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In a single qubit system, a universal quantum classifier can be realized using the data re-uploading
technique. In this study, we propose a new quantum classifier applying this technique to bosonic
systems and successfully demonstrate it using a silicon-based photonic integrated circuit. We estab-
lished a theory of quantum machine learning algorithm applicable to bosonic systems and imple-
mented a programmable optical circuit combined with an interferometer. Learning and classification
using part of the implemented optical quantum circuit with uncorrelated two-photons resulted in a
classification with a success probability of 94 ± 0.8% in the proof of principle experiment. As this
method can be applied to an arbitrary two-mode N-photon system, further development of optical
quantum classifiers, such as extensions to quantum entangled and multi-photon states, is expected
in the future.

Recently, there has been a lot of work on quantum ma-
chine learning algorithms that can apply machine learn-
ing methods to quantum systems in a sophisticated and
efficient manner [1–8]. Among quantum machine learn-
ing algorithms, classifiers belong to the supervised learn-
ing category and classify the input data into certain cat-
egories (classes) [9–11]. It is particularly effective when
the correct or optimal solution to a problem is known
for training data. Usually, quantum classification con-
sists of three steps: encoding of the data into the quan-
tum state, processing, and measurement, whereby the
parameters characterising the classifier are adjusted to
build a classification model. Various quantum classi-
fiers have been proposed, using quantum circuit mod-
els based on qubits [9, 12] and neural network-like mod-
els based on bosonic systems [13–16]. Moreover, optical
quantum classifiers harnessing entanglement have been
demonstrated in [17] targeting, if appropriately scaled,
potential exponential speed-up of high dimensional data
classification. In particular, the properties of these clas-
sifiers strongly depend on the data encoding method, and
their performance depends on the number of qubits in the
quantum circuits or the number of neurons in the hidden
layer in the neural network, indicating that implementing
higher-performance classifiers requires complex quantum
circuits or networks [18, 19].

Among the bosonic quantum circuit, silicon-based op-
tical integrated circuits have the advantages of high in-
tegration density, sophisticated fabrication techniques in
their mature stage of technology development and low op-

tical losses in the communication wavelength band [20].
In particular, this platform works well with CMOS elec-
tronics, allowing light to propagate on a waveguide while
the quantum state of light is controlled by electrical cir-
cuits. There have been reports of on-chip quantum en-
tangled state generation and measurement [21], as well
as the realization of an optical interferometer operat-
ing with extinction ratios exceeding approximately 60
dB [22], and the performance of each device has been
improved [23]. The reason behind these developments
of optical quantum-integrated circuits is that it is feasi-
ble to construct programmable optical quantum circuits
by combining multiple stages of interferometers [24–26].
For these reasons, research into the application of pro-
grammable optical quantum circuits has intensified re-
cently [27].

Typical schemes of quantum classifiers tend to adopt
the amplitude encoding of the classical or quantum data
into input quantum states. However, implementation of
this strategy in the integrated photonics could be limited
so far for a few reasons: this method requires a larger
number of photons or modes to crate Hilbert spaces of
appropriate sizes, and the non-linearity obtained in this
method is limited. The breakthrough seems to be proper
adaptation of the so-called data re-uploading technique
recently introduced for qubit-based circuits in [28]. In
this paper the authors demonstrate a universal quantum
classifier of classical data using a single qubit circuit with
repeated data re-uploading in different parts of the cir-
cuit. In this method, the unitary transformation repre-
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FIG. 1. (a) A scheme of a single-layer neural network char-

acterized by neurons with weights w⃗, biases θ⃗, and a sigmoid
activation function g. If the number of neurons is sufficiently
large, the output signal can approximate arbitrary function
of data x. (b) Scheme of two-mode optical system realizing
the data re-uploading scheme of a universal classifier. It con-
sists of unitary transformation characterized by parameters
η⃗j that depend on data x and adjustable parameters w⃗j and

θ⃗k. (c) The realistic optical data re-uploading classifier that
can be realized on a silicon chip. The unitary encircled by the
solid frame can realize arbitrary SU(2) transformation.

senting the quantum circuit is divided into multiple lay-
ers, and data-encoding and training are repeatedly per-
formed in each layer. It has been shown that a universal
quantum classifier can be realized with a single qubit by
increasing the number of layers of the circuit instead of
increasing the number of qubits. Moreover, the same con-
cept of multi-qubit circuits with possible entangled states
leads to the conclusion that systems with entanglement
seem to perform better.

