulations
of these dynamics observe that the revivals have a decay-
ing envelope, begging the question of whether they persist at
late time in the thermodynamic limit. Ref. [16] found that
adding a term δH2 = −h2

∑
i Pi−1XiPi+i(Zi−2 + Zi+2)

with h2 = 1/2 − 1/
√

5 ≈ 0.053 makes the periodic revivals
nearly perfect due to the emergence of an approximate su(2)
algebra. Here, we benchmark the DMRG-S algorithm by
computing the tower of scarred eigenstates in the PXP model
and its deformation by δH2.

We initialize the algorithm in the state |ψ0〉 = |Z2〉, which
has predominant overlap with the L+ 1-dimensional tower of
scarred eigenstates {|Ψn〉}Ln=0 within corresponding energy
windows. During the iterations, we set χmax = 1200 to reach
the desired accuracy due to the logarithmic scaling of subsys-
tem entanglement entropy [27, 28] and the periodic boundary
conditions. As shown in Fig. 2, DMRG-S successfully ex-
tracts the tower of scars in the PXP model up to L = 80. The
average energy variance σ2

H is less than 10−6 [68]. To ver-
ify that these MPSs indeed capture the scar tower of the PXP
Hamiltonian, we calculate their overlap with |Z2〉 [Fig. 2(a)],
and their bipartite entanglement entropy [68] for different L.
Our results yield smooth curves as a function of energy and
agree with ED for small system sizes except for a few scars
that accidentally hybridize with thermal eigenstates [28, 34],
which are further addressed in [68, 71].

We now investigate the quench dynamics of |Z2〉 by
finite-size scaling beyond the scope of ED using DMRG-S
states up to L = 80. First, we compute the total overlap
between |Z2〉 and {|Ψn〉}Ln=0 [Fig. 2(b)], and find that∑L
n=0 |〈Z2|Ψn〉|2 decays exponentially with L for the PXP

model. In contrast, this quantity remains near unity for
the deformed PXP model. The dashed line in Fig. 2(b)
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FIG. 2. Numerical results for the tower of scars in the (deformed) PXP model. (a) Overlap between the Néel state |Z2〉 and each scarred
eigenstate of the PXP model for different L, all obtained by DMRG-S except points marked by crosses. (b) Finite-size scaling for the total
overlap between |Z2〉 and the L+1 scarred eigenstates of the (deformed) PXP model. The inset displays data on the linear scale. (c) Dynamics
of the staggered magnetization density ∆ within the scarred subspace constructed by DMRG-S (P =

∑L
n=0 |Ψn〉 〈Ψn|), for the PXP model.

(d) The same dynamics for the deformed PXP model. (e) Observable dynamics ∆(t) of |Z̃2〉 for the PXP model, which exhibits more stable
revivals than |Z2〉 (blue). ∆(t) dynamics of |Z̃2〉 computed by using the DMRG-S eigenenergies (red) and by exact Hamiltonian evolution
(cyan dashed) agree well with each other. (f) Energy spacings ∆En between adjacent scars as a function of the normalized eigenenergy
En/|Eg| for the PXP model. The inset shows that the ratio R increases exponentially with L.

(y = e−0.044L+0.739) is obtained from linear regression
with R2 ≈ 0.9996. To further probe the revivals, we
evaluate the dynamics of the staggered magnetization density
∆ = [

∑L
i=1(−1)i+1Zi]/L within the scarred subspace con-

structed by DMRG-S: ∆(t) = 〈Z2|PeiHt∆e−iHtP|Z2〉 ≈∑L
n,m=0 e

i(En−Em)t〈Z2|Ψn〉〈Ψn|∆|Ψm〉〈Ψm|Z2〉, where

P =
∑L
n=0 |Ψn〉 〈Ψn|, {En}Ln=0 and {|Ψn〉}Ln=0 are scarred

eigenenergies and eigenstates obtained via DMRG-S [72].
∆(t) characterizes the late-time non-thermal observable dy-
namics after the local relaxation time (the infinite-temperature
value of ∆ is zero). Fig. 2(c) and (d) display ∆(t) as a func-
tion of time for different L in the PXP and deformed PXP
models, respectively. We find that the oscillation amplitude
shrinks with increasing L for the PXP model but remains
unaltered for the deformed case, consistent with our results
for the total |Z2〉 overlap.

