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Junctions provide a wealth of information on the symmetry of the order parameter of super-
conductors. We analyze junctions between a scanning tunneling microscope (STM) tip and su-
perconducting twisted bilayer graphene (TBG) and TBG Josephson junctions (JJs). We compare
superconducting phases that are even or odd under valley exchange (s- or f -wave). The critical
current in mixed (s- and f -) JJs strongly depends on the angle between the junction and the lattice.
In STM-TBG junctions, due to Andreev reflection, f -wave leads to a prominent peak in subgap
conductance, as seen in experiments.

Introduction. Graphene multilayers host a myriad of
exotic correlated and topological phases [1–23]. Perhaps
most interesting and enigmatic among them is supercon-
ductivity, possibly with unconventional pairing symmet-
ries and mechanisms, observed in alternating-twist stacks
of up to five layers [24–30] and in Bernal bilayers and
rhombohedral trilayers [31–34]. Crucially, the observed
superconductivity violates the Pauli limit for spin-singlet
pairing [29, 31–35] and has been observed in settings that
break time-reversal symmetry (TRS) [36], strongly sug-
gesting a spin-triplet pairing in these materials. However,
the pairing may be a mixture of singlet and triplet [37],
and the exact symmetries involved (s-, p-, d- and/or f -)
are still unknown despite intense theoretical and experi-
mental efforts to uncover them.

Recently, several experiments have studied these un-
conventional superconducting states using transport
measurements: either with a scanning tunneling micro-
scope (STM) tip [16, 22] or with Josephson junctions
(JJs) [38–42] and Superconducting Quantum Interference
Devices (SQUIDs) [43]. In the former setup, by compar-
ing the transmission between the STM tip and the su-
perconducting surface in the weak and strong-coupling
regimes, one can gain important insights about the sym-
metry of the order parameter. For instance, the experi-
mental observations, such as the peak in the subgap con-
ductance [16, 22], seem inconsistent with s-, p- and d-
wave pairings [37, 44]. In the latter setups, the overlap
of the superconductors’ wavefunctions at the junction’s
link gives rise to a zero-frequency supercurrent whose
magnitude and superconducting phase-dependence carry
characteristics of the pairing symmetry [45–47].

Building on these experimental insights, we argue in
this Letter that transport measurements in junctions are
ideal probes of the pairing symmetry in twisted graphene
superconductors, similar to the elucidation of d-wave
pairing in cuprate superconductors [48, 49], and that ex-
isting STM data [16, 22] are consistent with f -wave pair-
ing. The Fermi surface of these graphene-based systems
contains two valleys. We consider superconducting order
parameters that are either even or odd under valley ex-

change, which in the absence of spin-orbit coupling cor-
respond to spin-singlet s-wave superconductivity or spin-
triplet f -wave superconductivity respectively. In ‘mixed’
Josephson junctions connecting a s-wave to a f -wave su-
perconductor, we observe that the critical current dra-
matically depends on the angle between the junction and
the graphene lattice axis. Therefore, Josephson junctions
are useful for determining whether two superconducting
phases differ in their valley exchange parity.

In the STM-superconductor junction, we find that the
subgap conductance shows a prominent zero-bias peak
for f -wave pairing only, due to enhanced Andreev reflec-
tion. This peak has been observed in experiments on both
twisted bilayer [16] and twisted trilayer graphene [22].
This result puts forward f -wave pairing as a leading
candidate for the superconducting symmetry of twis-
ted bilayer graphene, which is also consistent with pre-
vious theoretical models based on Coulomb-interaction-
mediated Cooper pairing [50, 51].

STM tip-superconducting TBG junction. The model.
General features of transport in normal-superconductor
junctions are described in Ref. [52]. The coupling between
the two electrodes is given by a scattering matrix, de-
termined by a dimensionless transmission amplitude, T .
The model has been extended in [37, 44]. As in Ref. [52],
the normal metal tip and the superconducting electrode
are described in terms of incoming and outgoing single
channels. On the superconductor, the states in the chan-
nel are defined as suitable averages in momentum space of
the quasiparticles. The momentum dependence of the gap
leads to a momentum dependence of the mixing between
electron and hole-like states in the superconductor, and it
modifies the transmission of the junction, both in the tun-
neling and in the contact regimes. The Blonder-Tinkham-
Klapwijk (BTK) model [52] has also been extended to
strongly coupled superconductors, where the chemical
potential can be below the bottom of the band [53, 54].