As we will show in this paper, the data re-uploading
technique is applicable to qubit systems as well as bosonic
systems implemented on silicon photonics even with a
single photon that manifests remarkable computational
power when used in an appropriate bosonic quantum cir-
cuit. This motivated us to leverage the advantages of
integrated photonics mentioned above to develop a quan-
tum classifier [29].

In this letter, we report on the experimental realiza-
tion of a universal bosonic quantum classifier using sil-
icon photonic circuits. We have applied the idea of a
data re-uploading method proposed for qubit systems
to bosonic quantum systems and implemented it using
programmable integrated photonic circuits. As a proof-
of-principle experiment, we built a bosonic system con-
sisting of a three-layer two-mode circuit and two-photon
input state. For the optimization of the circuit parame-
ters, we use the sequential minimal optimization method,

which has been proposed recently [30]. By training a
part of the circuit, we have successfully classified points
divided by an elliptical boundary with a success prob-
ability of 94±0.8%. This work is expected to lead to
further progress in optical quantum classifiers based on
bosonic systems using quantum entangled and multi-
photon states.
The universality of a single qubit processor relies on

properties of the SU(2) group unitary transformations
used in the circuit [28], figure 1. The group can be natu-
rally parameterised by coefficients η⃗ in front of Pauli ma-
trices σ⃗ which are the group generators, i.e., Û(η⃗) = eiη⃗ σ⃗.
Concatenation of two elements of SU(2), Û(η⃗1) and Û(η⃗2)
stays in the group, but its parameterisation is in gen-
eral a non-linear function ω of the coefficients of the
parts, Û(η⃗1)Û(η⃗2) = Û(ω(η⃗1, η⃗2)). Reference [28] shows
that using concatenation of many unitary transforma-
tions the parameters of which depend on the data x as
η⃗i = θ⃗i+w⃗ix, one can achieve the transformation with pa-
rameterization Û(

∑
i f(θ⃗i+w⃗ix)), with a nonlinear func-

tion f . According to the universal approximation theory
for single layer neural networks, figure 1 (a), the argu-
ment of this Û , figure 1 (b), can approximate arbitrary
function. Namely, transformations by Û and functions of
its elements could be substantial to realize desired com-
putational tasks when sufficiently long circuit with data
re-uploading is prepared. In the two-mode bosonic cir-
cuit, any SU(2) transformation can be realized by passive
elements and can define an input-output relation between
mode-creation operators. Therefore, the reasoning that
leads to achievability of Û(

∑
i f(θ⃗i + w⃗ix)) holds in this

context as well. Also in this case, the measurement leads
to functions of the entries of the final Û , therefore the
computational power of the two mode bosonic processor
is at least the same that of the one-qubit processor. This
suggests that two-mode circuits with multiple photons
may provide some computational advantages.

Here we adopted the data re-uploading method by [28]
to bosonic system of the photonic quantum circuit. A
scheme is shown in figure 1 where we indicate the analogy
between two-mode optical circuit and a classical single-
layer neural network. According to the universal approx-
imation theory, it can approximate an arbitrary function
of the input data x by its output signal

∑
k g(θk +wkx).

