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When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba Effect
(ME). This counterintuitive phenomenon was observed in several systems including water, magnetic
alloys and polymers. In most experiments the system is coupled to the bath through its boundaries,
but all theories so far assumed bulk coupling. Here we build a general framework to characterize
anomalous relaxations through boundary coupling, and present two emblematic setups: a diffusing
particle and an Ising antiferromagnet. In the latter, we show that the ME can survive even arbitrarily
weak couplings.

When coupled to a thermal bath, most systems relax
towards equilibrium. While the equilibrium distribution
is only a function of the system’s Hamiltonian and tem-
perature, the precise details of the relaxation are deter-
mined by many factors, including the intrinsic properties
of the specific system, its initial condition, the bath’s
properties and the exact nature of the coupling between
the system and the bath.

In the weak coupling limit, when the rate of heat ex-
change with the thermal environment is much slower than
the energy relaxation within the system, it is generally
expected that a macroscopic system initiated at equi-
librium with temperature T0 relaxes quasi-statically to-
wards the bath temperature Tb, such that the system is
in equilibrium for some temperature throughout the re-
laxation. This is a consequence of the self-thermalization
generated by the energy diffusion within the system be-
ing much faster than the rate of heat exchange with the
thermal bath. In strong couplings, however, the self-
thermalization process that equilibrates the system is not
fast enough, and the energy exchange with the environ-
ment drives the system into a relaxation trajectory that
can reach far from any equilibrium distributions. Such
far from equilibrium relaxation trajectories can be coun-
terintuitive, and show interesting phenomena unexpected
near equilibrium [1–5]. An important example is the
Mpemba Effect (ME) [6, 7], where a hot system cools
faster than an initially cold one when quenching both to
an even colder bath. The ME was observed experimen-
tally in a variety of setups, including water [8], magnetic
alloys [9], polymers [10], clathrate hydrates [11] and very
recently in small size systems like colloids diffusing in a
potential [12–14]. It was also observed in a variety of nu-
merical and theoretical models for water molecules [15–
20], driven granular gases [21–26], inertial suspensions
[27–29], gas of visco-elastic particles [30], diffusing in a
potential [2, 31–34] and classical as well as quantum spin
models [35–42].

The theoretical models proposed so far to explain
anomalous relaxation phenomena as the ME used the
simplifying assumption that all the relevant degrees of
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freedom (e.g. all spins or molecules) are directly coupled
to the thermal bath. However, in all relevant experi-
ments so far, only a small set out of the relevant degrees
of freedom are coupled to the bath. For example, in wa-
ter, clathrate hydrates and polymers, internal collisions
between the molecules conserve energy, and the system
exchanges heat with the bath only through boundary col-
lisions [43, 44]. Even in the case of colloidal systems
[12, 13], the colloid interacts with the liquid around them,
but the liquid exchanges heat with the bath only through
its boundaries.

In this letter, we construct a general theoretical frame-
work for boundary coupling with the bath, and use it to
demonstrate the existence of the ME even in such sys-
tems. We consider two types of systems: (i) systems
where the relevant degrees of freedom (DoF) interact
with a “local bath” composed of other degrees of free-
dom. In this case, the local temperature profile changes
with a characteristic timescale, defining an interplay with
the dynamics of the relevant DoF which will determine
the possibility of observing ME and other anomalous re-
laxation phenomena. (ii) In systems where the same DoF
play both the role of the relaxation and serves as a lo-
cal bath, the situation is quite different: in these cases
the ME is possible even in the arbitrarily weak coupling
limit.
Diffusing particle. – A prominent example for the first
kind of systems is a Brownian particle diffusing in a con-
fining potential. When the system is quenched to some
temperature, the fluid in which the particle is diffusing
doesn’t change its local temperature instantaneously and
uniformly. Rather, its boundaries are coupled to a ther-
mal bath, and the temperature profile changes according
to some internal dynamics. If this dynamics is much
faster than the particle diffusion, the liquid reaches its
uniform temperature before the distribution of the rele-
vant DoF (i.e. the position) changes in any way. This
case coincides with the common assumption of instanta-
neous uniform quench in the temperature. In the oppo-
site limit, the equilibration temperature profile is much
slower than the diffusion, and the position of the parti-
cle follows the steady-state distribution associated with
the instantaneous temperature profile. Anomalous relax-
ations can therefore exist only in the local bath temper-
ature profile, which is assumed not to be the case. This
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FIG. 1. (a) Double-well potential U(x) similar to that used
in colloidal experimental setups (see Refs. [12, 13]). (b) Ex-
amples of Boltzmann distributions at cold and hot bath tem-
peratures for which the direct (cooling) and inverse (heating)
ME exist. (c) Mpemba phase diagram as a function of the
bath temperature Tb and thermal diffusivity κ.

