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Whether there exist finite time blow-up solutions for the 2-D Boussinesq and the 3-D Euler equa-
tions are of fundamental importance to the field of fluid mechanics. We develop a new numerical
framework, employing physics-informed neural networks (PINNs), that discover, for the first time,
a smooth self-similar blow-up profile for both equations. The solution itself could form the basis of
a future computer-assisted proof of blow-up for both equations. In addition, we demonstrate PINNs
could be successfully applied to find unstable self-similar solutions to fluid equations by constructing
the first example of an unstable self-similar solution to the Córdoba-Córdoba-Fontelos equation. We
show that our numerical framework is both robust and adaptable to various other equations.

PACS numbers: 47.10.-g, 07.05.Mh, 47.11.-j, 47.54.Bd

A celebrated open question in fluids is whether or not
from smooth initial data the 3-D Euler equations may
develop finite-time singularities (the inviscid analogue of
the Navier-Stokes Millennium-prize problem). For non-
smooth C1,α initial data with 0 < α ≪ 1, finite-time
self-similar blow-up was proven in the groundbreaking
work of Elgindi [1, 2]. The question of finite-time blow-
up from smooth initial data remains unresolved.

In the presence of a cylindrical boundary, Luo and
Hou [3] (cf. [4]) performed compelling numerical simu-
lations proposing a scenario – sharing similarities with
Pumir and Siggia [5] (cf. [6, 7]) – for finite time blow-up
of the axi-symmetric 3-D Euler equations. They simu-
lated the time-dependent problem and observed a dra-
matic growth in the maximum of vorticity (by a factor
of 3 · 108), strongly suggesting formation of a singularity.
The work is also suggestive of asymptotic self-similarity.

To confirm the existence of the finite-time singularity
in the Luo-Hou scenario, and find its self-similar struc-
ture, we need to solve the self-similar equations associ-
ated with the axisymmetric 3-D Euler equations in the
local coordinates near the singularity, which poses an
extreme challenge to classical numerical methods as ex-
plained later. In this Letter, we develop a new numeri-
cal strategy, based on Physics-informed Neural Networks
(PINNs) that can solve the self-similar equations in a
simple and robust way. This new method allows us, for
the first time, to find the smooth asymptotic self-similar
blow-up profile for the Luo-Hou scenario. To the best of
our knowledge, the solution is also the first truly multi-
dimensional smooth backwards self-similar profile for an
equation from fluid mechanics.

Singularity formation for 3-D Euler equations with a

cylindrical boundary is intrinsically linked to the same
problem for the 2-D Bousinessq equations (cf. [4, 8–10]),
another fundamental question in fluid mechanics, men-
tioned in Yudovich’s ‘Eleven great problems of mathe-
matical hydrodynamics’ [11]. The mechanism for blow-
up for the two equations is believed to be identical. The
2-D Boussinesq equations take the form

∂tu+ u · ∇u+∇p = (0, θ),

∂tθ + u · ∇θ = 0, divu = 0 ,
(1)

where the 2-D vector u(x, t) is the velocity and the scalar
θ(x, t) is the temperature. We consider the spatial vari-
able x = (x1, x2) to be taken on the half plane x2 ≥ 0 and
impose a non-penetration boundary condition at x2 = 0
(x1-axis), namely u2(x1, 0) = 0.
To search for singularity formation for the Boussi-

nesq equations (1), we look for backwards [12] self-
similar solutions of the form u = (1 − t)λU(y) and
θ = (1 − t)−1+λΘ(y), where we define the self-similar

coordinates as y = (y1, y2) = (x1,x2)
(1−t)1+λ with λ > −1 yet

to be determined. Under such a self-similar ansatz, the
equations (1) become

−λU+ ((1 + λ)y +U) · ∇U+∇P = (0,Θ) ,

(1− λ)Θ + ((1 + λ)y +U) · ∇Θ = 0, divU = 0 .
(2)

The corresponding solution is expected to have infinite
energy [13]; however, we impose that the solution to (2)
has mild growth at infinity (see cost functions in Supple-
mentary Material) [14] which is an essential requirement
for such a solution to be cut-off to produce an asymp-
totically self-similar solution with a finite energy. [15]
Setting Ω = curlU = ∂y1U2 − ∂y2U1, Φ = ∂y1Θ and
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Ψ = ∂y2
Θ, we rewrite (2) in vorticity form

Ω + ((1 + λ)y +U) · ∇Ω = Φ ,

(2 + ∂y1U1)Φ + ((1 + λ)y +U) · ∇Φ = −∂y1U2Ψ ,

(2 + ∂y2U2)Ψ + ((1 + λ)y +U) · ∇Ψ = −∂y2U1Φ ,

divU = 0 .