We describe the metal−superconductor junction as one
ingoing normal channel, which represents the tip, and
two outgoing superconducting channels, which represent
the two valleys in TBG. The signs of the gaps in these
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Figure 1. STM tip-superconducting TBG junction. (a) Sketch of the model for the junction used to calculate its transport
properties. See text for details. (b-e): normal and Andreev reflections (top) and total conductance (bottom) for junctions with
spin-singlet s-wave (dashed) and spin-triplet f -wave pairing (solid), in the perfect contact limit. (b) With equal Fermi velocities
in all channels, ttip = tsc,K = tsc,K′ = 1, ttip,K = ttip,K′ = 1/

√
2, tK,K′ = 0, ∆K = 0.05,∆K′ = ±0.05. (c) With a large Fermi

velocity mismatch in the normal and superconducting channels: ttip = 10, ttip,K = ttip,K′ = 10/
√
2, others as in (b). (d) With

Fermi velocity mismatch and intervalley scattering tK,K′ = 1, others as in (c). (e) With Fermi velocity mismatch, intervalley
scattering and spin-orbit coupling: ∆K = 0.05,∆K′ = ±0.02, others as in (d).

channels can be equal, describing a spin-singlet s-wave
superconductor, or opposite, describing a spin-triplet f -
wave superconductor [55]. The model can also be applied
to an Ising superconductor [34] in a system with strong
spin-orbit coupling, characterized by spin-valley locked
Cooper pairs of the type |K, ↑;K ′, ↓⟩.

The three-channel model described above is discretized
as a tight-binding model, see Fig. 1(a). The normal chan-
nel is described by nearest-neighbor hopping ttip, which
determines its Fermi velocity and density of states. The
superconducting channels are described by two nearest
neighbor hoppings, tsc,K and tsc,K′ , and two gaps, ∆K

and ∆K′ . The coupling between the normal channel and
the two superconducting channels is described by the
hoppings ttip,K and ttip,K′ . Without loss of generality,
we assume that the Fermi energy is ϵF = 0, so that
each channel has exact electron-hole symmetry. Finally,
we consider that the tip is a local perturbation which
can induce intervalley scattering, parametrized by an-
other hopping, tK,K′ .

We solve the transmission of the junction by matching
incoming and outgoing waves in the three channels. If the
energy ϵ is within the superconducting gaps, we use evan-
escent waves in the superconducting channels. For each
energy, there are four propagating or evanescent waves
in each channel. We assume that there is an incoming
wave of electron character and amplitude 1 in the tip
channel. In the same channel, there can be one electron
and one hole outgoing channels, describing normal and
Andreev reflection, with amplitudes RN and RA, respect-
ively. In each of the two superconducting channels there

can be two decaying evanescent waves, when the energy
is within the gap, or two outgoing propagating waves.
We describe the four amplitudes as Ti,j , where i = K,K ′

stands for the channel, and j = 1, 2 stands for the wave-
function within each channel. The transport properties of
the junction are determined by these six amplitudes. The
conductance of the junction is G = 1−|RN |2+|RA|2. The
matching conditions involve the amplitudes of the wave-
functions at the three sites which describe the junction.
The equations can be found in Ref. [56].

STM tip-superconducting TBG junction. Results.
When the Fermi velocities in all channels are equal, the
tip channel merges smoothly into the even combination
of the K and K ′ channels and the junction behaves as
described by the BTK theory in the regime of perfect
contact, see Fig. 1(b). For s-wave pairing, and at zero
voltage, Andreev scattering leads to a conductance twice
as large as a single normal channel [52]. For f -wave pair-
ing, negative interference between the two hole channels
cancels Andreev reflection. This cancellation can be ex-
pected whenever the order parameter has a sign change
between states related by TRS [44]. At high voltages the
conductance reduces to the conductance of a single chan-
nel in both cases.

The bandwidth and Fermi velocity in TBG are con-
siderably smaller than in a normal metal. This Fermi
velocity mismatch induces elastic back-scattering in the
normal phase, which reduces the conductance above the
gap, see Fig. 1(c). Subgap Andreev reflection for s-wave
superconductivity is strongly suppressed, and it remains
zero for the f -wave phase, for a detailed explanation see
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Ref. [56]. The tip can also induce a perturbation on the
superconductor, on scales comparable to the atomic spa-
cing. Such a perturbation will induce intervalley scatter-
ing. Fig. 1(d) shows results obtained for an intervalley
coupling comparable to the bandwidth of the supercon-
ductor. This perturbation can be considered as disorder
which does not violate TRS. The presence of intervalley
scattering does not change significantly the conductance
of the junction in an s-wave superconductor, in agree-
ment with Anderson’s theorem [57]. On the other hand,
it is a pair breaking perturbation in an f -wave super-
conductor, which induces subgap states, see Ref. [56].
These states allow for subgap Andreev reflection. As a
result, the subgap conductance of the junction is strongly
enhanced by intervalley scattering in a f -wave super-
conductor, leading to a zero bias peak, highlighted in
Fig. 1(d), that has been seen in the experiments of
Refs. [16, 22].