implies that a certain “critical coupling”, determining
the possibility of observing anomalous relaxation phe-
nomena, exists.

To demonstrate this case, we use the Brownian par-
ticle in a potential used to demonstrate experimentally
the inverse [13] and strong [12] Mpemba effects (see
Fig. 1a). However, instead of using a uniform instan-
taneous quench of the temperature at all position as in
[12, 13], here the system is coupled to the thermal bath
only from its boundaries (Fig. 1a). We assume that
the water’s temperature profile follows the heat equation
∂tT (x, t) = κ∂2xT (x, t) with initial condition given by the
spatially uniform initial temperature T (x, t = 0) = T0
and thermal diffusivity κ. The probability density p(x, t)
of finding the particle in position x at some time t evolves
according to the Fokker-Plank equation [45]:

∂tp(x, t) = −µ∂x
((
∂xU(x)

)
p(x, t)

)
+ µ∂2x

(
T (x, t)p(x, t)

)
≡ L(t)p(x, t) (1)

where U(x) is the potential and µ is the mobility of the
Brownian particle. The Fokker-Plank operator is time
dependent, but in the long time limit T (x) → Tb, im-
plying L(t) → LTb which ensures convergence to the
Boltzmann equilibrium πTb(x) ∝ e−U(x)/Tb (we set kb =
1). The eigenfunctions of LTb , solving LTbvi(x, Tb) =
λivi(x, Tb) with 0 = λ1 > λ2 ≥ λ3 ≥ . . . , form a com-
plete basis, therefore:

p(x, t) = πTb(x) +
∑
i>1

ai(T0, Tb, t)e
λi(Tb)tvi(x, Tb) (2)

where ai(t) is a coefficient retaining information on the
initial conditions of the system, as well as the tempera-
ture profile.

In the limit of an instantaneous quench, ai are time
independent, and a2 encodes the existence of the ME,
as was used in [12, 13]: a nonmonotonic dependence in
T0 implies the existence of a relaxation shortcut when
quenching the system to Tb, which can be exponentially
faster if a2 = 0 for some initial condition (a strong ME).

T0 → Tb

H

thermal
bath Tb

isolated
system

FIG. 2. (a) An antiferromagnet Ising chain, with a single spin
coupled to the thermal bath. Transitions are allowed only if
energy is conserved, except for flipping the spin coupled to the
bath. (b) Minimal coupling strength C (colorbar) for which
there exists some type of a ME at the corresponding bath
temperature Tb (x axis) and H (y axis). In the white areas
there is no ME at any coupling strength. Inset: the ME exists
if a2(T0, Tb) is nonmonotonic in T0.

However, when the timescale of the quench is compara-
ble to that of the diffusing particle, one cannot rely on
the same analysis as in [12, 13], as a2 has a nonexpo-
nential time dependence due to the time-dependent tem-
perature profile. In the last stages of the relaxation, one
can nevertheless approximate the difference from equilib-
rium ∆p(x, t) = p(x, t)−πTb(x) ' a(t)v2(x) for some a(t)
decaying exponentially fast. Identifying a sign change in
a(t) is therefore enough to ensure the existence of a strong
ME. Formally, this can be done through the Mpemba
parity index [40]

