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The statistics of noise emitted by ultra-thin crumpled sheets is measured while they exhibit log-
arithmic relaxations under load. We find that the logarithmic relaxation advanced via a series of
discrete, audible, micro-mechanical events that are log-Poisson distributed (i.e., the process becomes
a Poisson process when time stamps are replaced by their logarithms). The analysis places con-
straints on the possible mechanisms underlying the glass-like slow relaxation and memory retention
in these systems.

Introduction- Studying the characteristics of noise
emitted by a dynamic system has long been used as a tool
to gain insights into the system’s properties and ongo-
ing physical processes [1]. For instance, careful measure-
ments of shot noise in electronic devices has been used
as an indicator for fractional charge and exotic phases in
certain electronic systems [2], and the study of 1/f noise
in structural glasses has similarly led to fruitful insights
regarding the nature of the two-level-systems postulated
to be present in this system [3].

Here we use noise measurements to gain insight into
the mechanisms underlying slow relaxation, aging and
memory effects, which are some of the hallmark behav-
iors of out-of-equilibrium disordered systems. These be-
haviours are exhibited by a wide range of systems, such as
structural and electron glass [4], frictional interfaces [5]
and colloidal systems [6], as well as disordered mechan-
ical systems such as granular piles [7]. Slow mechanical
relaxations under constant load are also referred to as
“creep” [8], including strain relaxation under a constant
load of ice [9], metals [10], rock [11] as well as the silk
threads used by Weber in his pioneering experiments on
magnetism [12]. We also note that in Ref. [13] we have
shown that analogous behavior is obtained in a protocol
where stress relaxation is measured for a fixed strain.

One system that exhibits these behaviours is a large,
thin sheet of Mylar that has been crumpled many times
into a ball [14]. When placed under constant uniaxial
load, the system’s volume exhibits an ever-slowing relax-
ation process that spans many time scales - from frac-
tions of a second to weeks, without showing any signs
of reaching equilibrium. This behavior is reproduced in
Fig. 1a, as explained below. Similar phenomena is ob-
served in the normal force exerted by a crumpled thin
sheet when it is placed under constant strain [13, 15].
Previously, we have shown that when this system is sub-
jected to a two-step protocol in which after a controlled
waiting time, tw, the applied load or strain is abruptly
changed to another fixed value, the ensuing relaxation,
while still slow, exhibits clear non-monotonic features.

In particular, under constant conditions, a macroscopic
observable (volume or normal force) increases slowly over
times scales ranging from seconds to hours, comes to a
halt and then decreases, converging to a logarithmic re-
laxation [13]. This non-monotonic memory dynamics is
similar to the celebrated Kovacs effect that has been ob-
served in a range of glassy systems such as polymer melts
[16, 17], metallic glasses [18] and granular systems [19].

Here, we analyze the acoustic emissions emitted by
crumpled thin sheets during logarithmic volume relax-
ation under load, and use the results to constrain the
possible mechanisms leading to slow relaxation and mem-
ory retention in this system. While here we focused
on the logarithmic compaction of crumpled sheets un-
der constant load, as mentioned the same system was
shown to exhibit memory effects during relaxation in re-
sponse to load perturbations [13]. Earlier experiments
also noted that crumpled thin sheets emit crackling noise
when strained [20, 21]. However, so far these measure-
ments were performed only during manual manipulation
and were focused on the statistics of the intensities of the
acoustic emissions. In this work we show that the crack-
ling patterns measured during logarithmic relaxation of
crumpled sheets under load are consistent with a stochas-
tic version of the model introduced in Ref. [13] to explain
relaxation and memory in these systems.