Recent transport experiments [33, 34] reveal that prox-
imity induced spin-orbit coupling promotes the supercon-
ducting properties of Bernal bilayer graphene. An effect
of spin-orbit coupling is to break the equivalence between
the Cooper pairs |K, ↑;K ′, ↓⟩ and |K, ↓;K ′ ↑⟩. In the
model studied here, the spin-orbit coupling makes the
two channels inequivalent. Results are shown in Fig. 1(e).

Josephson junctions. The model. For the study of JJs,
our setup consists of a TBG crystal, in which the elec-
trodes are superconducting and the weak link is in a nor-
mal metal or band insulating phase, as shown in Fig. 2(c).
We start from a tight-binding, non-interacting Hamilto-
nian H0 [58] that includes Hartree electron-electron in-
teractions through an electrostatic potential [59, 60]. The
parameters in the tight binding model are scaled, such
that the central bands of a TBG with twist angle θ are
approximated by the central bands of an equivalent lat-
tice with twist angle λθ, with λ > 1 [61–63], see Fig. 2(a).

The critical current comes from second order perturb-
ation theory and is the derivative of the free energy E
with respect to the superconducting phase difference ϕ:

I =
e

h

∂E

∂ϕ
. (1)

To obtain the energies of the TBG junction, we diagon-
alize the Bogoliubov-de Gennes Hamiltonian,

HBdG |Ψ⟩ =
(
H0 − ϵF f(∆)
f†(∆) ϵF −H0

)(
Ψe

Ψh

)
= E

(
Ψe

Ψh

)
,

(2)

where ϵF is the Fermi energy. Again, we compare s-wave
pairing, which we model with a on-site attractive Hub-
bard term f(∆) = −∆S1, and f -wave pairing, which
results from Haldane-like hoppings [64, 65] that allow an
electron excitation to convert to a hole excitation via
second nearest-neighbor imaginary intralayer hoppings,
see Fig. 2(b).

Figure 2. (a) Low-energy bandstructure of TBG at θ ≈ 1.08◦

and filling n = −2.4, with and without scaling. (b) Hoppings
inducing f -wave superconducting pairing. (c) Central part of
the lattice of the TBG Josephson junction [66, 67]. The elec-
trodes are superconductors with a phase difference of ϕ and
the link region, with a length of four moiré periods, is metallic
or insulating. The rhombus is a unit cell of TBG.

Josephson junctions. Results. Figure 3(a) compares
the current-phase relations (CPRs) of TBG JJs with s-
and f -wave pairings in multiple configurations. CPRs can
be measured with a SQUID geometry [43]. The main mes-
sage of Fig. 3 is that the type of pairing, s-wave or f -
wave, plays a minor role when both electrodes are equal,
compare dashed and solid lines in Fig. 3(a-b).

In SNS JJs the CPR is skewed, due to high transmis-
sion of Andreev bound states, which carry over 80% of
the current in these junctions and are mostly localized
in AA stacking regions, see Fig. 3(c). In contrast, in SIS
junctions the current comes from tunnelling states, so
the CPR is sinusoidal [69]. An exception occurs when
the insulating gap in the link is comparable to the super-
conducting gap, resulting in skewness and large currents.
The current in SIS junctions exponentially depends on
the similitude between both gaps, see Fig. 3(d). We note
that the authors of Ref. [43] report a sinusoidal CPR in
TBG, without skewness, despite having a SNS JJ. This
may be due to low transmission in the junction [47]. Fig-
ure 3(b) shows the critical current for all JJs as a func-
tion of twist angle. For a comparison to experiments, see
Ref. [56]. The current in SNS JJs increases with twist
angle, suggesting that larger Fermi velocities compensate
the reduced density of states. Electron-hole asymmetry
is very notable, e.g. near θ = 1.1◦, the current in SIS
junctions with fillings −2.4/4/−2.4 is over two orders of
magnitude larger than with 2.4/−4/2.4 due to the asym-
metry in the size of the gaps between narrow bands and
electron- or hole-like remote bands.