I±(t, Tb) = sgn

∫
dx ∆p±(x, t)∆p±δT (x, t) (3)

where the differences ∆p± refer to quenches to Tb starting
from initial temperatures T0 = {+∞, 0}, while ∆p±δT to
quenches starting from T0 = Tb ± δT , for some δT > 0.
A negative sign of I+ (I−) in the long time limit implies
that for some T > Tb (T < Tb) the coefficient a2 ≡ 0,
ensuring the existence of a strong direct (inverse) ME.
For the given potential U(x) (Fig. 1a), and for each set
of Tb and κ, it is possible to evaluate numerically I± as
demonstrated in Fig. 1c. As expected, for a given value
of Tb, there exists a critical value of κ below which the
ME cannot be observed.
Boundary DoF coupling. – Let us next discuss a different
type of systems, in which all the DoF are modeled, but
only the boundary DoF can exchange heat with the envi-
ronment. For simplicity, we use a discrete state systems
with probability distribution ~p(t) where the component
pi(t) is the probability to be in a microstate i at a given
time t. ~p(t) evolves in time according to a Markovian
master equation

∂t~p(t) = W(Tb)~p(t), (4)

where the rate matrix W generalizes the Fokker-Plank
operator L and encodes the specific model. The off-
diagonal terms Wij are the transition rates from state
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j to state i, while the diagonal term Wii = −
∑
j 6=iWji

represents the escape rate from the state i. We assume
that detailed balance and ergodicity hold, so that regard-
less of the initial condition the system relaxes towards the
Boltzmann distribution πi(Tb) ∝ e−Ei/Tb where Ei is the
energy of the microstate i. In this case, the relaxation
process from equilibrium with an initial temperature T0
is a discrete analogue of Eq. 2, allowing us to straight-
forwardly characterize the ME through the coefficient a2
[1]. For simplicity, in what follows, we do not distinguish
between different types of the ME.

To model the common scenario where heat can be
transferred only through DoF sitting on the boundaries,
we first distinguish between “boundary transitions” of
boundary DoF that can exchange heat with the bath, and
“bulk transitions” in which no energy is exchanged with
the bath and they can only happen between same-energy
states. Bulk transitions serve as a self-thermalization
(ST) mechanism, whereas the boundary transitions gen-
erate bath coupling (BC) and enable transitions between
different energy shells. This structure can be modeled by

W(ΓST ,ΓBC) = ΓSTWST + ΓBCWBC . (5)

Here WST and WBC are normalized rate matrices cor-
responding to the self thermalization and boundary cou-
pling transitions respectively, and Γ{ST,BC} are coupling
constants modulating the rates amplitude. Their ra-
tio, C = ΓBC/ΓST , dictates the coupling strength [46]:
in the limit C � 1 boundary flips occur rarely com-
pared to thermalization flips, hence the system thermal-
izes quickly after each heat exchange with the bath. In
the C � 1 limit, the boundaries exchange heat much
faster than the thermalization and the diffusion of energy
within the system sets the timescale for the relaxation.
We refer to the former limit as weak coupling and to the
latter as strong coupling. By construction, WBC is gen-
erally sparse and WST contains only transitions between
same-energy states, implying a degeneracy of its zeroth
eigenvalue equivalent to the number of energy shells.

In the weak coupling limit, a naive perturbation
scheme with C � 1 would not prove useful: for C = 0 the
matrix W is reducible and its zero eigenvalue is highly
degenerate, so one cannot apply the standard analysis.
Instead, it is constructive in this case to aggregate all
the microstates that share the same energy into a sin-
gle macrostate and construct the effective dynamics by
summing all the microscopic transitions between them
[47, 48]. The dynamics is then dictated only by the
boundary flips, and the diffusion within each energy shell
is assumed to happen instantaneously. Similarly, in the
strong coupling limit, micro-states can be aggregated into
macrostates by combining all the microstates connected
by boundary flips. Mathematically, the two aggregation
procedures can be done by arranging the states such that
WBC or WST is block diagonal where each block corre-
sponds to transitions within a macrostate, and coarsening
over these blocks.
Ising antiferromagnet. – Let us demonstrate the above

construction with a specific example of N Ising spins on a
ring, with nearest neighbour antiferromagnet interactions
(Fig. 2a). Each spin {σs}s=1...N can either be in a +1 or
−1 state, giving a total of M = 2N different microstates,
identified by ~σ = (σ1, ..., σN ). The Hamiltonian of the
system is

H(~σ) = −J
∑
s

σsσs+1 −H
N∑
s=1

σs, (6)

where J < 0 is the coupling constant, H is an external
magnetic field and σN+1 ≡ σ1. For simplicity, we set
J = −1.