Furthermore, we evaluate the observable dynamics of the
deformed Z2 state |Z̃2〉 = P |Z2〉 /

√
〈Z2|P|Z2〉 constructed

by DMRG-S (which has logarithmic entanglement [68]) in
the PXP model. As shown in Fig. 2(e), oscillations of
∆(t) = 〈Z̃2|eiHt∆e−iHt|Z̃2〉 become more stable as sys-
tem size increases, suggesting the robustness of the peri-
odic revivals for |Z̃2〉 in the thermodynamic limit. To il-
lustrate this phenomenon, we calculate the energy spac-

ings ∆En between adjacent scars as a function of En/|Eg|
[Fig. 2(f)], where Eg is the ground state energy and n =
0, 1, · · · , L/2 label the scars from the spectrum boundary to
center. Notably, we find that ∆En approaches an L- and n-
independent constant near the center of spectrum (E = 0).
Furthermore, inspired by Fig. 2(a), we compute the ratio
R =

∑
n∈C |〈Z2|Ψn〉|2/

∑
n∈B |〈Z2|Ψn〉|2, where the ver-

tical dashed line En/|Eg| = −0.5 in Fig. 2(f) separates |Ψn〉
belonging to the spectrum center (C) or boundary (B). As
shown in the inset of Fig. 2(f), R increases exponentially with
the system size. Combining these two observations, we de-
duce that the equidistant scars near the center of spectrum
dominate the revival dynamics of |Z̃2〉 as L increases, result-
ing in the more stable oscillations observed in Fig. 2(e).

To sum up, for the PXP model the coherent revivals of the
Néel state vanish in the thermodynamic limit due to its ex-
ponentially small overlap with the scarred subspace, whereas
the revivals remain stable in the deformed case. Neverthe-
less, our results demonstrate that one can stabilize the revivals
in the original PXP model by initializing in a modestly en-
tangled state like |Z̃2〉. The DMRG-S algorithm provides a
convenient method to construct such states [68].

Exact MPS representations for QMBS.– Apart from the
ability to extract QMBS at system sizes beyond the scope of
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FIG. 3. (a) Fidelity f = |〈ψt|Ψexact〉| between the optimized MPSs
and exact scars from the spin-1/2 PXP model [17] and the deformed
one-dimensional cluster model [19] as a function of iteration number.
The inset shows the infidelity 1 − f . (b) Energy variance σ2

H of the
optimized MPSs for the Z3 clock and spin-1 and 2 PXP models as a
function of iteration number.

ED, our algorithm also opens up a promising avenue to natu-
rally obtain the exact MPS representations for certain QMBS.
Several exact scars have been discovered in previous analyti-
cal studies, such as the E = ±

√
2 scars |Γ12〉 , |Γ21〉 and the

E = 0 scars |Γ11〉 , |Γ22〉 in the spin-1/2 PXP model [17],
and the E = 0 scar in the deformed one-dimensional cluster
model [19]. We first benchmark our algorithm by recovering
the above known examples. We run the DMRG-S algorithm
for about 200 random initial states and select the converged
MPS with smallest variance σ2

H . During the optimization we
fix χmax = 10. As shown in Fig. 3(a), even though the fidelity
f = |〈ψt|Ψexact〉| is initially exceedingly small (∼ 10−6),
DMRG-S can extract these exact scarred eigenstates to high
precision within 100 iterations. We stress that our algorithm
is not hindered by the exponentially large degeneracy in the
E = 0 eigensubspace [53–55] and does not utilize any a pri-
ori knowledge. Thus it can be applied to generic many-body
Hamiltonians in any target energy window.