Ref. [38] reports a significant length dependence of the
critical current in JJs prepared in mixed configurations,
e.g. with the electrodes doped near one superconducting
dome and the link near the other. This indicates that
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Figure 3. TBG Josephson junctions with equal electrodes. (a)
Current-phase relations for near magic-angle junctions with
different pairing symmetry: spin-singlet s-wave (dashed) or
spin-triplet f -wave (solid), for electron and hole supercon-
ducting domes (fillings n = ±2.4), with a metallic (SNS) or
insulating link (SIS) [68] We set the superconducting gap to
1 meV [16]. θ = 1.06◦ for SNS; 1.1◦ for SIS h+ and 1.16◦ for
SIS e−. Units: nanoampere per nanometer junction width. (b)
Critical current versus twist angle for all configurations. (c)
Andreev spectrum at 1.06◦. Inset: charge map of an Andreev
bound state. (d) Critical current in SIS JJs compared to the
difference between the superconducting and insulating gaps,
as a function of twist angle, and a sketch of the bands in the
different regions of a SIS junction.

the superconducting pairing symmetry in the electron
and hole domes may differ. The results in Fig. 4 for
mixed f -wave/s-wave TBG JJs propose an experiment
that could verify the hypothesis. For these JJs, the
critical current dramatically depends on the angle
between the junction and the lattice. A similar result in
non-superconducting junctions was found in Ref. [70].
The critical current is sizeable when the junction axis
is nearly parallel to the graphene armchair direction,
but close to zero when parallel to the zigzag direction.
As long as the perpendicular momentum is conserved,
the zigzag JJ suffers destructive interference of the
superconducting pockets along the green lines drawn
in Fig. 4. Also, the CPRs have a period of π, half the
one of standard JJs. The origin of this effect is the
existence of two sets of energy levels, due to coupling
of the s-wave pocket to the two f -wave pockets, which
have an intrinsic phase difference of π [46, 71]. Fur-
thermore, the CPR shows a π-junction behaviour, i.e.
it is first negative [47, 72]. A requisite for these phe-
nomena is that the triplet electrode is spin unpolarized,
otherwise the current is zero due to spin conservation.
The same occurs in a one-dimensional toy model [56, 73].

Figure 4. Current-phase relation in mixed f -wave/s-wave
TBG Josephson junctions, nearly parallel to the graphene
armchair, as in Fig. 2(c), or zigzag directions. The critical
current is ∼ 100 times larger for armchair junctions.

Discussion. We have studied the role of the super-
conducting order parameter in transport through super-
conducting TBG junctions. We focus on s- and f - wave
pairing (even and odd valley combinations), as these two
choices are equally favored by long range interactions,
either attractive or repulsive [74].

We have calculated the critical current, and the
current-phase relation for different types of Josephson
junctions. JJs in which both electrodes are either s- or f -
wave superconductors show similar features (unlike the
s- and p- cases considered in Ref. [75]). On the other
hand, the critical current in mixed (s- and f -) junc-
tions depends strongly on the orientation of the junc-
tion with respect to the graphene lattice axes, with max-
ima for armchair junctions, and zeroes for zigzag junc-
tions. Hence, mixed junctions are useful for determining
whether two superconducting phases differ in their val-
ley exchange parity. Such junctions can exist in various
setups: i) different superconducting regions in the phase
diagram of TBG show different order parameters [38], ii)
the superconducting state changes locally because of the
spin-orbit coupling induced by a substrate [33], iii) super-
conducting TBG is combined with s-wave proximitized
graphene [76, 77].

For a junction between a normal STM tip and super-
conducting TBG, we find a prominent peak in subgap
conductance for an f -wave order parameter, due to An-
dreev states induced by the tip, in agreement with the
experiments of Refs. [16, 22]. f -wave is also consistent
with the U- and V-shaped densities of states measured
in the weak coupling regime, as shown in Refs. [56, 78].
The agreement between the experiments [16, 22] and the
results presented here puts forward f -wave pairing as a
leading candidate for the pairing symmetry of twisted
graphene superconductors.

We note that the results for the STM-superconductor
junction apply equally well to all graphene supercon-
ductors [27–34]. Extending the Josephson junction
calculations to non-twisted graphene superconduct-
ors [31–34] is a promising direction for future research.
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