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Topological entanglement entropy (TEE) is a key diagnostic of topological order, allowing to detect
the presence of Abelian or non-Abelian anyons. However, there are currently no experimentally
feasible protocols to measure TEE in condensed matter systems. Here, we propose a scheme to
measure the TEE of chiral topological phases, carrying protected edge states, based on a nontrivial
connection with the thermodynamic entropy change occurring in a quantum point contact (QPC) as
it pinches off the topological liquid into two. We show how this entropy change can be extracted using
Maxwell relations from charge detection of a nearby quantum dot. We demonstrate this explicitly
for the Abelian Laughlin states, using an exact solution of the sine-Gordon model describing the
universal crossover in the QPC. Our approach might open a new thermodynamic detection scheme
of topological states also with non-Abelian statistics.

Introduction. Entanglement describes non-local cor-
relations between quantum objects and is essential in
understanding quantum many-body systems. It is also
at the heart of quantum computation and information
sciences and plays a pivotal role in models such as topo-
logical quantum computation [1] and measurement based
quantum computation [2]. Topological entanglement en-
tropy (TEE) [3–5] is the ultimate diagnostic of topologi-
cal order as defined by fractional quasiparticles carrying
anyonic statistics. In a (2+1)-dimensional topological
phase where the system size is larger than the correla-
tion length, the entanglement entropy in the ground state
|Ψ⟩ between subsystems A and B, SEE = −Tr[ρA log ρA]
where ρA = TrB [|Ψ⟩⟨Ψ|], takes the general form [3, 4],

SEE = αL− γ + ... . (1)

Here L is the length of the entanglement cut, α is a
non-universal constant describing short range entangle-
ment, and the second sub-leading term is the TEE. The
TEE γ = logD is uniquely related to the total quan-
tum dimension of the topological phase, D =

√∑
a d

2
a,

with da being the quantum dimensions of each individual
anyon type labeled by a. In the presence of N anyons of
type a, the gapped topological liquid has a degeneracy
that scales as dNa , so that da > 1 (da = 1) refers to a
non-Abelian (Abelian) anyon. For instance, there are m
Abelian anyons in the fractional quantum Hall (FQH)
Laughlin state with filling fraction ν = 1/m, with da = 1
(a = 0, 1, . . . ,m−1) andD =

√
m; The Moore-Read state

at ν = 5/2 has four abelian anyons and two non-Abelian
anyons having da =

√
2, with D = 2

√
2.

Measuring entanglement entropy in many-body sys-
tems is a daunting task since it requires full state to-
mography. Variants of SEE such as the Rényi entangle-
ment entropy can be accessed in controllable many-body
quantum simulators such as cold atoms or trapped ions
using many-copy methods [6–9] or randomized measure-
ment techniques [10–12]. The latter, remarkably, was
employed recently to measure the Rényi TEE of Kitaev’s
toric code [13] prepared on a quantum processor [14].

Unambiguously extracting the subleading TEE term γ
requires dividing the system into three subsystems and
forming appropriate combinations of the different parti-
tions such as to cancel the leading term [3, 4]. This was
successfully implemented [14] thanks to the zero correla-
tion length of the toric code eigenstates. However, mea-
suring TEE in condensed matter systems, such as in the
realm of the FQH effect in two dimensional electron sys-
tems, remains elusive.
Interestingly, there exists an intimate relation between

TEE and a thermodynamic entropy loss associated with
a quantum point contact (QPC) [15]. The QPC allows
tunneling between two points on the edge (see parame-
ter λ in Fig. 2 below). For an edge carrying fractional
quasiparticles, this is a relevant perturbation that intro-
duces an energy scale TB [16]. For T ≫ TB the system
is described by the ultraviolet (UV) fixed point that is
unaffected by tunneling. As temperature decreases be-
low TB , tunneling processes proliferate and the system
flows to the infrared (IR) fixed point where the droplet is
disconnected into two droplets A and B. Their anyonic
charge a can no longer fluctuate since each droplet can
not support an overall fractional anyonic charge, lead-
ing to an entropy reduction. Using the bulk-edge corre-
spondence, it was shown for a general (2+1)-dimensional
chiral topological phase that the thermodynamic entropy
change of the QPC coincides with a bulk property being
precisely the TEE [15],

SUV − SIR = logD. (2)

This fundamental relation, derived 16 year ago, sug-
gests that the TEE can “simply” be read off from the
temperature dependence of the entropy, as shown in
Fig. 1. Indeed, over the past decades there has been
a surge of interest in measuring thermodynamic en-
tropy in bulk of mesoscopic systems [17–21], with spe-
cific emphasis on the entropy contribution of non-Abelian
anyons [22–24]. However, extracting the TEE fundamen-
tally requires to measure an entropy change of order unity
associated with a change of the topology of the surface.
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Thus, isolating the O(1) entropy change in Eq. (2) from
bulk contributions, including those of the 1D edge states
themselves, remained elusive.