Experiments- A thin sheet of Mylar, 500X500 millime-
ters in size and 12 micrometers in thickness was crumpled
for more than 50 times into a ball and then placed under
a load of 200 grams. The height of the system was mea-
sured using a magnetic displacement sensor, sampled at
22KHz using a data acquisition card for over six hours.
The displacement data was averaged offline to a rate of
5Hz, to reduce the measurement noise. The results in-
dicate a nearly perfect logarithmic relaxation spanning
more than four decades in time, as shown in Fig. 1a. As
the system relaxes under the load, it emits audible crack-
ling sounds, which is recorded using an amplified mi-
crophone and a 1KHz high-pass filter in a noise-isolated
chamber, at a rate of 22KHz (the spectra of the crack-
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FIG. 1. Acoustic emission during logarithmic relaxation of
crumpled sheets (a) Measurements of the height of a ball of
crumpled thin sheet under load as a function of time, show-
ing logarithmic relaxation (blue line) and the accumulated
number of acoustic events during the relaxation (orange). (b)
log-log plot of the time gaps between consecutive acoustic
emissions, on the same time axis as the experiment. inset:
example of the measured acoustic signal. Note the appear-
ance of avalanches (red dotted rectangle) that correlated with
intermittent features in the relaxation curve. (c) Measured
auto-correlation of time gaps between consecutive acoustic
emission, normalized by the time passed since the beginning
of the experiment. Inset: histogram of normalized time gaps,
showing approximate log-Poisson statistics.

ling sounds emitted by the crumpled sheets in the experi-
ments are typically centered around 2KHz). An example
of an acoustic recording is attached.

A small sample of the obtained acoustic emission sig-
nal is shown at the inset of Fig. 1b, revealing a series
of discrete pulses. Each pulse has a typical duration of

about 2 milliseconds, and a central frequency of about
2000Hz, and are easily detected in the large raw data
files. During a typical experiment we detect more than
2000 acoustic emission events, as shown in Fig. 1.

Fig. 1b shows the time gaps between each two consec-
utive acoustic emission events. Three important observa-
tion can be made from this plot. First, the average time
gap between consecutive events increases linearly with
the age of the experiment: while in the first seconds of the
experiment the typical time gap is about 10 milliseconds,
this number increases to about 500 seconds by the end of
the experiment. Second, most of the events are concen-
trated in a narrow band which retains a width of about
one decade throughout the experiment. Third, occasion-
ally many events happen during a short time, with time
gaps between consecutive events that quickly drops to
the lower temporal detection limit. One such avalanche
is marked by a red dotted rectangle in Fig. 1b. The
accumulated number of acoustic events correspondence
clearly to the height relaxation, from the slight curva-
ture of the plot down to small details, as shown in Fig
1a. In particular, the avalanches detected in the acous-
tic emission measurements manifest in a sharp steps in
the height relaxation curve, as highlighted for the same
avalanche in Fig. 1a and 1b.

The statistics of time gaps between consecutive acous-
tic emission events is shown in Fig 1c. The inset shows
a histogram of the time gaps, each divided by the time
since the beginning of the experiment, to normalize out
the linear slowing-down of the process. The result is an
approximate Poisson distribution of the normalized time
gaps, indicative of an approximate log-Poisson statistics
for the time gaps themselves. The auto-correlation func-
tion for the sequence of normalized time gaps indicates
a weak correlation that reduced to noise after about 20
events, as shown in Fig. 1c. This short-time correlation,
as well as the first point in the histogram, are mainly a
result of the rare avalanches.

