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Finding the transient and steady state properties of open quantum systems is a central problem in
various fields of quantum technologies. Here, we present a quantum-assisted algorithm to determine
the steady states of open system dynamics. By reformulating the problem of finding the fixed point
of Lindblad dynamics as a feasibility semidefinite program, we bypass several well known issues
with variational quantum approaches to solving for steady states. We demonstrate that our hybrid
approach allows us to estimate the steady states of higher dimensional open quantum systems and
discuss how our method can find multiple steady states for systems with symmetries.

Introduction.— Understanding open system evolu-
tion is central to modern quantum technologies such as
computing, thermodynamics [1–3], chemistry [4], and
quantum transport [5]. Since such evolution maps ini-
tial quantum states to future states, both transient
and steady state properties are available in the struc-
ture of the evolution operator. Sparing few analytically
tractable systems, generic open system evolution has to
be solved numerically to understand both transient and
steady state dynamics of the system. Such classical sim-
ulation techniques are limited due to the exponential
growth of Hilbert space. Some specific sampling prob-
lems can be simulated classically [6–9] and tensor net-
works can be deployed for scenarios with limited entan-
glement growth [10–17]. For generic open system evo-
lution by contrast, such a classical simulation is limited
to few dozen qubits in the presence of symmetries. Usu-
ally, such problems are either simplified by the presence
of strong local dissipators which reduce the amount of
entanglement generated or by low dimensionality of the
problem. Outside of these special cases, the issue of
generic open system evolution has remained unsolved.

The advent of small quantum computers heralds a new
variety of solutions to the problem of determining the
transient and steady state solutions to such open sys-
tem evolution. One strategy involves implementing open
system evolution on an intermediate scale quantum com-
puter and tomographically measuring the quantum state
at various times [18]. An equivalent method for com-
pletely positive maps would be to quantum simulate and
measure the Choi matrix associated with the open sys-

tem evolution [19–21]. These tomographic methods re-
quire exponentially large number of measurements and
hence are practically infeasible. Another group of closely-
related strategies involves first implementing L, the Li-
ouville superoperator associated with the open system
evolution, on a quantum computer. After implementing
L on a quantum computer, the different strategies to find
the non equilibrium steady states (NESS) include meth-
ods like a combination of Trotterisation and imaginary
time evolution using L [22], quantum phase estimation
on L [23], and variational quantum algorithms (VQAs)
to find the kernel of L†L [24]. These different but related
strategies have their own individual drawbacks. Trot-
terisation and phase estimation approaches are known
to be infeasible on our current quantum devices with
short coherence times, and the variational optimisation
approaches suffers from the difficulty of optimising over
a non-convex space [25–27]. Lastly, all of these methods
that rely on the superoperator representation L of the
open system evolution suffer from the large dimensional-
ity of the Liouville space.

In this paper, we propose a hybrid algorithm for
the determination of NESS. Through our approach, the
steady state problem can be recast as solving a feasibility
semidefinite program (SDP) [28–30]. We show that such
an approach to find the NESS is viable on a NISQ device.
Our first contribution is to restate the NESS problem as
a feasibility SDP, which is an SDP where the goal is to
find a feasible solution satisfying the positive semidefinite
and linear constraints [28–30]. Our second contribution is
that we do not use a variational quantum state/circuit as
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the ansatz [24, 31–33]. By doing so, we bypass the prob-
lems [34–37] associated with training variational quan-
tum algorithms with their non-convex landscape, which
is known to be non-deterministic polynomial-time (NP)
hard [25–27]. We show that our algorithm naturally
enforces positivity constraint of a physical density ma-
trix and provides methods to enforce additional con-
straints systematically while retaining the advantages of
quantum-assisted methods [35, 37–40], like providing a
method to systematically gain a more expressible, prob-
lem aware ansatz.

Non-equilibrium steady states.— Open system dy-
namics under Born, Markov and secular approximations
are often described by a time-local master equation given
by ρ̇ = L[ρ] where

L[ρ] = −i[H, ρ] +
∑
n

γn

(
AnρA

†
n − 1

2
{A†

nAn, ρ}
)
.

