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We elucidate the interplay between diverse two-dimensional melting pathways and establish
solid/hexatic and hexatic/liquid transition criteria via the numerical simulations of the melting
transition of two- and three-component mixtures of hard polygons and disks. We show that a
mixture’s melting pathway may differ from its components and demonstrate eutectic mixtures that
crystallize at a higher density than their pure components. Comparing the melting scenario of many
two- and three-component mixtures, we establish universal melting criteria: the solid and hexatic
phases become unstable as the density of topological defects respectively overcomes ρd,s ≃ 0.046
and ρd,h ≃ 0.123.

The nature of the melting of two-dimensional (2d)
solids is a long-standing and fascinating problem in sta-
tistical physics [1–16]. According to the Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) theory [1–
3], 2d solids melt via a continuous solid to hexatic transi-
tion driven by the unbinding of dislocation pairs, followed
by a continuous hexatic to liquid transition driven by
the further unbinding of isolated dislocation into discli-
nations. Two alternative melting scenarios are possible.
In the mixed case, the solid-to-hexatic transition is con-
tinuous, while the hexatic-to-liquid transition is discon-
tinuous; Finally, the solid transforms into a liquid via
a first-order transition in the discontinuous case. Re-
cent computational and methodological advances have
allowed establishing the melting scenario of pure two-
dimensional substances [8–13, 13–20]. It has been clar-
ified, for instance, that shape controls the melting sce-
nario in hard-particle systems [8–10] with, e.g., hexagons,
disks and pentagons following the KTHNY, mixed and
discontinuous melting [10, 18]. In soft repulsive systems,
the softness of the inter-particle interaction influences the
melting pathway [17], while attractive interactions pro-
mote discontinuous melting [10].

Phase diagrams are more complex in many-component
systems. The relative fractions become an essential con-
trol variable, novel phases may emerge, and melting may
interplay with phase separation. These aspects have been
thoroughly investigated in three-dimensional systems but
are almost unexplored in two dimensions [21–23]. Can
a mixture melt via a scenario different from its compo-
nents? Is there a eutectic mixture whose melting tem-
perature is lower than its components or, for hard par-
ticles, a mixture that melts at a density higher than its
components? Do topological defects correlate with the
phase behaviour as in pure systems [24]? Investigating

the melting of mixtures further offers the possibility of
validating proposed melting criteria based on a general-
ization of Lindemann’s approach [25–27] or topological
defects [22, 24].

In this Letter, we investigate the interplay between di-
verse melting mechanisms by tuning the relative compo-
sition of two- and three-component mixtures of hard par-
ticles. In hexagons+disks and pentagons+hexagons mix-
tures, the melting pathway smoothly crossovers from that
of a pure substance to that of the other. On the contrary,
disks+pentagons mixtures may follow the KTHNY melt-
ing scenario, not occurring in pure disks or pentagons.
The study of a large catalogue of two-dimensional sys-
tems further demonstrates that the density of topological
defects ρd controls the stability of the solid and hexatic
phases. As the density decreases, the solid phase be-
comes unstable at ρd,s ≃ 0.046, and the hexatic one at
ρd,h ≃ 0.123 [22]. Our predictions open new routes to
self-assembly in two dimensions [28] and can be experi-
mentally verified by changing a mixture’s composition.

We construct pentagons, hexagons and disks with the
same circumscribing circle of diameter d, by lumping
together Nd = 40 or 42 beads equally spaced along
the perimeter, as detailed in the Supplemental Mate-
rial (SM) [29] and in [10]. Beads of different particles
with separation distance rb interact via the Weeks, Chan-
dler, and Andersen (WCA) potential [30]: VWCA(rb) =

4ǫ

[

(

σ
rb

)12

−
(

σ
rb

)6

+ c

]

for rb ≤ rcut = 21/6σ. The con-

stant c enforces VWCA(rcut) = 0. We set σ ≃ 0.14d. We
carry out molecular dynamics simulations in the canoni-
cal ensemble, under periodic boundary conditions within
a rectangular box with a side length ratio of 2 :

√
3 to ac-

commodate the triangular lattice, fixing the temperature
via the Nosé-Hoover thermostat. We fix T = 20ǫ/kb if
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FIG. 1: Melting of disks+pentagons mixtures. (a) Isothermal equation of state. Data are vertically shifted for clarity, and the
fraction of disks increases from top to bottom. (b) probability distribution of the local density, and (c) the translational and
(d) the bond-orientational correlation functions for selected state points marked in (a). Symbols and colours identify different
phases: liquid ( ); hexatic ( ); solid ( ); liquid/solid coexistence (✩); liquid/hexatic coexistence ( ).

not otherwise specified and demonstrate in Fig. S4 [29]
that the choice of the temperature values has no effect on
the melting scenario. All simulations are performed using
the graphics processing unit-accelerated GALAMOST pack-
age [31]. We ensure thermal equilibration as detailed in
Fig. S2 [29], and report results for systems of N = 20521
particles, where finite size effects are negligible as detailed
in Fig. S3 [29].