The experimental observations indicate that the me-
chanical relaxation of the crumpled sheet is accompa-
nied by a sequence of discrete, audible, micro-mechanical
events, suggesting that each event is releasing some of
the internal stress and contributing to the overall dis-
placement of the system. The sensitivity of height mea-
surement in our logarithmic relaxation experiment is not
sufficient to detect the height decrease due to any sin-
gle event. However, the comparison between the curves,
Averaged over 15 repetitions of the experiment per-
formed with the same sheet yields an average displace-
ment 5.5 ± 0.8 microns per acoustic event. The robust
ratio between the number of events and the displacement
(either across measurement or due to an avalanche) is in-
dicative that this sequence of micro-mechanical events
are indeed related to the process by which the system
relaxes.
Continuous model- Our starting point is a model we in-
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troduced previously to account for logarithmic relaxation
and Kovacs-like memory response in crumpled sheets
[13]. We have shown, experimentally, that when sub-
jected to a constant (uniaxial) strain, the force exerted by
a crumpled thin sheet decays logarithmically over many
decades in time, in line with earlier measurements on a
similar protocol where a constant force is applied to the
sheet and the strain changes logarithmically [14]. More-
over, we used a two-step protocol to demonstrate that the
system exhibits clear aging behavior: the applied strain
was E1 for a duration tw and then switched to a different
strain E2, and the resulting slow relaxations depended
explicitly on both tw and the measurement time t. The
function F (tw, t) provides important information regard-
ing the physical mechanisms underlying slow relaxations.
Intriguingly, despite the complexity of this system we
found that the function F showed non-monotonic relax-
ations with a peak at time tp scaling linearly with tw.

This simple result was consistent with a model in which
the relaxations are a superposition of many exponential
relaxations, drawn from the distribution of relaxation
rates P (λ) ∝ 1/λ (with lower and upper cutoffs). More-
over, this formalism captured the logarithmic form of the
relaxations. In fact, this distribution was derived origi-
nally within a mean-field model for slow relaxations in
electron glasses. There, linearization of the equations
governing the system dynamics led to [22] dv⃗

dt = Av⃗ with v⃗
a high-dimensional vector corresponding to all degrees of
freedom of the system, and A a matrix whose (negative)
eigenvalues correspond to the relaxation rates, and whose
spectrum was later shown to follow the aforementioned
1/λ distribution [23]. This model was used to predict the
aging dynamics in electron glasses [24]. Note that within
this interpretation, the amplitude associated with each
eigenmode decays exponentially – and smoothly.

Adopting this model for the crumpled sheets, this
model captures the non-monotonic relaxations and quan-
titatively explains the linear scaling between tp and tw
and the logarithmic relaxations, and thus seems to ad-
equately describe the dynamics of the system. Within
this mean-field approximation and to the broad distri-
bution of eigenvalues, if one furthermore assumes that
the external perturbation is sufficiently small such that
the eigenmodes (and eigenvalues) are nearly identical in
the presence and absence of the perturbation, one finds
a particular form of aging of the form:

f(t, tw) ∝ log(t+ tw) + C log(t), (1)

where the constant C depends on the ratio of the external
fields E1 and E2. When a field is switched on for a time
tw and then switched off, C = −1, and f collapses to the
form of “full” or “simple” aging f(t, tw) ∝ log(1 + tw/t),
which has been demonstrated to hold for several glasses
[8, 25]. Here, the reversibility of the modes played an im-
portant role: the amplitude corresponding to each mode

increases when the perturbation is applied and thereafter
relaxes exponentially.

Nevertheless, the interpretation of the slow dynamics
of the crumpled sheets as arising from a superposition of
exponentially relaxing eigenmodes of the linearized dy-
namics is incompatible with the experimental observation
described above, showing that the relaxation advances
via a series of discrete, audible events. Next, we suggest
a simple model to reconcile the measured aging behav-
ior with the discrete nature of the noise. Moreover, the
model leads to approximately log-Poisson statistics of the
discrete relaxation events, which appears to be consistent
with the experiments. Finally, within the revised model
we will not demand reversibility of the relaxation modes –
the effective description using the above model will arise
statistically, without invoking reversibility of individual
modes.

A stochastic model.- As in the phenomenological the-
ory of relaxations in structural glasses, we consider an
ensemble of two-level-systems (TLS), each characterized
by a barrier U between the two states and a bias ∆ corre-
sponding to the energy difference between the two states.
As TLS theory, we assume that the energy U is uniformly
distributed within some interval of width W . We as-
sume that the rate of transition from the higher energy
state to the lower energy state is given by λ = e−U/Teff ,
where Teff ≪ W is a constant (which in thermally-
driven systems corresponds to the temperature). For
the relaxations in the crumpled sheets we assume that
the transitions are irreversible. We also assume that the
application of a force affects the value of ∆, such that
a TLS which was previously in its lowest state may be
“destablized”. Such a TLS will ultimately return to its
ground state, albeit via a stochastic process whose rate
per unit time is λ. The transition is assumed to lead to
a strain relaxation by a small but finite amount accom-
panied by a discernible “click”. SM.IV provides a visual
comparison of simulations of this model, in contrast to
the continuous one.