Such an evolution preserves conditions for valid den-
sity matrices. The transient and steady states of this
evolution are characterized by the spectrum of the Li-
ouville superoperator [5], defined by the vectorization
BρC → C∗ ⊗ B |ρ⟩. Steady states are understood to
satisfy L[ρ] = 0 or equivalently L |ρ⟩ = 0, where L is
the Liouville superoperator that arises from the vectori-
sation of L. Since these steady states do not usually
correspond to a thermal equilibrium, they are referred
to as non-equilibrium steady states (NESS). We refer to
the problem of obtaining the steady state(s) of a given
Liouville evolution as the NESS problem, which is solved
classically by matrix diagonalization. However, due to
the increase in dimensionality, diagonalization of the full
spectrum is usually unfeasible. Furthermore, the evolu-
tion of n-dimensional density matrices in Liouville space
are represented by n2 × n2 matrices. This squared di-
mensionality implies that numerical techniques can find
the entire spectrum of only modest open quantum sys-
tems, usually relying on Arnoldi type methods [41–44],
which become quite cumbersome for many-body systems
of moderate size.

Hence, there is interest in understanding if quantum
computers, with their inherent dimensionality advan-
tages in simulating quantum systems over classical com-
puters, can solve the NESS problem. For NISQ devices,
it was shown that the NESS problem can be mapped to
a variational problem in Liouville space [24]. The subse-
quent variational problem is solved by using a parame-
terized quantum state or quantum circuit as the ansatz,
and relies on forms of VQA. This approach has two main
concerns. Firstly, it is unclear how to systematically en-
force the positivity constraint for the density matrix in
this approach, as the variational quantum state/quantum
circuit, which is a vector, must eventually correspond
to a physical density matrix using the vectorisation de-
scribed above. Secondly, optimizing over the set of pure

states tends to not be convex and hence difficult, and
indeed has been shown to be NP-hard, reasons including
the parameter landscape containing exponentially many
persistent local minima that are far from the global min-
imum [25–27] (See Supplemental Material [45]). Other
VQA methods that do not explicitly rely on this map to
Liouville space [31] face similar problems.
Quantum Feasibility SDP Approach.— We circum-

vent the non-convex optimization problem in the Liou-
ville space by optimizing over the convex set of density
matrices. This allows us to directly apply a feasibility
SDP, one consequence of which is that we can now sys-
tematically enforce the positive semidefinite condition. A
feasibility SDP admits the following form: Find X, X ∈
Sl
+, such that Tr(CkX) = vk, ∀k ∈ 1, 2, . . . c. Here, Sl

+

represents the set of l× l symmetric PSD matrices. This
is the problem of determining if it is possible to find a
matrix X subject to the PSD constraint and the other
given constraints. The matrices Ck belong to the set
of symmetric matrices Sl for k ∈ {1, 2, · · · c}. The k-th
element of vector v ∈ Rc is denoted by vk. SDPs can
be formulated for complex-valued matrices via a cone of
Hermitian positive semidefinite matrices i.e. X ∈ Hl

+.
Since SDPs for real valued matrices are a special case of
SDPs for complex-valued matrices, we will consider the
latter case in this paper. Since ρ̇ = L[ρ] is linear in ρ,
the NESS problem is a feasibility SDP.

We consider a state ansatz of the form

ρ =
∑
i,j

βij |χi⟩ ⟨χj | . (1)

Here, βij are matrix elements of a positive semidefi-
nite matrix β, whereas |χi⟩ states can be from any set of
quantum states. We see that β being positive semidefi-
nite is both a necessary and sufficient condition for ρ to
be positive semidefinite. The condition Tr (ρ) = 1 be-
comes Tr (βE) = 1, where E is a matrix with matrix
elements Eij = ⟨χi|χj⟩.
With the chosen ansatz, the NESS problem becomes

Find β s.t.− i(DβE − EβD)

+
∑
n

γn

(
RnβR

†
n − 1

2
FnβE − 1

2
EβFn

)
= 0, (2)

β ≽ 0, (3)