(3)

To help find the solution, we impose the symmetries:
(U1,Φ,Ω) are odd and (U2,Ψ) are even in the y1 di-
rection. In addition, we impose U2(y1, 0) = 0 (the
non-penetration boundary condition). To guarantee the
uniqueness of the solution (removing scaling symmetry),
we constrain ∂y1Ω(0, 0) = −1. Finally, to rule out extra-
neous solutions, we impose that ∇U, Φ and Ψ all vanish
at infinity.

To describe the Luo-Hou scenario for the 3-D Euler
blow-up in the presence of boundary, we write the ax-
isymmetric 3-D Euler equations:

(∂t + ur∂r + u3∂x3
)
(
ωθ

r

)
= 1

r4 ∂x3
(ruθ)

2

(∂t + ur∂r + u3∂x3
) (ruθ) = 0

(4)

where (ur, uθ, u3) is the velocity in cylindrical coordi-
nates and ωθ is the angular component of the vorticity.
We introduce a cylindrical boundary at r = 1, and re-
strict to the exterior domain {(r, x3) ∈ r ≥ 1, x3 ∈ R}.
By imposing the self-similar ansatz (ux3 , ur) = (1 −
t)λU(y, s), ωθ = (1 − t)−1Ω(y, s), ∂r (ruθ)

2
= (1 −

t)−2Ψ(y, s) and ∂x3
(ruθ)

2
= (1 − t)−2Φ(y, s) for self-

similar coordinates y = (y1, y2) = (x3,r−1)
(1−t)1+λ and s =

− log(1− t), the 3-D Euler equation (4) becomes

(∂s +Ω) + ((1 + λ)y +U) · ∇Ω = Φ+ E1
(∂s + 2 + ∂y1

U1)Φ + ((1 + λ)y +U) · ∇Φ = −∂y1
U2Ψ

(∂s + 2 + ∂y2
U2)Ψ + ((1 + λ)y +U) · ∇Ψ = −∂y2

U1Φ

divU = E2 (5)

where the errors E1 and E2 are given by the expressions

E1= −y2e
−(1+λ)s (y2e

−(1+λ)s+2)(y2
2e

−2(1+λ)s+2y2e
−(1+λ)s+2)

(1+y2e−(1+λ)s)4
Φ

E2= −e−(1+λ)s U2

1+y2e−(1+λ)s .

We look for solutions which are asymptotically self-
similar: i.e. in self-similar coordinates they converge to
a stationary state as s → ∞. For such solutions, at any
fixed y, we have E1, E2 = O(e−(1+λ)s) and thus the er-
rors decay exponentially fast in self-similar coordinates
assuming that λ > −1. Thus, the self-similar equa-
tions (5) for Euler converge to Bousinessq (3) as s → ∞.
Namely, the self-similar solution for Boussinesq is identi-
cal to the asymptotic self-similar blow-up profile to Euler
with cylindrical boundary.

A key difficulty of solving the equation (3) lies in the
unknown parameter λ that needs to be solved simul-
taneously. We search for smooth non-trivial solutions

Self-similar
solution:

Equation residues

FIG. 1. Solution for (3) found by PINN. fi indicate the
residues, which are of five orders of magnitude smaller than
the solution. The inferred value of λ is 1.917 ± 0.002 after
systematic test (see Supplementary Material).

to (3), which exist for discrete λ values. This problem
is extremely challenging using classical evolution (time-
dependent) based numerical methods (cf. [3, 4, 16–20]).