We comment that the memory and aging behavior
within this model are identical to the one discussed
above. If we consider all TLS with the same λ, then after
time tw the fraction of those which remain in the higher
energy metastable state is e−λtw – hence they will play
the same role as a single exponentially decaying eigen-
mode of that relaxation rate. Nevertheless, note that
within this model the dynamics is stochastic and it is
only upon averaging over all modes with the same λ that
one recovers the aforementioned continuous picture.

Next, we proceed to find that statistics of the discrete
relaxation events generated by this model, in the one-step
protocol (in which a stress is applied to the system and
maintained). Note that in aforementioned aging experi-
ments rather than measuring the strain for a given stress
the opposite is done – the strain is fixed and the stress
relaxation quantified. We do not expect this to qualita-



4

FIG. 2. Stochastic simulation of the crackling statistics as-
suming a broad relaxation rate distribution (3000 modes with
rates between 10−6 and 10). (a) The typical time gaps be-
tween consecutive events increases linearly with time, as pre-
dicted theoretically. (b) Since the model assumes transitions
between independent two-level-systems, the autocorrelation
of time gaps vanishes for nonzero lags. Inset: Upon rescaling
time, the time gap distribution becomes Poisson, as shown
analytically in the main text.

tively change any of the conclusions, and base our discus-
sion on the former protocol, following Ref. [14], where
this striking phenomenon was first observed. Comparing
Theoretical and Experimental Results.- Consider the sys-
tem at time t. The probability that an unstable mode
with relaxation rate λ has not yet relaxed is e−λt. Since
each of these are independent and memoryless, the dis-
tribution of times to the next relaxation event is Poisson,
with a rate:

Λ =
∑
j

λj =

∫ ∞

0

e−λtλP (λ)dλ. (2)

In our case P (λ) ∝ 1/λ, and we find: Λ =
∫ λmax

λmin
e−λtdλ,

where λmin,max are the cutoffs of the relaxation rate dis-
tribution. Under the assumption that the experimental
timescales are far from these cutoffs, we find Λ ∝ 1/t.
This implies that at time t the mean time to the next
relaxation event is proportional to the time t, and expo-
nentially distributed:

P (∆t) = e−A∆t/t. (3)

Moreover, the proportionality constant A will be in-
versely proportional to the system size, since the number
of TLS must be extensive.

Eq. (3) describes the slowing down of the system:
as time goes by the time between relaxation events in-
creases. If we rescale ∆t by the measurement time t, we
find that it will follow Poisson statistics. This is very sim-
ilar (but not identical) to the log-Poisson statistics dis-
cussed in the context of noise in other glassy systems [26]:
For sufficiently large systems we have ⟨∆t⟩ = 1/Λ ≪ t,
in which case we may approximate:

xn+1 − xn = log(t+∆t)− log(t) ≈ ∆t/t, (4)

where xi is the logarithm of the time of the i’th click.
Since ∆t/t is Poisson distributed, we conclude that the

logarithm of event times approximately follows Poisson
statistics. This is tested numerically in Fig. 2b (inset).
In the SM.I we also derive the click statistics without

invoking the approximation used in Eq. (3), distinct from
the predictions of the record statistics model of Ref. [26].
Noise in the aging regime.- In the previous derivation,

the slowing down of the clicking rate scaled as 1/t, which
is intuitive since the relaxation is logarithmic. If each
click corresponds to a release of a constant amount of
energy, then the rate of change of the potential energy is
compatible with the click statistics. One may therefore
naively expect that the time derivative of the height to
determine the click statistics.
This intuition is in fact incorrect. To appreciate the