Tr(βE) = 1, (4)

where γn are the strengths of the dissipators, D,R, F
are matrices defined as Dij = ⟨χi|H|χj⟩, (Rn)ij =

⟨χi|An|χj⟩ and (Fn)ij = ⟨χi|A†
nAn|χj⟩. This reduction

of the NESS problem to a feasibility SDP [29, 78] defined
over β is motivated by the idea that a judicious choice
of the states |χi⟩ in some problem-aware manner could
possibly allow us to do an optimisation over a smaller
dimensional convex landscape (compared to ρ). Further-
more, the positive semidefiniteness condition of ρ. can
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be enforced naturally. We utilize CVX [79], that relies
on a disciplined convex programming algorithm [80, 81].

We can also easily enforce additional linear constraints
of the form Tr(βX) = x, whereX and x are arbitrary ma-
trices and values respectively. This feature of our scheme
is absent in the existing algorithms for solving NESS on
NISQ devices and is further discussed below.

The overlap values for the matrix elements of the
E,D,R, F matrices can be measured on a NISQ quan-
tum computer [48]. In general, how we choose the |χi⟩
states to form our ansatz will contribute strongly to how
our algorithm scales. For a general Hamiltonian, ab-
sent of exploitable symmetries, the size of the optimal
ansatz will grow exponentially with the size of the prob-
lem. (see Supplemental Information [45]). Even in the
worst case where we require exponentially large numbers
of |χi⟩ states in our ansatz, we do not map the problem to
an equivalent one in Liouville space and avoid the afore-
mentioned squared dimensionality that comes from doing
optimization in Liouville space. Hence in the worst case,
our method is at least quadratically better than analo-
gous variational algorithms.

Unless otherwise stated, we choose cumulative K mo-
ment states ( CSK states ) [39] which provide us with
a systematic way to generate an increasingly expressible
problem aware ansatz. These states rely heavily on cal-
culating expectation values of powers of the Hamiltonian
⟨ψ|Hk|ψ⟩ which can be done efficiently [53, 54]. They al-
ternatively can also be easily obtained by calculating the
expectation value of Pauli strings [38, 39] (see [45] for de-
tails). By using the CSK states as an ansatz, the size of
the β matrix that will be calculated scales as δK , where
δ is the number of terms in the Hamiltonian, for small
K. While this is typically not scalable, we emphasize
that our method need not use CSK states as its ansatz.
Our main contribution is in approaching the steady state
problem in terms of a SDP, and the choice of ansatz in
our paper is secondary. A more efficient method of gener-
ating an ansatz can be used, if we have greater knowledge
of the underlying symmetries of the system. Note that
the SDP itself could also be sped up with the help of a
quantum computer [82].

The algorithm can hence be summarised as (a) choose
a hybrid ansatz for ρ using a set of chosen quantum states
{|χi⟩} (b) calculate the entries of the overlap matrices
on the quantum computer, (c) we use the matrices in a
SDP optimization routine run on a classical computer to
obtain the approximate NESS.

Examples.— We demonstrate our algorithm with
some examples. Consider a two qubit transverse field
Ising model with the Hamiltonian H2 = (1/2)σ1

Zσ
2
Z +

gσ1
X + gσ2

X , together with local dissipators A1 = σ1
Z ,

A2 = (1/2)(σ1
X − iσ1

Y ), A3 = σ2
Z and A4 = (1/2)(σ2

X −
iσ2

Y ). For all instances presented in Fig. 1, our hybrid
algorithm outputs a density matrix ρ that is unit trace,
Hermitian, positive semidefinite and that fulfils the NESS
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FIG. 1. Expectation values for two qubit transverse field Ising
model. γs set at 1. Fidelity is equal to 1 for all values of
g. Our method gives strong agreement with the theoretical
results.