Here, g is usually a sigmoid function, w⃗ is a vector of
weights and θ⃗ is a vector of biases. In our implementation
(figure 1. (c)) variables have been changed from η⃗j used
in the universality argument to the phases of the phase
shifters φk = ϕk1

+ ϕk2
x(i) which are directly modified

in practice. The data re-uploading method decomposes
the unitary operation of an optical quantum circuit into
multiple sequential layers of unitary transformations. In
practice we use the following decomposition

Û(ϕ⃗, x⃗(i)) = ÛBS V̂1(φ1)ÛBS ...V̂N (φN )ÛBS , (1)

where φk = ϕk1 +ϕk2x
(i), V̂i denotes a phase-shifter, and
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FIG. 2. Schematic of the implemented optical quantum circuit. The first stage generates an arbitrary quantum state. The
parameters for data and tuning are encoded into the parameters of the unitary transformation in the latter stage of the optical
quantum circuit.

ÛBS denotes the 50:50 beam splitter. Here the index i
indicates one of the data points. Parameters, φk, in the
transformations depend on specific free parameters, ϕk,
and the same data applied in each V̂i. We define an ar-
bitrary quantum state as |ψin⟩ that is the input state
of this quantum circuit. The input data {x⃗(i)} to be
classified are encoded into the parameters of the unitary
operations of the circuit. Classification is then realized
by optimizing the free parameters of each unitary oper-
ation. The unitary operation for encoding and tuning
is therefore a function of the input data {x⃗(i)} and the

tuning parameters ϕ⃗ as given by Û(ϕ⃗, x⃗(i)). Finally, the

probability p(i)(ϕ⃗) =
∣∣∣⟨m|Û(ϕ⃗, x⃗(i))|ψin⟩

∣∣∣2 of obtaining a

particular output m is measured. At this point, a thresh-
old value is set and the data is classified. For example,
the point x⃗i is classified as ”yes” if the probability p(i)(ϕ⃗)
is higher than the threshold value and ”no” if it is lower.
The tuning parameters ϕ⃗ of the training optical quantum
circuits are optimized so that the least square error cost
function

C(ϕ⃗) =
∑
i

(
p(i)(ϕ⃗)− y(i)

)2

, (2)

is as small as possible. Here y(i) is the classification of
the training data, y(i) ∈ {0, 1}.

In the training process of adjusting free parameters of
the circuit, we apply a modification of gradient descent
algorithm [31], so-called Sequential Minimal Optimiza-
tion (SMO) introduced in [30] adapted to our photonic
set up [32]. This approach, which relies on analytical
minimization of the cost function, works more efficiently
under certain constraints than other numerical methods
such as the gradient method [30]. It is easy to imple-
ment in optical systems like ours where only one type of
transformation, i.e., the phase shifter, is optimized. In
this case, the complexity of the method per parameter
scales with the number of photons, not with the number

of modes, or the particular structure of the circuit [32].

The encoding of the input and optimization of the tun-
ing parameters are repeatedly performed in each phase-
shift transformation. Note that in this implementation,
encoding of the input data into the quantum state and
tuning of the circuit are performed simultaneously. The
optical quantum circuit was optimized so that the cost
function is as small as possible by repeating this step
several times, with the optimization of all parameters
ϕ⃗ as a single step. In quantum circuit models, it has
been shown that the value of the cost asymptotically ap-
proaches a minimum value when the number of steps is
repeated [28], but the asymptotics of the minimum value
in bosonic systems is a subject for future research.

We have implemented the quantum machine learning
algorithm using a silicon-based photonic integrated cir-
cuit. A scheme of the circuit is shown in figure 2. The op-
tical quantum circuit consists of four inputs and four out-
puts and combines an interferometer with phase shifters
to realize a programmable optical quantum circuit [33].
Control of the phase of the light was achieved by apply-
ing voltage to a thermal resistive element placed above
the optical waveguide and locally applying heat to change
the refractive index of the silicon optical waveguide. Note
that some additional interferometers have been added to
ensure proper alignment of the phase-shifter inside the
circuit (e.g., the interferometer surrounded by the blue
line in the circuit). The interferometers in figure 2 were
evaluated using laser light and the extinction ratio was
measured to be more than 30 dB for all interferometers.