Most previous investigations of the equilibrium phase
diagram of two-dimensional mixtures of particles inter-
acting via purely repulsive forces considered the specific
case of hard disks. These studies focused on identifying
the many possible crystalline phases determined by the
size ratio and the relative fraction, e.g. [32–35], and on
the stability of the hard-disk melting scenario [21–23]. In
these systems, geometric frustration stemming from the
size disparity prevents the triangular lattice from being
the ground state. We depart from these previous works
as we consider mixtures of particles with similar sizes
but different shapes. By focusing on mixtures of parti-
cles with similar sizes, all crystallizing in the triangular
lattice with the same lattice constant, we avoid phase
separation [36], glass formation [37] and the emergence
of complex crystalline phases on increasing the density.
Yet, the shapes we consider melt via different pathways.
Hence, while previous works considered the competition
between different possible ground states, we explore the
competition between alternative crystallization pathways
to the same ground state.

To determine the melting scenario, we first consider
if the isothermal equation of state (EOS) possesses a
Mayer-Wood loop indicating the presence of a first-order
transition [38]. If so, we fit the EOS to a fifth-order
polynomial to identify the coexistence boundaries and

further investigate the local density distribution in the
coexisting region [42]. Outside the coexistence region, or
in its absence, we determine the pure phases by inves-
tigating the correlation functions c(r) and g6(r) of the
translational and bond-orientational order [1, 8, 39]. In
the liquid phase, both functions decay exponentially. In
the hexatic phase [1], the system possesses quasi-long-
range bond-orientational order and short-range transla-
tional order, so that g6(r) ∝ r−η6 with η6 < 1/4, while
c(r) decays exponentially. In the solid phase, g6(r) does
not decay as the bond-orientational order is extended,
while c(r) ∝ r−η with η ≤ 1/3 decay algebraically as
Mermin-Wagner fluctuations makes the translational or-
der quasi-long-ranged [40].

Figure 1 illustrates the dependence of the melting sce-
nario of disks+pentagons mixtures on the fraction of
disks, fd. The equation of state (a) reveals a first-order
transition at both small and large fd that corresponds
to the discontinuous solid-liquid transition of pure pen-
tagons and the discontinuous liquid-hexatic transitions
of pure disks. When the transition is discontinuous, the
local density distribution for state points inside the co-
existence region (panel b) shows clear bimodality. Con-
sistently with the absence of segregation phenomena, the
coexisting phases have the same disk fraction fd.

The translational and bond-orientational correlation
functions illustrated in Figs. 1(c) and 1(d) clarify that
on increasing the disk fraction, the discontinuous hard-
pentagons melting scenario first transforms into the con-
tinuous KTHNY scenario and then into that of hard-
disk. Indeed, we find melting is continuous for disk frac-
tions around fd ≃ 0.82. This result demonstrates that a
two-component mixture may melt via a scenario differ-
ent from its components. We notice that the crossover
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FIG. 2: (a): Phase diagram of hexagons+disks, disks+pentagons, and pentagons+hexagons mixtures, in the relative fraction f
and area fraction φ plane. (b): the same diagrams are illustrated in the f -ρd plane, with ρd the density of defective particles that
do not have six immediate neighbours. We evaluate ρd in 8 sub-blocks of the system to estimate its error. The liquid/hexatic,
solid/hexatic, and solid/coexistence boundaries occur at approximately constant defect densities.

from a mixed to discontinuous melting may not involve
an intermediate KTHNY melting scenario, as observed in
attractive hard disks [10] as the temperature decreases.

We have also investigated the melting scenario of
hexagons+disks and pentagons+hexagons mixtures and
provide details in the SM [29]. We summarize our in-
vestigations in Fig. 2 by illustrating how the melting
scenario of hexagons+disks, disks+pentagons and pen-
tagons+hexagons varies with the fraction of disks, fd,
and that of hexagons, fh. The three diagrams match at
their boundaries corresponding to the melting behaviour
of pure disks, pure pentagons and pure hexagons, which
we find to follow the mixed, discontinuous and KTHNY
scenario, consistently with previous results [8, 10, 18].

Hexagons+disks mixtures (panel a, left) crossover from
the KTHNY to the mixed scenario as the fraction of disks
overcomes fd ≃ 0.5, an intermediate value suggesting
that these two shapes do not frustrate each other consid-
erably. Conversely, pentagons+hexagonsmixtures (panel
a, right) crossover from the discontinuous to the KTHNY
scenario as the fraction of hexagons overcomes fh ≃ 0.9:
adding a small fraction of pentagons disrupts hexagons’
KTHNY melting scenario. Similarly, a small amount of
pentagons disrupts the melting scenario of hard disks
(panel a, middle). However, in this case, on increasing
the pentagons fraction, the melting scenario first becomes
of KTHNY type and then becomes discontinuous, as we
previously noticed.

In hexagons+disks and pentagons+hexagons mixtures,

the stability limit φL(f) of the liquid phase weakly de-
pends on f . Conversely, in disks+pentagons mixtures,
for f ≃ 0.5, the liquid phase is stable up to φL ≃ 0.715,
a value sensibly higher than that characterizing the pure
phases, φL ≃ 0.70. This mixture is thus one of the
few known examples of eutectic two-dimensional colloidal
systems [41].