Physics-informed neural networks (PINNs) were re-
cently developed [21, 22] as a new class of numerical
solver for PDEs and have been widely used in science
and engineering [23]. In PINNs, neural networks approx-
imate the solution to a PDE by searching for a solu-
tion in a continuous domain that approximately satis-
fies the physics constraints (e.g. equations and solution
constraints). PINNs have been successfully used to solve
not only forward problems but also inverse problems (e.g.
identifying the Reynolds number from a given flow and
the Navier-Stokes equation [21]), demonstrating the ca-
pacity of PINNs to invert for unknown parameters in the
governing equations. Here, we use a PINN to find not
only the self similar solution profile but also the unknown
self-similarity exponent λ. To guarantee the success of
PINN, it is critical to understand the key symmetries of
the problem, its spurious solutions, as well as intuition of
the qualitative properties of the solution (e.g. its geome-
try and asymptotics).

To find the self-similar solution for the Bousinessq
equation, we represent each of U1, U2, Ω, Φ or Ψ in the
Bousinessq equations (3) by an individual fully-connected
neural network with y1 and y2 as its inputs. We use
6 hidden layers with 30 units in each hidden layer for
each network and use the hyperbolic tangent function
tanh as the activation function. We impose the symme-
try of each variable (U1, U2,Ω,Φ,Ψ) by constructing the
function form qodd = [NNq(y1, y2)−NNq(−y1, y2)]/2 and
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qeven = [NNq(y1, y2) + NNq(−y1, y2)]/2, where NNq is
the neural network created for the variable q.

To train the neural network, we need a cost function
and an optimization algorithm. For PINNs, the cost
function is composed of two types of loss. The first is
the condition loss, which evaluates the residue of the so-
lution condition, where the residue here is defined as the
difference between the neural network approximated con-
dition and the true solution condition. The condition loss
can be written as

loss(j)c =
1

N
(j)
c

N(j)
c∑

i=1

g2(j) [yi, q̂ (yi)] , (6)

where g(j) (yi, q̂(yi)) indicates the residue of the j-th
boundary condition at the i-th position yi = (y1, y2)i and
q̂ (yi) indicates the neural network prediction of the vari-

able q. The parameter N
(j)
c indicates the total number of

points used for evaluating the j-th boundary condition.

The second type of loss is known as the equation loss,
which evaluates the residue of the governing equation av-
eraged over a set of collocation points over the domain.
The residue of the equation f(k) is defined as the error in
the equation calculated with the neural network predic-
tions. The equation loss can be written as

loss
(k)
f = 1

N
(k)
f

N
(k)
f∑

i=1

f2
(k) [yi, q̂ (yi)] , (7)

where f(k) (yi, q̂(yi)) indicates the residue of the k-th
equation evaluated at the i-th collocation point. The

parameter N
(k)
f denotes the total number of collocation

points used for the k-th equation. The residues of the
boundary conditions g(j) and equations f(k) involved in
the cost function are listed in the Supplemental Material.

We stress that all equations are local, which is an ad-
vantage of our method versus alternate methods that re-
quire a careful consideration of non-locality in infinite
domains. In our implementation, to approximate an infi-
nite domain, we introduce the coordinates z = (z1, z2) =
(sinh−1(y1), sinh

−1(y2)) (see Figure 2a) and consider a
domain z ∈ [−30, 30]2. In the y-coordinates, this corre-
sponds to a domain ≈ [−5 ·1012, 5 ·1012]2. The equations
written in z-coordinates are given in the Supplemental
Material.

The equations and conditions provided so far can only
find the unique solution to (3) for a specified λ. Figure 1
in the Supplementary Material shows the PINN solution
to (3) for λ = 3. The large equation residue at the origin
indicates the non-smoothness of the solution at the origin
(see Supplemental Material). To search for the right λ
that guarantees the smoothness of solutions, i.e. avoid-
ing the local peaks in the equation residue, we impose the
smoothness constraint to penalize the gradient of equa-

Adam

L-BFGS

Log-log scale

(a) (b)

Adam
L-BFGS

FIG. 2. (a) Spatial distribution of the collocation points.
Here (z1, z2) are the rescaled coordinates: y1 = sinh(z1) and
y2 = sinh(z2). 10,000 collocation points in total are used
for training. (b) Decrease of the total loss over the training
iterations. The inset shows the loss curve in a log-log scale.

