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Adding magnetic flux to a band structure breaks Bloch’s theorem by realizing a projective repre-
sentation of the translation group. The resulting Hofstadter spectrum encodes the non-perturbative
response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap
closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator).
In this work, we present a real-space classification of these Hofstadter phases. We give topological
indices in terms of symmetry-protected Real Space Invariants (RSIs), which reveal the bulk and
boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity
in tight-binding models causes the symmetries which are broken by the magnetic field to reen-
ter at strong flux where they form projective point group representations. We completely classify
the reentrant projective point groups and find that the Schur multipliers which define them are
Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur
multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology.

Introduction. The magnetic translation group1 is a fa-
mous example of how symmetries acquire projective rep-
resentations in quantum mechanics, dramatically alter-
ing the behavior of the system. When magnetic flux is
threaded through a two-dimensional crystal, the transla-
tion operators Ti along the ith lattice vector no longer
commute and instead form a projective group

T1T2 = eiφT2T1, φ =
e

~

∮
A · dr, (1)

where A is the vector potential of the magnetic field, e is
the electron charge, and the flux φ is the Aharanov-Bohm
phase difference between the two paths around the unit
cell2. The square lattice3 provides a concrete realization
of Eq. (1), which results in a fractal energy spectrum
known as the Hofstadter Butterfly. In this work, we find
that point group (PG) symmetries can also be projec-
tive in strong flux. Their representations constrain the
Hofstadter butterfly of a generic model in the paradigm
of Hofstadter topology4, where magnetic flux acts as a
pumping parameter (a third dimension)5–7. We classify
Hofstadter semimetals (SMs) with protected gap clos-
ings and Hofstadter higher order topological insulators
(HOTIs) with boundary state pumping in all magnetic
PGs. Their topological indices are written in terms of
real space invariants (RSIs)8–11 calculated with and with-
out flux. Hofstadter physics has garnered attention from
many directions12–42, especially with the profusion of ex-
periments on moiré materials43–52 up to 2π flux53. Our
results offer a unified, symmetry-based approach54,55 to
the problem while shedding new light on 2D topology.

Hamiltonians. The Hofstadter Hamiltonian Hφ de-
scribes electrons in a constant perpendicular magnetic
field via the Peierls substitution56,57. We choose units
where ~, e, and the unit cell area equal one, so φ =∇∇∇×A.
Consider a hopping term 〈r′|H|r〉 = trr′ , where |r〉

an electron state at r. Under the Peierls substitution,

〈r′|Hφ|r〉 = trr′ exp i
∫ r′

r
A ·dr. The “Peierls path” along

which the integral is taken can be determined by the
Wannier functions of the zero-field groundstate58 and in
the simplest case is a straight line. Because the Peierls
paths are determined by the ground state electron den-
sity, the paths themselves respect the lattice symmetries.
The spectrum of Hφ is gauge-invariant but depends on
the Peierls paths. Importantly, Hφ+Φ = UHφU† has a
nontrivial periodicity in flux4, where

U |r〉 = exp

(
i

∫ r

r0

AΦ · dr
)
|r〉 , ∇∇∇×AΦ = Φ (2)

where r0 is the position of an arbitrary but fixed orbital,
and the integral is taken along (any) sequence of Peierls
paths. Thus the spectrum is periodic in Φ ∈ 2πN, defined
such that all closed integrals along Peierls paths enclose
a multiple of 2π flux and U is single-valued (Fig. 1). For
nearest neighbor hoppings on the square lattice, Φ = 2π.

Symmetries. We now discuss the symmetries of crys-
talline systems composed of n-fold rotations Cn, mir-
rors M = Mx,My, and anti-unitary time reversal T . In
nonzero flux, the symmetries divide into two categories
(see Fig. 2). M and T flip the sign of φ while rotations
preserve it, so CnT and M are broken but Cn and MT
remain in flux (see59 and references60–67 therein). The
symmetries broken in flux play a crucial role in the Hofs-
tadter spectrum. In fact, these symmetries are reentrant
at strong flux φ = Φ/2. If [CnT , Hφ=0] = 0, then

UCnT HΦ/2(UCnT )−1 = UH−Φ/2U† = HΦ/2 (3)

so UCnT is a symmetry of HΦ/2. The same is true for
UM and UT . Since U is a diagonal unitary matrix in the



2

FIG. 1. Square lattice with nearest neighbor (dashed red)
and diagonal (solid red) hoppings. With straight line Peierls
paths, Φ = 2π × 2 because the minimal loop (shaded red)
encloses area 1/2, shaded gray. In blue, we show examples of
the flux-Φ string created by U from r0 to an orbital at R. The
path of the flux string is unobservable and may be deformed
arbitrarily along Peierls paths because the difference in flux
(shaded blue) is a multiple of 2π.

orbital basis and T acts locally on the orbitals, we have
(UT )2 = T 24. These reentrant symmetries can form a
projective representation of the point group Gx.