In this proof-of-principle experiment, we used two spa-
tial modes of the circuit (enclosed by the purple and red
dotted line in fiugre 2) for an optical quantum classifier.
To do this, we set the bias phases (ξ1, ξ2, ξ3, ξ4, ξ5) of the
interferometers to 0 so that these interferometers act as
straight waveguide. As an input state, we produced an
uncorrelated two-mode two-photon state, |2; 0⟩, from the
attenuated input laser by post-selection. Several beam
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FIG. 3. (a) Schematic of the photon circuit used. The cir-
cuit shown in the red box in Fig. 2(a) is decomposed into
three layers. (b) Value of the cost at each step, optimized
using the data reuploading technique. The black line is the
theoretical value and the blue line is the experimental value.
The theoretical values are the average of the values optimized
by simulation using 200 training data (3000 times). The re-
gion between the 10th and 90th percentile is shown in semi-
transparent blue.

splitters and phase-shifters are placed before the proper
circuit, and these elements are used to implement the lin-
ear optical unitary operation Û . The resulting quantum
state input to the classifier is |ψin⟩ = Û |2; 0⟩. Since the
data re-uploading method in this study is valid for any
two-mode two-photon input state, the Û is irrelevant (it
can be inverted by the proper part of the circuit).

A simplified quantum circuit for encoding and training
is shown in figure 3 (a). The quantum circuit consists
of three unitaries given by V̂1(φ1), V̂2(φ1), and V̂3(φ3)
and 50:50 beam splitters. We used the two-dimensional

data as x⃗(i) = (x
(i)
1 , x

(i)
2 ) to be classified. Data x⃗(i) and

tuning parameters ϕ⃗= {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} are encoded
into the parameters of the unitaries as follows,

φ1 = ϕ1 + ϕ2 × x
(i)
2

φ2 = ϕ3 + ϕ4 × x
(i)
1

φ3 = ϕ5 + ϕ6 × x
(i)
2 . (3)

The output quantum state in this type of experiment
with three layers is therefore given by

|ψout⟩ = ÛBS V̂3(φ3)ÛBS V̂2(φ2)ÛBS V̂1(φ1)ÛBS |ψin⟩.
(4)

and can be easily extended to more complicated config-
urations. The measurements were performed with one
photon output for each spatial mode for each photon
(⟨m|ab = ⟨1; 1|ab). As a result, the probability obtained
at the output of the optical quantum circuit is given by

p(ϕ⃗, x⃗) = |⟨1; 1|ψout⟩|2 . (5)

FIG. 4. (a) The area to be classified in the light quantum
circuit is shown. Red lines are the boundaries of the regions to
be divided. (b) Classification results. Yellow dots are teacher
data belonging to negative regions, blue dots are teacher data
belonging to positive regions.

For a given 2D function, the tuning parameters ϕ⃗ =
(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) are optimized so that the cost given
by equation (2) becomes as small as possible. In this

study, we find an explicit formula for p(ϕ⃗, x⃗(i)) for each
ϕj in each step of the training by using the SMO instead
of minimizing the cost numerically by gradient descent
[32].

In this experiment, we chose the circle specified by x1
and x2 as the classification border function,

(x1 − 0.2)2 + (x2 − 0.6)2 = 0.322. (6)

The classification was then carried out with training data
points inside this circle classified as y(i) = 0 and points
outside this circle classified as y(i) = 1. The number of
training data points was 200, and the parameter ϕ⃗ was
optimized to keep the cost as low as possible using our
SMO. Figure 3 (b) shows the optimal value of the cost at
each step. The black line represents the results from the-
oretical simulations; the blue lines is experimental values.
Theoretical simulations confirm that the cost decreases
monotonically at each step, as expected. However, in the
experiments, there was a tendency for costs to increase
at certain steps, so the classification was carried out un-
der the condition that corresponds to the lowest costs.
The jump is caused by the instability of the numerical
minimization algorithm used to find the minimum of the
cost function along a single variable.