Indeed, in the kinetically constrained clock model [39]
and higher-spin PXP models [30], we discover several E =
0 scarred eigenstates with exact MPS representations that
have not been reported in previous literature. As shown
in Fig. 3(b), the energy variance of the optimized MPSs
in the corresponding models converges to very small val-
ues (∼ 10−10) within 200 iterations. We further apply the
singular value decomposition to compress their bond dimen-
sions, typically to χ = 2 for the open boundary cases, then
continue the optimization until convergence again. Careful
analysis of the bulk tensors on each site yields the expres-
sions reported below. We write the MPS representations as
|Ψ〉 =

∑
σ Tr

(
A

[σ1]
1 A

[σ2]
2 · · ·A[σL]

L

)
|σ1σ2 · · ·σL〉 for peri-

odic boundary conditions, where σ = σ1σ2 · · ·σL denotes
the physical index of each site. We define the following 2× 2
matrices:

B =

(
1 0
0 0

)
, D =

(
1 1
−1 −1

)
. (2)

These matrices are related to those found in the numerical cal-

culations by appropriate MPS gauge transformations [57, 58].
For the kinetically constrained ZN clock model [39]

Hclock =
∑
i Pi−1CiPi+1, the local Hilbert space is

spanned by N states {|0〉 , |1〉 , · · · , |N − 1〉}. Here, Pi =
|0〉i 〈0|i forbids creating excitations (i.e., basis states be-
sides |0〉) on neighboring sites, and Ui = exp(−iCi) =∑N−1
n=0 |n+ 1〉i 〈n|i cyclically permutes basis states on site

i (we define |N〉 ≡ |0〉). A translationally invariant highly
excited eigenstate |Ψ〉c with E = 0 can be constructed us-
ing A[0] = B, A[1],[2],··· ,[N−1] = D. In [68] we show
that Pi−1CiPi+1 |Ψ〉c = 0, ∀ i. We further observe that
this MPS is nothing but the equal-weight superposition of all
computational basis states allowed by the constraints |Ψ〉c =∑

allowed σ |σ1σ2 · · ·σL〉.
The spin-s PXP models [30] are defined by HPXP =∑
i Pi−1S

x
i Pi+1, where the local Hilbert space is spanned

by 2s + 1 states {|−s〉 , |−s+ 1〉 , · · · , |s− 1〉 , |s〉}. Pi =
|−s〉i 〈−s|i, and Sxi is the spin-s generator of rotations around
the x-axis. When s is an integer, a translationally invariant
scarred eigenstate |Ψ〉s with E = 0 can be expressed as

A[−s] = B, A[−s+2k−1] = 0, A[−s+2k] = akD, (3)

where k = 1, 2, 3, · · · , s, and ak = 〈mz = −s + 2k|mx =
0〉/〈mz = −s|mx = 0〉 [73]. Similarly, Pi−1Sxi Pi+1 |Ψ〉s =
0, ∀ i [68]. |Ψ〉s also takes a simple form in the computational
basis,

|Ψ〉s =
∑

allowed σ

[
s∏

k=1

(ak)# of−s+2k in σ

]
|σ1σ2 · · ·σL〉 , (4)

where the allowed computational basis states contain only lo-
cal states {|−s+ 2k〉}sk=0 and the additional prefactors count
the number of |−s+ 2k〉 states appearing in |σ1σ2 · · ·σL〉.