FIG. 2. PG symmetries preserved (blue) and broken (red) in
flux. At multiples of Φ/2, the broken symmetries are reen-
trant as implemented by the flux periodicity operator U .

Consider a Wyckoff position x and fix A(r) = φ
2 ẑ ×

(r − x) to be in the symmetric gauge centered at x so
the Cn ∈ Gx operator remains unchanged in flux (see59).
To determine the group structure of the symmetries at
φ = Φ/2, we derive59 the commutation relation

C†nUCn = eiγxU, γx =
1

n

∫
Cx

AΦ · dr mod 2π (4)

from Eq. (2) where Cx is a Cn-symmetric loop taken along
Peierls paths enclosing x. We prove that γx is indepen-
dent of the choice of loop59, but we emphasize that γx
depends on the Wyckoff position x. Note that γx ∈ 2π

n Zn
is quantized because all closed loops along Peierls paths
enclose multiples of 2π flux. If |λ〉 is an eigenstate of
Hφ=0 with Cn eigenvalue λ, then U |λ〉 is an eigenstate
of HΦ since HΦ = UHφ=0U†. The eigenvalue of U |λ〉 is

CnU |λ〉 = e−iγxUCn |λ〉 = λe−iγxU |λ〉 (5)

so γx 6= 0 indicates angular momentum is transferred
with flux, indicating irrep flow. Finally, if there is an or-
bital of the Hamiltonian located at x, then we can shrink
the loop Cx to be a single point, and hence γx = 0 (see

Fig. 3a). Conventional straight-line Peierls paths can
have nontrivial γx, as shown in Fig. 3b where γ1a = 0
but γ1b = π. When referring to a fixed PG and Wyckoff
position, we will drop the x subscript.

FIG. 3. Calculating γx at x = 1a, 1b on the square lattice with
Peierls paths given in Fig. 1 which enforce Φ = 4π. (a) At the
1a position (black), γ1a = 0. (b) At the 1b position, γ1b = π,
which we calculate using Eq. (4) by choosing a C4-symmetric
path around the unit cell on nearest-neighbor Peierls paths. If
we considered an alternate model without the diagonal Peierls
path, then Φ = 2π and γ1b = π/2.

The reentrant symmetries UCnT and UM can form
nontrivial central extensions of the conventional PGs at
Φ/2 flux when γ 6= 0, leading to projective representa-
tions which we call non-crystalline. In the context of
group theory, γ is referred to as the Schur multiplier or
2-cocyle of the central extension. For instance, consider
the PG Gx = 41′ which is generated by C4 and T . Let
us now consider φ = Φ/2 where the point symmetries

generating G
Φ/2
x are C4 and UT . These symmetries can

generate a projective representation of 41′ which we de-
note by 4γ1′, γ = π/2, π, 3π/2. We build their irreps
from the C4 eigenstates |λ〉 in Eq. (5). Using Eq. (4),
C4UT |λ〉 = e−iγλ∗UT |λ〉. If λ 6= e−iγλ∗, then |λ〉
and UT |λ〉 must be distinct states which carry a 2D
irrep since they are transformed to each other by C4. If
γ = π/2, there are two 2D irreps which we denote by
1EA and 2EB (see Table I). If γ = π, we find a 2D irrep
AB and two 1D irreps 1E, 2E. From the group theory
perspective, 4π1′ is actually not a nontrivial central ex-
tension: it can be lifted to the non-projective group 41′

by taking C4 → iC4. However, this redefinition is not
physically permissible: the overall phase of C4 is fixed by
the angular momenta (mod 4) of the orbitals in the ba-
sis, e.g. C4 acts as +1 on s orbitals, for all values of the
flux. Thus while 41′ and 4π1′ are isomorphic as groups,
they are physically different. In 41′, 1E2E corresponds
to px-py orbitals, while in 4π1′, AB corresponds to s-d
orbitals, and the transition between the two groups en-
forces irrep flow. We enumerate all of the non-crystalline
PGs and their irreps in Ref.59, finding 51 non-crystalline
PGs reentrant in magnetic flux, in comparison to the 31
crystalline PGs at zero flux. We note that the projective
group 2πmm first appeared in Ref.68, where the nontriv-
ial Schur multiplier was crucial for the calculation of the
bulk quadrupole moment. All PGs and their irreps ap-
pear on the Bilbao Crystallographic Server69.