More recently, local measurements of entropy of elec-
tronic states were demonstrated in quantum dot (QD)
systems via transport in specific systems [25, 26], and us-
ing a more general framework based on charge detection
and Maxwell relations [27–29]. Some promising applica-
tions of using this general framework were theoretically
identified earlier [22–24, 30–35]. In Refs. [27–29] a QPC is
used as a charge detector weakly coupled to a QD. Then,
Maxwell relations are used to infer the entropy change of
the dot.

Here, we propose to strongly couple a FQH QPC to a
trivial QD. Employing Maxwell relations, we show that
one can infer the change in entropy of the joint system,
including both the QD and importantly the QPC, as the
latter switches from being fully transmitting to fully re-
flecting. At fixed temperature, such a measurement al-
lows to capture the O(1) topological entropy change in
Eq. (2), and thus extract the TEE.

Model. The chiral edges of a FQH system described
by an Abelian Laughlin state with filling factor ν = 1/m
are described by the bosonized Hamiltonian [36, 37]

H0 =
1

4πν

∫
dx(∂xφL)

2 + (∂xφR)
2, (3)

where L/R denotes left/right movers. Here we have
set the edge velocity to unity. The QPC at x = 0 in-
duces tunneling of quasiparticles between the edge states,
which is described by [16, 38]

HB = λ cos(φL(x = 0)− φR(x = 0)), (4)

where λ is the tunneling strength. For m > 1 it leads to

the energy scale TB = Cλ
1

1−ν across which the crossover
from UV to IR limits happen, with C being a non-
universal constant of appropriate dimensions [16]. The
integer quantum Hall case m = 1 is also described by the
same Hamiltonian, but in this case the tunneling of elec-
trons is marginal in the renormalization group sense and
there is no crossover. While for experiments in electronic
systems only odd values of m are relevant, correspond-
ing to fermions, we also consider theoretically the case of
even m, corresponding to a Laughlin state of bosons.

In general for ν = 1/m, the model can be mapped into
the boundary sine-Gordon model which is integrable [39].
It can be solved using thermodynamic Bethe ansatz
(TBA) [37, 40–42], which allows to obtain the free energy
F [T, TB ], and from it the boundary entropy S = −∂TF .
Applying the TBA we compute the entropy along the

full crossover from the UV to IR fixed points [37], see
Fig. 1, which gives SUV − SIR = log

√
m. This yields a

finite entropy change only in the fractional case, m > 1.
We included also the case ν = 1/2 which can be solved
exactly using refermionization, and which corresponds to

FIG. 1: Exact TBA results for the boundary entropy change
in a QPC at ν = 1, 1/2, 1/3 with a net entropy difference of
0, log

√
2, and log

√
3, respectively. The results for ν = 1/2

are also obtained using refermionization [37].

− log 2

− log 3

UV limit IR limit

𝜈 = 1/2
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FIG. 2: A QPC in a chiral topological phase facilitates tun-
neling between the edge states. The tunneling strength λ is
controlled by the charge on a nearby QD, λ = λ(N), that
itself depends on the chemical potential µ of a nearby weakly
tunnel-coupled reservoir. An adjacent charge detector mea-
sures the charge of the QD ⟨N⟩. Sufficiently charging the QD
drives the QPC between UV to IR limits.

an effective Majorana fermion [16, 33, 37, 43, 44]. Similar
methods [45, 46] can be applied to extract the entropy of
parafermion modes.

Next, we present two schemes to realize the crossover
in the QPC between the UV and IR limits, and measure
the resulting thermodynamic entropy change.

Scheme 1: Side coupled quantum dot. We now illus-
trate the TEE measurement protocol for the ν = 1/m
Laughlin states using a side coupled quantum dot (QD)
following the approach of Ref. 34. As shown in Fig. 2,
we attach to the QPC a QD in the Coulomb blockade
regime described by a classical energy function E(N,µ) =
EcN

2 − µN . Here Ec is the charging energy, N is the
number of electrons in the QD, and µ is a local chemical
potential of the QD, controlled by a gate voltage. The
QD interacts electrostatically with the QPC, as described
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by a dependence of the tunneling amplitude on the num-
ber operator of the QD, λ = λ(N). Thus, the crossover
energy scale TB is controlled by N , TB = TB(N). We
now show how, from such a dependence, one can extract
SUV − SIR.