The above exact scars can be analytically derived as
follows. Consider Hamiltonians of the form H =∑
i Pi−1hiPi+1, where the local Hilbert space is spanned by

the bases {|0〉 , |1〉 , · · · , |d− 1〉} and Pi = |0〉i 〈0|i. We de-
fine the projector onto the global constrained Hilbert space as
P =

∏
i(I − P̃iP̃i+1), where P̃i = I − Pi. If the single-site

operator hi has a zero mode |φi〉 (e.g.
∑N−1
n=0 |n〉i for the clock

model, and |mx = 0〉i for the PXP models of integer spins),
the product state |Φ〉 =

∏
i |φi〉 is a zero-energy eigenstate

of H . While this state does not satisfy the global constraint
defined by P , the projected state P |Φ〉 does, and in fact re-
mains a zero-energy eigenstate since [P,H] = 0. Since P can
be expressed as a matrix product operator with bond dimen-
sion χ = 2, the zero-energy scarred eigenstate P |Φ〉 becomes
an MPS with bond dimension χ = 2. Explicit calculations
[68] yield the 2 × 2 matrices in Eq. (2) and the coefficients
in Eq. (3). We stress that this construction is different from
the embedding construction of Ref. [13], where the embedded
scarred eigenstates are annihilated by certain local projectors
Pi rather than the local operators hi.

Conclusion.– In summary, we have introduced the DMRG-
S algorithm to accurately extract quantum many-body scarred
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eigenstates. This method can access system sizes far beyond
the scope of ED and assist analytical studies in discovering
exact MPS representations of new scars for generic Hamil-
tonians. It also sheds light on other open questions about
QMBS, such as their robustness under various types of per-
turbations [49–52]. The analytical construction of exact scars
inspired by our numerical results provides a different mech-
anism for scar states in models with local kinetic constraints.
The synergy between numerical calculations and analytical in-
vestigations in our work establishes a promising framework
for future studies on quantum many-body scars.

The DMRG-S algorithm is implemented based on the ITen-
sor library [74] in Julia programming language. The source
code for the numerical calculations is accessible online [75].
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mailto:iadecola@iastate.edu
mailto:slxu@tamu.edu
mailto:dldeng@tsinghua.edu.cn
https://www.nature.com/articles/nature24622
https://www.nature.com/articles/s41567-021-01230-2
https://www.nature.com/articles/s41567-021-01230-2
https://iopscience.iop.org/article/10.1088/1361-6633/ac73a0
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031620-101617
https://link.aps.org/doi/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://iopscience.iop.org/article/10.1088/1361-6633/aac9f1
https://iopscience.iop.org/article/10.1088/1361-6633/aac9f1
http://www.nature.com/nature/journal/v452/n7189/abs/nature06838.html
http://www.nature.com/nature/journal/v452/n7189/abs/nature06838.html
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://link.aps.org/doi/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.122.220603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.173401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.173401
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevLett.123.147201
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.033144
https://doi.org/10.1103/PhysRevB.101.174308
https://doi.org/10.1103/PhysRevB.102.085140
https://doi.org/10.1103/PhysRevB.101.241111
https://doi.org/10.1103/PhysRevB.101.241111
https://doi.org/10.1103/PhysRevB.105.L060301
https://link.aps.org/doi/10.1103/PhysRevB.103.L220304
https://link.aps.org/doi/10.1103/PhysRevB.103.L220304
https://link.aps.org/doi/10.1103/PhysRevB.105.035146
https://link.aps.org/doi/10.1103/PhysRevB.105.035146
https://www.science.org/doi/10.1126/science.abg2530
https://www.nature.com/articles/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevLett.122.040603


6

M. Serbyn, “Slow quantum thermalization and many-body re-
vivals from mixed phase space,” Phys. Rev. X 10, 011055
(2020).

[32] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi,
and M. Dalmonte, “Lattice gauge theories and string dynamics
in rydberg atom quantum simulators,” Phys. Rev. X 10, 021041
(2020).

[33] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V. Pepe,
and E. Ercolessi, “Real time dynamics and confinement in the
Zn schwinger-weyl lattice model for 1+ 1 qed,” Quantum 4,
281 (2020).

[34] T. Iadecola, M. Schecter, and S. Xu, “Quantum many-body
scars from magnon condensation,” Phys. Rev. B 100, 184312
(2019).

[35] C. J. Turner, J.-Y. Desaules, K. Bull, and Z. Papić, “Corre-
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