tion residues around the non-smooth point (origin).

loss(k)s =
1

N
(k)
s

N(k)
s∑

i=1

∣∣∇f(k) (yi, q̄ (yi))
∣∣2 , (8)

where N
(k)
s indicates the total number of collocation

points close to the origin. The sum of (6), (7) and (8)
defines the final cost function

J(y,w) = 1
nb

nb∑
j=1

loss(j)c +γ( 1
ne

ne∑
k=1

loss
(k)
f + 1

ne

ne∑
k=1

loss(k)s )

where nb = 8 and ne = 6 are the total number of solution
conditions and governing equations used (see Supplemen-
tary Material). The constant γ is a hyper-parameter of
PINNs, known as the equation weight [24], which bal-
ances the contribution of the condition loss and equation
loss in the final cost function J(y,w). For Boussinesq,
we choose γ = 0.1 for optimal training performance.
The common optimization methods used for PINN

training are Adam [25] and L-BFGS [26]. Despite the
fact that no optimization method guarantees the con-
vergence to a global minimum, our empirical experience,
consistent with prior studies [27], shows that Adam per-
forms better at avoiding local minima, while L-BFGS has
a faster convergence rate throughout the training. Thus,
we use Adam first for 100,000 iterations and then L-
BFGS for 250,000 iterations to search for the self-similar
solution for the Bousinessq equations. Figure 2(b) shows
the convergence of the cost function J(y,w) throughout
the training iterations.
Figure 1 shows the approximate solutions to (3), along

with their corresponding equation residues. The equa-
tion residues are approximately five orders of magni-
tude smaller than that of the solution found. With the
smoothness constraint (8) the inferred exponent for the
smooth solution is λ ≈ 1.917. In the Supplementary
Material we show the robustness of the PINN predic-
tion with different random initialization and normaliza-
tion condition. We also demonstrate convergence of the
inferred λ with domain size. The solutions found by the
PINN are in agreement with the asymptotics of the time
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dependent solutions found by Luo and Hou [3, 4]. Ex-
trapolating from the paper [4], the work is suggestive of a
self-similarity exponent of λ ≈ 1.9, in agreement with the
exponent found by the PINN. Similarly to Luo and Hou,
the trajectories corresponding to the self-similar velocity
follow the geometry of a hyperbolic point at the origin.

The spatial distribution of the collocation points plays
a critical role for the success of PINN training. To guide
the neural network to find the correct self-similar solu-
tion for Bousinessq (3), we train the neural network to
prioritize the equation constraints around the origin. To-
wards this goal, we divide the domain into two regions,
one close to the origin and one far, in each region the
collocation points are uniformly distributed. We increase
the number of collocation points surrounding the origin.
Otherwise, the neural network prediction would likely be
trapped in a local minimum during the training.

The PINN-based scheme for finding self-similar blow-
up offers advantages in terms of both universality and ef-
ficiency. For universality, the above PINN scheme can be
generally applied to solving various self-similar equations
without the requirement of prior knowledge of specific
structure. For efficiency, the smooth self-similar solution
was in fact found by PINN throughout one single train-
ing. There is no continuation scheme or time evolution
required for the training, largely reducing the computa-
tional cost of the method. An additional major advan-
tage of the PINN scheme, as we will later demonstrate,
is its ability to find unstable self-similar solutions which
would be incredibly difficult, if not impossible to find via
traditional methods.

To validate our approach, we compare self-similar solu-
tions obtained to known results in the literature (Supple-
mentary Material). We apply the PINN scheme to find
non-smooth solutions to the Boussinesq equation, which
are in agreement with the explicit approximate solutions
of Chen and Hou [10] (Section 1.5 of the Supplementary
Material).

One of the simplest PDEs exhibiting self-similar blow-
up is the 1-D Burgers’ equation, which can be solved
analytically. The equation provides an excellent sandbox
to test and refine the PINN. Section 2 of the Supple-
mentary Material shows that the PINN scheme can find
stable, unstable and non-smooths self-similar solutions
to the Burgers’ equation. A common numerical strategy
to finding self-similar solutions is to introduce time de-
pendence into the problem: while this is straightforward
in the stable case, instabilities in the unstable case make
finding unstable self-similar profiles comparatively more
difficult, if not impossible. The PINN scheme does not
suffer this drawback and thus presents itself as a great
method for finding unstable smooth self-similar solutions.
This later fact will be reinforced below where we demon-
strate that the PINN is successful in finding new unstable
self-similar solutions that have applicability to an impor-
tant open problem in mathematical fluid dynamics.