Under these conditions the partition function of the
combined system is

Ztot =
∑
N

e−
1
T [F (T,TB(N))+E(N,µ)], (5)

where F (T, TB(N)) is the free energy corresponding to
the Hamiltonian in Eqs. (3) and (4) with λ → λ(N). By
attaching a charge detector to the QD, using the Maxwell

relation d⟨N⟩
dT = dS

dµ , one can extract the entropy change
produced by a change of µ,

∆Sµ1→µ2
=

∫ µ2

µ1

d⟨N⟩
dT

dµ. (6)

When T ≪ Ec, upon increasing µ, there are several quan-
tized charge steps in N , see inset of Fig. 3(a), and the
QPC gets closer to pinch-off, corresponding to an increase
in TB . The desired entropy change will occur if, by charg-
ing the QD by ∆N electrons, the QPC transitions from
the UV limit (TB ≪ T ) to the IR limit (TB ≫ T ).
In Fig. 3, we assume an N dependence of TB(N) such

that across a charging of ∆N = 3 electrons one achieves
TB(N) ≪ T ≪ TB(N + ∆N). In Fig. 3(b) we compute
d⟨N⟩
dT , where ⟨N⟩ is extracted from the total free energy

Ftot = −T lnZtot as ⟨N⟩ = −∂Ftot/∂µ. The total en-
tropy change Sµ1=0→µ from a selected µ1 till a varying µ
is shown in panel Fig. 3(c). We can see that this entropy
contains a series of log 2 peaks corresponding to charge
degeneracies of the QD, riding on top of the slowly vary-
ing entropy along the crossover for ν ̸= 1. For T ≪ Ec

these two effects are well separated and we can measure
the TEE by taking the difference between the correspond-
ing entropy plateaus where ⟨N⟩ weakly fluctuates; see
dashed horizontal lines in Fig. 3(c).

Several experiments observed the crossover between
UV and IR limits of a gate-tuned QPC for several FQH
states through the conductance and the shot noise which
crosses from quasiparticle tunneling to electron tunnel-
ing [47–50]. Our method outlined in Fig. 2, however,
requires to drive this crossover as a function of the chem-
ical potential of the dot. The conductance for such a
crossover is plotted in Fig. 3(a).

In practice, however, a side-coupled QD as in Fig. 2
may have a limited electrostatic affect on the QPC. To
enhance the effect, we now discuss a different setup with
the QD embedded in the constriction.

Scheme 2: Coulomb blockade in the FQH regime.
One can realize a nearly complete change of transmis-
sion by replacing the QPC by a double barrier consisting
of two QPCs, see Fig. 4(a). For non-interacting electrons
it is well known [51] that the transmission has an abrupt

FIG. 3: Illustration of the proposed TEE measurement. (a)
The conductance between the ohmic contacts for filling factor
ν = 1/2, 1/3 changes upon charging a nearby QD by vary-
ing the chemical potential µ of the QD. The charging curve
is shown in the inset. Here T/Ec = 0.1, G0 = e2/h, and

TB(N)/Ec = eN/2−1 [34]. (b) Temperature derivative of the
QD charge as a function of µ. For ν = 1 (dashed) the curve is
exactly anti-symmetric, while for ν = 1/3 (solid) it is not. (c)
The resulting entropy change (QPC+QD), obtained by inte-
grating d⟨N⟩/dT using the Maxwell relation Eq. (6), for ν = 1
(dashed blue) and ν = 1/2, 1/3 (solid curves). The peaks
are associated with the log 2 entropy of the dot at its charge
steps. The plateaus of the entropy decrease for ν = 1/2, 1/3
as a function of µ, and converge to the desired TEE once the
UV-IR crossover is accomplished.

resonance peak which is maximized for symmetric barri-
ers. Here we demonstrate that this resonance effect also
occurs in a double barrier system on a fractional edge.

As shown in Fig. 4(a), we consider two QPCs in series
separated by a distance 2ℓ, having backscattering ampli-
tudes λ1,2, and defining a QD characterized by a charging
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FIG. 4: (a) Two QPCs in series creating a QD with Coulomb
interaction Ec within the FQH system. By tuning the gate
voltage Ng at fixed λ1,2, this resonant double barrier-like sys-
tem, yields an effective backscattering strength in Eq. (8)
which drops at resonance and vanishes for symmetric barri-
ers. The charge detector measures the charge of the QD. (b)
The average occupation of the QD for the case of symmetric
barriers at ν = 1/3. Increasing temperature shifts the curve
to right/left for Ng above/below 1/2. (c) Entropy change in-
ferred from Maxwell relation for several ratios of T/T 0

B . As
T → 0, Ng = 0 tends to the IR limit and the entropy differ-
ence at Ng = 1/2 (which is always the UV limit) tends to the
TEE.

energy Ec. In this case the Hamiltonian is

HQD =λ1 cos(φL(−ℓ)− φR(−ℓ)) + λ2 cos(φL(ℓ)− φR(ℓ))

+
Ec

4π2

( ∑
i=L,R

(φi(−ℓ)− φi(ℓ))− 2πNg

)2

. (7)

In the limit of a large charging energy Ecℓ ≫ 1 one ob-
tains an effective Ng dependent boundary condition be-
tween the bosonic field [37, 52–54]. As a result, the two
QPCs behave as one effective QPC with

H ′
B = λeffe

i(φL(0)−φR(0)) + h.c., (8)

where

λeff ∝ λ1e
−iπNg + λ2e

iπNg . (9)

This effective model holds for Ec ≫ TB1,2 = Cλ
1/(1−ν)
1,2 .