As a boundary, we choose a specific spin (say σ1) to
be coupled to the bath. This implies that a general mi-
crostate ~σ is connected through thermal flips only with a
single state ~σ′ in which the first spin is flipped, σ1 → −σ1,
while the remaining spins are unaltered. The transition
between two general microstates ~σ{i,j} is therefore

WBC
ij =

δσi1,−σ
j
1

∏
s>1 δσis,σ

j
s

1 + e(H(~σi)−H(~σj))/Tb
(7)

where δij is the Kronecker delta, σis is the s spin in the
microstate ~σi and we used standard Glauber dynamics
as the transition weight [49, 50], ensuring equilibration
to a Boltzmann distribution.

To model bulk transitions we use rates that decay ex-
ponentially as 2−dij , where dij =

∑
s δσis,−σ

j
s

is the Ham-

ming distance [51] that counts the number of spins that
has to be flipped between the two configurations. Al-
ternative metrics that keep into account space locality
(e.g. the generalized Hamming distance [52]) could be
implemented. While for weak couplings the specific de-
tails of dij become irrelevant, for strong couplings locality
constraints limit the connectivity within an energy shell,
effectively enhancing the out-of-equilibrium character of
the relaxation process (see SM [53]). We therefore for-
malize bulk transitions between two states i 6= j as

WST
ij = δH(~σi),H(~σj)2

−dij . (8)

The full transition matrix for the model is built as a linear
combination of the two rate matrices as in Eq. 5.

Let us consider the persistence of the ME in this setup.
In Fig. 2b we plot for each T and H the minimal cou-
pling constant C for which some type of a ME exists in
the system, for N = 10. The strength of the coupling
affects only quantitatively the regions where the ME can
be observed (the larger C, the larger the area). In par-
ticular, for any |H| ≤ 2 the effect exists for any T > T ∗b ,
highlighted in Fig. 2b with a red arrow.

In the weak coupling case (C � 1), the coarse-grained
rate matrix is given by

Wweak
ij =

Gij
Ωj

1

1 + e(Ei−Ej)/Tb
(9)

where the indices i, j now refer to the energies Ei and Ej ,
the (symmetric) matrix Gij counts the number of transi-
tions connecting microstates in the two energy shells, and
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FIG. 3. (a) Comparison of the ME for different coupling
strengths (N = 10). The strong coupling limit (C � 1)
includes all colored areas, while the intermediate coupling
(C = 1) is limited to the green and blue ones. Surprisingly,
the effect survives the arbitrarily weak coupling limit (C � 1,
blue area). (b) Distance between the second and third eigen-
values δλ23 as a function of Tb for H = 0. A crossing of the
eigenvalues clearly marks the beginning of the Mpemba region
at T ∗b for the weakly coupled model. (c,d) Phase diagram in
the weak coupling limit for N = 50. (e) Collapse of δλ23 for
different sizes show a dependence on the rescaled tempera-
ture ∝ |t|1. In the inset, the distance from the asymptotic
T ∗b ∼ 2.91 scales superlinearly.

Ωi is the number of microstates with energy Ei. This
coarsening considerably reduces the size of the matrix,
allowing to numerically analyze longer chains assessing
the stability of the phase diagram in the thermodynamic
limit. The total number of energy shells in this case
grows only quadratically as 2 + (N/2)2, as opposed to
the exponential growth of the number of microstates. As
an example, at N = 50 (Fig. 3c,d) there are ∼ 1015 mi-
crostates, but only 627 macrostates in the coarse-grained
representation. A specific example exhibiting a strong
ME in this setup is presented in the SM [53].