FIG. 3. Comparison between stable and unstable solutions
with associated λ for CCF equation.

The generalized De Gregorio equation [28] is given by

ωt + auωx = ωux, where u =
x

∫
0
Hω = Λ−1ω

and H is the Hilbert transform. The equation is a gen-
eralization of the De Gregorio equation (a = 1) [29] and
has been proposed as a one-dimensional model for an
equation for which there is nontrivial interaction of ad-
vection and vortex stretching (modeling behavior of the
3-D Euler equations).
The case a = 0, in the absence of advection, is known

in the literature as the Constantin-Lax-Majda equation.
In this simple case, exact self-similar blow-up solutions
can be constructed [30]. The case a = −1 (known as the
Córdoba-Córdoba-Fontelos (CCF) model) was proposed
as a model of the surface quasi-geostrophic (SQG) equa-
tion and it also develops finite time singularities [31]. In
the case a < 0, advection and vortex stretching work in
conjunction leading to finite time singularities [32]. The
case a > 0 leads to the competition of the two terms. By
a clever expansion in a, smooth self-similar profiles were
constructed in [33] for small, positive a, leading to fi-
nite time blow-up. Via a computer-assisted proof, Chen,
Hou, and Huang in [34] proved blow-up for the De Gre-
gorio equation (a = 1).

Lushnikov et al. [35] represents the most thorough nu-
merical study of the generalized De Gregorio equation
to date. In [35], self-similar solutions were found in the
whole range a ∈ [−1, 1] and beyond. We use their re-
ported parameters as benchmarks for our results. In the
Supplementary Material [36], we show that PINN can
accurately reproduce the findings of [35].

Returning to the specific case of CCF (a = −1), an in-
teresting question to add fractional dissipation (−∆)α/2

and ask for which values of α do singularities occur.
Blow-up is known to occur for 0 ≤ α < 1

2 , whereas for
α ≥ 1 the problem is global-wellposed [37–39]. The be-
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havior in the range 1
2 ≤ α < 1 remains an important

open problem.

Assuming the ansatz ω = 1
1−tΩ(

x
(1−t)1+λ , s) for

s = − log(1 − t), then in the self-similar evolution
equation for Ω, the dissipative term takes the form
e((1+λ)α−1)s(−∆)

α
2 Ω. Analogous to how self-similar

Boussinesq solutions can be used to construct asymptot-
ically self-similar solutions to Euler with boundary, self-
similar inviscid CCF solutions satisfying the condition
(1 + λ)α − 1 < 0 may be employed to construct asymp-
totically self-similar solutions to dissipative CCF. Since
λ ≈ 1.18078 for the stable self-similar solution to inviscid
CCF, such a solution is ill-suited to prove blow-up in the
parameter range 1

2 ≤ α < 1. Motivated by known work
on the Burgers’ equation [40, 41] and compressible Euler
[42, 43], one could conjecture the existence of a discrete
hierarchy of unstable solutions with decreasing λ. By
windowing the parameter λ, including additional deriva-
tives of the governing equation in our residues, and using
the constraint Ω(0.5) = 0.05 to renormalize, the PINN
discovers an unstable self-similar solution corresponding
to λ ≈ 0.60573 (see Figure 3). Such a solution would al-
low us to prove blow-up for dissipative CCF for the range
α < 1

1+λ ≈ 0.61. Moreover, such a result is suggestive of
a possible strategy of addressing the Navier-Stokes Mil-
lennium Prize [44], i.e. via unstable self-similar solutions
to 3-D Euler (the same strategy has proved successful
for dissipative Burgers’ and compressible Navier-Stokes
[43, 45, 46]). One expects that the PINN may be adapted
to find higher order unstable solutions to CCF as well as
unstable solutions to the Boussinesq equation – this is
subject of future work.
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