Figure 4 shows the results of classification on 1500 data
points using the trained optical quantum circuit. It can
be visually confirmed that the classification was correct.
Quantitatively, we obtained true positive (TP) and false
negative (FN) values as 1085 and 10, respectively. We
also obtained false positive (FP) and true negative (TN)
as 45 and 360, respectively. We then calculated true pos-
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itive rate (TPR) and true negative rate (TNR) as

TPR =
TP

TP + FN
= 99.1± 0.3%,

TNR =
TN

TN + FP
= 88.9± 1.6%. (7)

Thus, on average, the classification was confirmed to be
correct with a success probability of approximately 94.0
± 0.8 %. Here, errors are standard deviations calculated
by error propagation, assuming that TP, FN, TN, and
FP counts follow the Poissonian distribution.

In conclusion, we have applied the universal quantum
classifier method proposed for qubit systems to optical
quantum circuits in bosonic systems. Specifically, the
unitary transformation of the optical quantum circuit
was decomposed into multiple layers allowing for imple-
mentation of the data re-uploading technique. In each
layer, the data and tuning parameters were encoded into
the unitary transformation. Machine learning techniques
were then used to optimize costs. We implemented the
proposed optical quantum classifier by using a silicon-
based photonic integrated circuit. The input quantum
states are uncorrelated two-mode two-photon states. 200
training data points were used to train the optical quan-
tum circuit. Finally, we performed classification on 1500
test data, the quantum classifier was implemented with
a success probability of approximately 94 ±0.8%. Al-
though the quantum states used in this study are not en-
tangled, entanglement based quantum classifiers can be
implemented on the same circuit. Based only on the fact
that entangled states occupy a significant volume of the
set of all quantum states of a given dimensionality of the
Hilbert space [34] we expect that the classifiers that al-
low for entanglement may perform better than classifiers
without entanglement at least for some problems with
finite-length classifiers as shown in [32]. Other evidence
were provided in [28]. In general, we have shown that
the universal quantum classifier with data re-uploading
method proposed for qubit systems can be naturally ap-
plied to boson-based optical quantum circuits. In the fu-
ture, it is expected that increasing the number of spatial
modes and the number of photons will lead to higher-
performance quantum classifiers.

Acknowledgements This work was supported by
JST PRESTO Grant No. JPMJPR1864 , The Mu-
rata Science Foundation, JST CREST Grant No. JP-
MJCR1772, and JST Grant No. JPMJPF2221.

∗ ono.takafumi@kagawa-u.ac.jp
† wojciech.roga@keio.jp
‡ takeoka@elec.keio.ac.jp

[1] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-
Delgado, and H. J. Briegel, Physical Review X 4, 031002
(2014).

[2] I. M. Georgescu, S. Ashhab, and F. Nori, Reviews of
Modern Physics 86, 153 (2014).

[3] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini,
J. Mower, D. Bunandar, C. Chen, F. N. Wong, T. Baehr-
Jones, M. Hochberg, S. Lloyd, and D. Englund, Nature
Photonics 11, 447 (2017).

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, Nature 549, 195 (2017).

[5] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-
Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle,
D. Englund, and M. Soljacic, Nature Photonics 11, 441
(2017).

[6] S. Yu, F. Albarrán-Arriagada, J. C. Retamal, Y. T.
Wang, W. Liu, Z. J. Ke, Y. Meng, Z. P. Li, J. S. Tang,
E. Solano, L. Lamata, C. F. Li, and G. C. Guo, Advanced
Quantum Technologies 2, 1800074 (2019).

[7] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran,
arXiv:2001.03622 (2020).

[8] R. Sweke, J. P. Seifert, D. Hangleiter, and J. Eisert,
Quantum 5, 417 (2021).

[9] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys-
ical Review A 98, 032309 (2018).

[10] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe,
Physical Review A 101, 032308 (2020).

[11] S. Y. C. Chen, C. M. Huang, C. W. Hsing, and Y. J. Kao,
Machine Learning: Science and Technology 2, 045021
(2021).
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