Extremely strong couplings (C � 1) can be similarly
analyzed. In our model only a single spin is coupled
to the bath, therefore the clustering of a N spins chain
model results in an effective N−1 long chain with an ad-
ditional “superposed” spin oscillating infinitely fast be-
tween the two ±1 states. Indicating with i one of the pos-
sible 2N−1 configurations of the bulk chain, we set H±1i
to be the Hamiltonians of each of the two possible states
in the i-th cluster. The two states composing a clus-
ter are not equivalent as in the weak coupling case. To
correctly define the transition rates in the coarse-grained
model we therefore need to introduce a Glauber weight:

wσj = e−H
σ
j /Tb/(e−H

−1
j /Tb + e−H

+1
j /Tb) with σ = ±1 de-

pending on the microstate from which the original tran-
sition occurred. This provides us with:

Wstrong
ij =

∑
σ,σ′

wσj δHσj ,Hσ
′
i

2−(dij+δσ,−σ′ ) (10)

where the Kroneker delta corrects the Hamming distance

for the coupled spin. The area in which an effect can be
observed is wider (Fig. 3a): a stronger coupling should
indeed ease the undertake of anomalous relaxation paths.

In Fig. 3(a) we plot the regions in which some ME
can be observed in the limiting coupling setups discussed
above, and compare them with the intermediate C = 1
case. Surprisingly, the ME can be observed even for
C � 1, demonstrating that the effect survives the limit
of arbitrarily weak coupling. This counterintuitive result
is related to the discrete nature of the DoF of the system
[54]. Indeed, Glauber dynamics (Eq. 7) allows transi-
tions only among configurations that differ by a single
spin flip. This implies that energy shells with a micro-
scopic energy difference (namely ∆E ∼ 1 even though
E ∼ N) might still be very far in terms of transitions.
As a result, the self thermalization process has the same
characteristic timescale as that of the boundary transi-
tions. Therefore for arbitrarily weak couplings, even in
the thermodynamic limit the system is forced to explore
out-of-equilibrium configurations that allow the existence
of anomalous relaxation effects (i.e. the ME). The col-
loidal particle setup (Fig. 1) provides a counter-example
in which the continuous DoF break such mechanisms,
setting a minimal value of the coupling strength below
which no ME can be observed.

The boundary coupling setup we introduced offers a
straightforward implementation for multiple baths cou-
pling. If the baths are set at different temperatures, the
rate matrix no longer abides by detailed balance, driv-
ing the system towards a nonequilibrium steady-state
(NESS) that does not correspond to any Boltzmann dis-
tribution [48, 55, 56]. Non-dominant eigenvalues can be
complex-valued, determining the onset of oscillating re-
laxations [53] where an analogous ME analysis allows to
determine which initial equilibrium conditions relax the
fastest (or slowest) to the NESS.

Finally, our analysis highlights a strong connection be-
tween the ME and the phenomenon of eigenvalue crossing
of the transition matrix W with respect to the bath tem-
perature Tb [57], which was recently connected to a new
kind of dynamical phase transitions that further consol-
idates the parallel between singularities in the dynamics
and equilibrium phase transitions [58–60]. In weakly cou-
pled systems, an analysis of at δλ23 = (λ3 − λ2)/λ2 at
H = 0 shows how the bath temperature above which the
ME can be observed is determined by a crossing at a
certain “critical” temperature T ∗b . This corresponds to a
singularity in the eigenvector regulating the direction of
the slowest relaxation, determining the conditions that
allow the existence of the ME (Fig. 3b,d). Analyses at
different sizes show an excellent multi-scale collapse [61]
on the rescaled temperature t = (Tb − T ∗b )/T ∗b around
zero, with a dependence δλ23 ∝ |t|1 (Fig. 3e). The criti-
cal temperature at finite sizes approaches the asymptotic
value T ∗b ∼ 2.91 with a superlinear decay (inset), ensur-
ing that the analysis at N = 50 is consistent with the
thermodynamic limit. With respect to setups in higher
dimensions, a 2D squared lattice with a side of N spins
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has a surface to volume ratio 4N/N2 = 4/N , while for a
3D cubic lattice the ratio is 6N2/N3 = 6/N . Therefore,
the 1D case we addressed with a ratio 1/N represents
the most pronounced scenario. The ratio is of the same
order independently of the dimension (∼ N−1), suggest-
ing that the same phenomenology should be observed in
higher-dimensional setups.