Melting in two dimensions has historically been re-
lated to the evolution of the density of topological de-
fects, clusters of particles not having 6 neighbours. In the
KTHNY scenario [1–3], melting occurs through a contin-
uous solid-hexatic transition driven by the unbinding of
dislocation pairs (clusters of 4 particles with 5+7+5+7
neighbours), followed by a continuous hexatic-liquid one
driven by the further unbinding of isolated dislocation
(5+7) into disclinations (5 or 7). While the observation
of extended clusters of defective particles [24] suggests
a rather complex relation between phase behaviour and
defects, Guo et al. [22] have found that in systems follow-
ing the KTHNY scenario, at the hexatic/liquid bound-
ary, the density of defective particles acquires a universal
value, ρd,h = 0.12. This number then acts as an upper
bound for the defects’ density in the hexatic phase.

We explore the relationship between defects’ density
and phase behaviour by investigating the phase diagrams
in the ρd−f plane in Fig. 2(b). We find that the defects’
density at the hexatic/liquid boundary (red circles) at-
tains the universal value of ρd,h = 0.123±0.006, in agree-
ment with the earlier speculation [22]. In addition, we
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FIG. 3: (a) Ternary phase diagram for mixtures of pen-
tagons, hexagons and disks. Each point within the triangle
corresponds to a composition determined by the intersections
of lines passing through that point and the sides of the trian-
gle. For example, in point A, the fraction of disks, pentagons,
and hexagons are 0.50, 0.25 and 0.25. (b) Phase diagram at
fixed hexagon fraction fh = 0.25, in the disk fraction, defect
density plane. ρd acquires constant values at the solid/hexatic
and hexatic/liquid boundaries.

also find the defects’ density equals ρd,s = 0.046± 0.005
at the solid/hexatic and solid/coexistence boundaries.

To test the universality of these findings, we examine
ternary mixtures of pentagons, hexagons and disks. For
each composition, we investigate the phase behaviour as
a function of the volume fraction to determine the melt-
ing scenario [29]. The ternary phase diagram of Fig. 3(a)
summarizes the result of this investigation. Each point
in the diagram represents the melting scenario observed
at a given composition fd, fp, fh. A point’s composition
is read by connecting it to the triangle’s sides, as illus-
trated with point ‘A’ for which fd = 0.50, fp = 0.25
and fh = 0.25. Hence, the three corners correspond
to the three pure systems and the three sides to the
three binary diagrams, e.g., the bottom left corner corre-
sponds to pure pentagons and the ‘pentagon’ side to the
disks+pentagons mixture.

Pentagon’s discontinuous melting scenario extends
over a large part of the diagram: melting becomes dis-

continuous as soon as the pentagon’s fraction overcomes
fh ≃ 0.25. The KTHNY scenario always separates the
mixed and discontinuous transitions regardless of the
hexagon fraction.

In bidisperse systems, the defects’ density controls the
stability of the solid and hexatic phases. We have found
the same occurs in the ternary mixtures. To demonstrate
this, we focus here on ternary mixtures with a fixed frac-
tion of hexagons, fh = 0.25, and report analogues results
for other fh values in the SM [29]. For the studied frac-
tion of disks, fd ≤ 1 − fh, we plot in Fig. 3(b) the value
of ρd at the boundaries between the different phases the
system traverses as the area fraction increases. Regard-
less of the fd values, the solid and hexatic phases become
unstable at ρd,s ≃ 0.046 and ρd,h ≃ 0.123, respectively,
as observed in the binary mixtures and the pure phases.

We have studied the two-dimensional melting of mix-
tures of similar-sized hard disks, hexagons and pen-
tagons. The size similarity suppresses geometric frus-
tration and ensures crystallization in the triangular lat-
tice for all compositions. As such, changes in the relative
composition allow us to investigate the interplay between
the discontinuous melting scenario of hard pentagons, the
mixed scenario of hard disks, and the KTHNY scenario
of hard hexagons. Hexagons+disks mixtures smoothly
crossover from the KTHNY to the mixed melting sce-
nario; similarly, hexagons+pentagons mixtures crossover
from the KTHNY to the discontinuous melting sce-
nario. On the contrary, in disks+pentagons mixtures,
the KTHNY melting may result from the competition be-
tween hard disks’ mixed melting scenario and pentagons’
discontinuous one: two dogs strive for a bone, and the
third runs away with it. The exhaustive investigation of
the melting of two- and three-component mixtures fur-
ther corroborates speculated [22] melting criteria and es-
tablishes new ones based on the density of defects. The
solid phase becomes unstable for ρd > ρd,s, the hexatic
phase for ρd > ρd,h. The connection of these criteria with
previously speculated Lindemann-like ones [25–27] and
the possibility of relating the free energy of the phases
to the defect’s density are fascinating future research di-
rections that could lead to a better understanding of the
mechanisms driving the different melting pathways.
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