problem, it is instructive to consider the two-step proto-
col discussed above, which in previous works we and oth-
ers have found to provide more information and constrain
the possible model space. In the case E1 < E3 < E2, the
magnitude of the coefficient C of Eq. (1) is smaller than
1, and the relaxation curve is non-monotonic – imply-
ing that the sign of the signal derivative flips. Therefore
clearly the noise rate cannot be proportional to it.
In SM.II we calculate the noise in the aging regime,

which makes for a clear theoretical prediction; One ob-
tains a Poisson distribution for click statistics, p(∆T ) ∝
e−r∆t with parameter r(t):

r(t) =
2E3 − E1 − E2

t+ tw
+

E2 − E3

t
. (5)

At long times t ≫ tw one recovers the (E3−E1)/t scaling
– as expected. Note that when the non-monotonic relax-
ations reach a peak, the click statistics are not expected
to vanish – at this point the two subpopulations have
an identical switching rate. These predictions are cor-
roboration in the SM.III, where we find good agreement
between theory and experiments.
Discussion.- Here, we have studied, theoretically and

experimentally, the statistics of noise in a crumpled, thin
sheet undergoing slow relaxations of displacement under
constant load. By modifying the model previously pro-
posed for electron glasses, we reconcile the discrete na-
ture of the relaxation events manifested by short acous-
tic emissions, with the logarithmic relaxations observed
over many decades in time: the statistics are interpreted
to arise due to stochastic transitions between metastable
states, resulting in a macroscopic description mathemat-
ically equivalent to that of an ensemble of reversible two-
level-systems – a reversibility which played a key role in
explaining the aging behavior in this system in previous
work, and in particular the emergence of non-monotonic
relaxations. We also predict the noise statistics in this
aging regime, yet to be tested experimentally. Note that
within this study the system is always out-of-equilibrium:
this is distinct from previous studies showing that glasses
with logarithmic, slow relaxations will also exhibit 1/f
noise in their fluctuations around a metastable state [27].
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In fact, a variety of models were suggested over they
years to account for logarithmic relaxation in disordered
systems, including renewal processes [28] and record
statistics [26]. The latter also predicts the log-Poisson
statistics discussed here and also observed experimen-
tally in colloidal glasses[29]. However, these mechanisms
do not quantitatively explain the particular aging results
reported previously for crumpled thin sheets [13]. Inter-
estingly, there are parallels between our results here and
those observed for creep of rocks under uniaxial stress,
which also exhibit logarithmic time-dependence of strain.
Ref. [11] interpreted this logarithmic relaxation by con-
sidering failure of local regions, occurring with a rate that
is Arrhenius (i.e. exponentially) dependent on the local
parameters, assumed to be inhomogeneous. This bears
resemblance to the phenomenological model we propose
here, albeit with the distinction that while in brittle rocks
each region can fail once and in an irreversible manner,
the results of Ref. [13] illustrate the for the crumpled
sheets each “two-level-system” must be able to respond
in a reversible manner – this behavior lies at the heart of
the Kovacs-like, non-monotonic relaxations. The analogy
with brittle rock goes further, as, remarkably, Ref. [30]
was able to record the acoustic emissions associated with
the logarithmic creep, using high-precision accelerome-
ters. Their findings are parallel to the results of the
crumpled sheet, finding that acoustic emissions are lo-
calized in time, and that the rate of these events falls off
as 1/t.

Future studies should determine the microscopic origin
of the phenomenological model discussed here – do the
TLS correspond to bistable mechanical configurations,
recently shown to underlie the mechanics of crumpled
sheets [20, 31]? If so, what are their spatial extents,
and how do they mechanically interact with each other?
Note that within the current model, interactions were not
included. Furthermore, it is intriguing to find whether
these phenomena are related to recent work showing the
evolution of crease-formation in crumpled, thin sheets,
where a logarithmic dependence of the total crease length
with the number of crumpling events was shown both
experimentally [32] and theoretically [33].
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