Remarks. – We constructed a theoretical framework
to characterize the evolution of a system coupled to the
thermal bath only through its boundaries, presenting two
complementary emblematic models with continuous and
discrete DoF, respectively. While in the former a min-
imal intensity for the coupling is required, in the lat-
ter we proved how anomalous relaxation effects can sur-
vive arbitrary weak couplings. The proposed framework
is general and applicable to any memoryless system ex-
changing heath with the thermal bath through limited
DoF, including relaxations towards NESS [53]. Our re-
sults corroborate the validity of the ME as an nonequi-

librium phenomenon, proving it is not an artifact due to
full couplings. Far from equilibrium relaxations in the
weak coupling limit are yet another counterintuitive re-
sult related to the discreteness of the DoF [54].

ACKNOWLEDGMENTS

O. R. is the incumbent of the Shlomo and Michla
Tomarin career development chair, and is supported by
the Abramson Family Center for Young Scientists, the
Israel Science Foundation Grant No. 950/19 and by the
Minerva foundation. G. T. is supported by the Center
for Statistical Mechanics at the Weizmann Institute of
Science, the grant 662962 of the Simons foundation, the
grants HALT and Hydrotronics of the EU Horizon 2020
program and the NSF-BSF grant 2020765. We thank
David Mukamel and Attilio L. Stella for useful discus-
sions.

[1] Z. Lu and O. Raz, Nonequilibrium thermodynamics of
the Markovian Mpemba effect and its inverse, Proceed-
ings of the National Academy of Sciences of the United
States of America 10.1073/pnas.1701264114 (2017).

[2] A. Gal and O. Raz, Precooling Strategy Allows Ex-
ponentially Faster Heating, Physical Review Letters
10.1103/PhysRevLett.124.060602 (2020).

[3] A. Lapolla and A. c. v. Godec, Faster uphill relaxation
in thermodynamically equidistant temperature quenches,
Phys. Rev. Lett. 125, 110602 (2020).

[4] A. Militaru, A. Lasanta, M. Frimmer, L. L. Bonilla,
L. Novotny, and R. A. Rica, Kovacs memory effect with
an optically levitated nanoparticle, Phys. Rev. Lett. 127,
130603 (2021).

[5] R. Holtzman and O. Raz, Landau theory for the
mpemba effect through phase transitions, Communica-
tions Physics 5, 280 (2022).

[6] Aristotle, Meteorology (Harvard University Press).
[7] E. B. Mpemba and D. G. Osborne, Cool?, Physics Edu-

cation 4, 172 (1969).
[8] M. Jeng, The Mpemba effect: When can hot water

freeze faster than cold?, American Journal of Physics
10.1119/1.2186331 (2006).

[9] P. Chaddah, S. Dash, K. Kumar, and A. Banerjee, Over-
taking while approaching equilibrium, arXiv preprint
arXiv:1011.3598 (2010).

[10] C. Hu, J. Li, S. Huang, H. Li, C. Luo, J. Chen, S. Jiang,
and L. An, Conformation directed mpeMba effect on
polylactide crystallization, Crystal Growth and Design
10.1021/acs.cgd.8b01250 (2018).

[11] Y.-H. Ahn, H. Kang, D.-Y. Koh, and H. Lee, Experimen-
tal verifications of mpemba-like behaviors of clathrate
hydrates, Korean Journal of Chemical Engineering , 1
(2016).

[12] A. Kumar and J. Bechhoefer, Exponentially faster cool-
ing in a colloidal system, Nature 10.1038/s41586-020-
2560-x (2020), arXiv:2008.02373.
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