condition ρ̇ = 0. To study the robustness of the algorithm
for larger chains, in Fig. 2 we show simulation results for
the transverse field Ising model up to eight qubits. For
the five qubit and eight qubit systems presented in Fig. 2,
when increasing K, we choose from the CSK ansatz, a
random subset of new states, as highlighted in the Sup-
plementary Information. A comparison with the existing
NISQ approach in [24] for the eight qubit case is also
given in the Supplementary Information [45].
We note that for the model chosen, as g increases, the

exact NESS solution has larger rank and is less sparse.
We find that for such situations, a larger ansatz size is
needed to obtain an approximate NESS with similar fi-
delity. We also note that the CSK ansatz performs effi-
ciently when the steady states are low rank. When this
is not the case, it is expected that any NISQ algorithm
based on such ansatzes will underperform. Likewise, we
note that another choice that significantly influences the
ansatz is the choice of initial states, where recent results
on solving the ground state problem can aid in providing
useful initial states [83].
Strong symmetries.— One additional complication

with the NESS problem is that systems with symmetries
can exhibit multiple NESS [5]. Our algorithm can also be
extended to certain cases where multiple NESSs are ex-
pected. If there is a strong symmetry in the system, then
the Hilbert space can be decomposed into the symmetry
subspaces, namely

H =

nU⊕
α=1

Hα, Hα = Span
{
|ψ(k)

α ⟩
}
, k ∈ [1, dα]. (5)

Here |ψ(k)
α ⟩ are the eigenvectors of the unitary U which

characterise the system’s strong symmetry. The corre-
sponding eigenvalues are uα, α ∈ [1, nU ], where 1 ≤
nU ≤ D is the number of distinct eigenvalues of U , and
k ∈ [1, dα], where dα is the dimension of the subspace
corresponding to the eigenvalue uα. This decomposition
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FIG. 2. Results for the transverse field Ising model with lo-
cal dissipators described in the main text. The corresponding
fidelity value between the state obtained and the theoretical
state, for CSK ansatz of different ansatz sizes K, are com-
pared. a) Results for 5 qubits. b) Results for 8 qubits. For
larger g, we note that the exact NESS becomes much less
sparse. To continue to obtain good fidelities in this regime,
we require larger number of states in our ansatz.

can be extended to the operator space B(H), through

B(H) =

nU⊕
α=1

nU⊕
β=1

Bαβ , (6)

where Bαβ = Span
{
|ψ(n)

α ⟩ ⟨ψ(m)
β |

}
, n ∈ [1, dα],m ∈

[1, dβ ]. Each orthogonal subspace can each contribute
to the NESS solution, since each subspace Bαβ can have
a solution ραβ such that L[ραβ ] = 0. Hence, our algo-
rithm finds a solution which is a linear combination of
the solutions from all the Bαβ subspaces. We note that
physical density matrices (with unit trace) can only exist
in the diagonal sub spaces Bαα due to the orthogonality
between the eigenvectors from different Hα. However,
precisely because the unphysical density matrices from
Bαβ , α ̸= β have trace 0, they can contribute to physical
solutions found by forming linear combininations with
a physical density matrix, which changes physical prop-
erties of the solution. There are at least nU physical,
distinct NESS, which we label as ρ∗α, where ρ

∗
α ∈ Bαα.

If another strong symmetry is present, these nU different

ρ∗α can be further decomposed into NESS from the new
symmetry sectors.

Generalization of our method for multiple NESS.—
We can systematically obtain all the physical steady

states that exist in all the symmetry subspaces for quan-
tum systems with multiple steady states, if we have
knowledge of the full Lindbladian. The simplest way
would be to directly construct an ansatz that lies in the
desired symmetry subspace. If we have the capacity on
the quantum computer to generate such states, which
has been demonstrated for Dicke states [55] and states
that conserve total magnetization in the XXZ Heisenberg
chain [56], we can simply generate such a set of states
and use that to construct our hybrid ansatz for our algo-
rithm. This method has the added advantage of reducing
the size of the ansatz, due to the reduction of the pos-
sible solution space. For example, we use the quantum
circuit proposed in [56] for the eight qubit XXZ Heisen-
berg chain with dephasing noise and obtained a fidelity
of nearly 1 to the theoretical NESS in the m = 4 symme-
try subspace with only 28 states in our ansatz. Here, m
is the eigenvalue of the total magnetization operator M .
However, this method is limited due to difficulty in devis-
ing circuits that conserve a general symmetry. Thus, we
also propose two general methods to find multiple NESS.