We assume a finite reflection at the QPCs such that
TB1,2 ≫ T . However, using Eq. (9), we see that when
the barriers are symmetric λ1 = λ2 ≡ λ0, we have λeff ∝
λ0 cos(πNg), or equivalently TB = T 0

B | cos(πNg)|1/(1−ν).
Hence at Ng = 1/2 the effective barrier vanishes and
TB = 0.

Thus, the TEE can be extracted as the entropy reduc-
tion between the resonance condition Ng = 1/2 and the
off-resonance limit Ng = 0, 1. This entropy difference can
be directly measured by attaching a charge detector to
the QD and using the Maxwell relations. Eq. (6) applies
with µ → 2EcNg.
In Fig. 4(b,c) we plot ⟨N⟩ and the extracted entropy.

Here ⟨N⟩ = − 1
2Ec

∂F
∂Ng

is computed from the TBA free en-

ergy F (T, TB) with TB = TB [λeff(Ng)] carrying the Ng-
dependence via Eq. (9). Different than the side coupled
QD, by using the resonance effect, the crossover is fully
accomplished along the way from a Coulomb peak (Ng =
1/2) and a nearby Coulomb valley (Ng = 0, 1). Also, dif-
ferent from the side coupled QD which was only weakly
coupled to the lead, and hence led to clear log 2 entropy
peaks at its charge degeneracy points [Fig. 3(c)], here
the strong tunnel-coupled QD has a negligible contribu-

tion to the entropy which scales as SQD ∼ T 2−2ν
B

T 2−2ν
T 2

E2
c
[37].

However, in order to explore the full UV-IR crossover,
the barriers should be high enough such that T 0

B ≫ T ,
see Fig. 4(c).
Discussion. In the above schemes, to isolate the sub-

leading TEE term γ in Eq. (1), we assume that when the
FQH droplet splits into two, the change in the length of
the edge, L → L+∆L, leads only to a negligible entropy
change as compared to the order O(1) TEE. We can now
justify this assumption. The resulting entropy change of
the 1D gapless edge modes with velocity vF is

∆SL ∼ T

ℏvF
∆L. (10)

Since the TEE part of the entropy change is O(1), we
can neglect ∆SL if ∆L ≪ ℏvF /T . For T = 100 mK and
vF = 106m/s, we find that the requirement ∆L ≪ 10−4m
is easily satisfied.
Whereas our proposed scheme to extract the TEE re-

lies on bulk-edge correspondence, one could inquire about
nonuniversal effects near the edge. For example if the
QPC edge modes interact among themselves or with
nearby edge states emerging e.g. due to edge reconstruc-
tion [55], then there will be a correction to the extracted
entropy change. Similar to a Luttinger liquid [56] whose
entropy per length ∆L is given by Eq. (10) with vF being
renormalized by interactions, we argue that at low tem-
peratures, the interaction induced corrections take the
form of Eq. (10) with ∆L being replaced by the effective
interaction length near the QPC Lint. This scaling can
also be obtained perturbatively in the interactions [37].
Thus, nonuniversal corrections are negligible at low tem-
peratures. We also note that back-action effects from the
charge detector [57–59] need to be considered, but are
negligible when the system-detector coupling is weak.
Summary. Despite its importance, the measurement

of the topological entanglement entropy is still elusive
in condensed matter systems. Using a relation between
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TEE and a thermodynamic entropy change in fractional
QPCs, we proposed realistic approaches to measure the
TEE employing charge measurement and the Maxwell
relation. We illustrated our protocols for the experimen-
tally simplest and yet nontrivial case of Abelian frac-
tional topological order.

Our proposed setups are also applicable to extract the
entropy change between UV and IR fixed points in the
more general boundary sine-Gordon model describing an
impurity in a Luttinger liquid with any value of the inter-
action parameter, within mesoscopic systems simulating
this model such as in Ref. 60.

Since the relation we applied is general, our method
can be applied to more exotic systems, such as spin liq-
uid systems [61] and most interestingly FQH states with
non-Abelian quasiparticles. Moreover, we found that the
present method works also for hierarchical FQH states
with multi-edge channels [62, 63], and in the limit of spa-
tially separated edge modes the entropy curves can even
be obtained using TBA [64].
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