The first method utilizes the SDP structure of the op-
timization. For each operator Nk that corresponds to the
kth strong symmetry in our system, a NESS is found that
is in the symmetry subspace corresponding to a particu-
lar eigenvalue nk of Nk, by including the linear constraint
Tr(βÑk) = nk in the SDP, where (Ñk)ij = ⟨χi|Nk |χj⟩.
These additional linear constraints are additional, ef-
ficiently implementable, hyperplanes in the parameter
space that the optimizer needs to fulfil.

As an example, we consider a XXZ Heisenberg chain
on a system with n qubits, HXXZ =

∑n−1
j=1 σ

j
Xσ

j+1
X +

σj
Y σ

j+1
Y +∆σj

Zσ
j+1
Z , and dephasing noise, defined by the

n jump operators Li = σi
Z . The total magnetization

M =
∑n

i=1 σ
i
Z commutes with the Hamiltonian and all

jump operators Li, generating a strong symmetry given
by Sz = eiϕM . This gives rise to n + 1 magnetization
blocks, each associated with an eigenvalue of M and has
its own unique NESS.

Considering the additional constraint Tr(βM̃) = m,
where M̃ij = ⟨χi|M |χj⟩, our first method is able to ob-
tain a solution which is in themmagnetization symmetry
sector of M that agrees with the exact results. We em-
phasize that the usage of the quantum computer scales
linearly with the number of constraints, as we do not
need to measure the D,E, F,R matrices several times.

The second method does not require us to add addi-
tional constraints into the SDP, which allows our classical
post processing to be more numerically stable. It utilizes
the structure of a Vandermonde matrix to systematically
remove the contributions from unwanted subspaces by
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applying the symmetry operator to the state and is dis-
cussed in detail in the Supplemental Information [45].

Conclusion.— We present a new algorithm for find-
ing NESS solutions of open systems. Our approach re-
states the NESS problem as a feasibility SDP, which is
a well known and well characterized optimization prob-
lem. We believe that this is the first work to apply this
approach to solving master equations. As a consequence
of our approach, we are able to utilize NISQ devices to
aid a classical computer in its calculation, by offload-
ing the difficult task of calculating expectation values of
arbitrary Pauli strings to the quantum computer. Uti-
lizing this quantum assisted approach to NISQ devices,
our algorithm retains all of the advantages that such al-
gorithms have over competitors that rely on variationally
optimizing a quantum circuit.

Our algorithm provides three main advantages over its
NISQ competitors. Firstly, since it frames the NESS
problem as a feasibility SDP, it allows us to bypass many
of the problems associated with traditional variational
quantum algorithms on NISQ devices, such as the bar-
ren plateau problem and training over the non-convex
landscape in the state space. Secondly, it provides a nat-
ural way to enforce the positivity constraint of density
matrices during the optimization, along with any other
constraints we would want to implement. One example
where being able to enforce other constraints is when
multiple steady states exist. Lastly, our method also
gives us a systematic way to increase the expressibility
of our ansatz without sacrificing trainability.

Our work opens up many avenues for research. NISQ
devices are already utilized to study the ground states
of chemical substances [57]. Most believe that studying
open system many-body Hamiltonians, like the fermionic
Hubbard model in the presence of generic dissipations,
are classically intractable [58]. It is hoped NISQ devices
and NISQ algorithms can make the simulation of such
problems possible [59]. Our method extends these studies
to open quantum systems and widens the range of appli-
cations. Furthermore, we believe our method can be used
as a tool to assist environmental engineering [60] of open
quantum systems. Studying how noise and ansatz choice
affects quantum-assisted methods such as ours are inter-
esting problems to consider in the future. We believe it
is possible to extend our algorithm to allow constraints
over continuous variables, which changes the optimiza-
tion program into a semi-infinite feasibility problem [61].
We expect all of these to have a substantial impact on
the NESS problem in the near and far term.
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