Hofstadter Response of an Obstructed Atomic State.
The symmetry and topology of Hφ=0 determine the flux
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41′ 1 C4 C2

A 1 1 1
B 1 −1 1

1E2E 2 0 −2

4π/21′ 1 C4 C2

1EA 2 1− i 0
2EB 2 −1 + i 0

4π1′ 1 C4 C2

AB 2 0 2
1E 1 −i −1
2E 1 i −1

TABLE I. We list the (partial) character tables for the irreps
of 41′ and two of its projective representations without SOC.
(The irreps of 43π/21′ are the complex conjugates of 4π/21′.)
We name the irreps according to their C4 eigenvalues where
A,B,1E,2E correspond to +1,−1,−i, i respectively.

response and hence have a fundamental effect on the
Hofstadter spectrum. A nonzero mirror Chern number
enforces a bulk gap closing in finite flux4,50,70–72 and a
nonzero Kane-Mele index enforces edge state pumping
in flux for Φ/2π odd, while a trivial atomic state re-
mains gapped4. We now show that symmetry-protected
analogues of these phases also exist. Their topological
invariants may be found in59.

We first study the Hofstadter SM state which is defined
by an enforced gap closing at finite flux φ ∈ (0,Φ). We
consider a fixed Wyckoff position with PG Gx at zero

flux, G
Φ/2
x at Φ/2 flux, and Gφx ⊆ Gx at generic flux.

In a Hofstadter SM, the bulk gap is closed in φ when
a level crossing occurs. To avoid eigenvalue repulsion,
the crossing states must be different irreps of Gφx, and
thus the ground states before and after the crossing have
different irreps. Before showing formally how RSIs detect
this irrep exchange, we give a simple example.

Consider a Hamiltonian on open boundary conditions
with s orbitals at corners of a square (four 1a sites). The
center is the x =1b position and has Gx = 41′. We in-
clude nearest and second nearest neighbors with straight-
line Peierls paths in flux, exactly as in Fig. 3b. In the
symmetric gauge centered at 1b, we obtain (see59)

Hφ
4 =


0 te−iφ/4 t′ teiφ/4

teiφ/4 0 te−iφ/4 t′

t′ teiφ/4 0 te−iφ/4

te−iφ/4 t′ teiφ/4 0

 . (6)

The diagonal hopping t′ sets Φ = 4π and γ1b = π
(Fig. 3b). The symmetries at φ = 0 are C4 which per-
mutes the sites around 1b and T = K which is complex
conjugation. C4 remains a symmetry for all φ, but T
is broken in flux. Although the spectrum is 4π-periodic,
the eigenstates are not. Eq. (5) shows there is irrep flow,
e.g. if the lowest energy eigenstate of H4 at φ = 0 is
an A irrep, then at φ = Φ the lowest energy eigenstate
is a B irrep because γ1b = π. In this case, the ground
state has changed irreps although C4 symmetry is never
broken, but this is only possible if there is a gap closing
in flux. This gap closing can also be predicted entirely
from the projective symmetries at φ = Φ/2 = 2π. There
UT reenters as a symmetry with U = diag(1,−1, 1,−1)
computed from Eq. (2). Table I shows that at φ = Φ/2,
the PG is 4π1′ which has the irrep AB, so the level cross-
ing occurs at exactly φ = Φ/2 where the A and B irreps

are degenerate (see Fig. 4). In this example, the Hofs-
tadter SM phase was deduced from only zero-flux data:
a nonzero Schur multiplier and the irreps of the ground
state of Hφ=0 enforced irrep flow at Φ and a gap closing
exactly at Φ/2. We call such phases “Peierls-indicated.”

In this decoupled example, the multiplicities of each
irrep at x = 1b characterized the whole ground state.
In a general Hamiltonian with nontrivial bands where
the number of irreps at a Wyckoff position is not adia-
batically well-defined, we use RSIs to study irrep flow.
Defined in Ref.8, RSIs are linear combinations of the mo-
mentum space irrep multiplicities at the high-symmetry
points of the occupied bands, and thus are invariant un-
der symmetry-preserving perturbations that do not close
the gap. They contain local information about the Wan-
nier state representations at each Wyckoff position. In-
deed, the RSIs can be equivalently computed in real
space on open boundary conditions11 from the Wannier
states at x and are invariant under Gx-allowed deforma-
tions that change the occupied irreps at x. For instance
in Gx = 41′, four Wannier states in the representation
A⊕B ⊕ 1E2E can be moved off x because they form an
induced representation of the lower symmetry position8.
However, the RSIs δi = {m(B) − m(A),m(1E2E) −
m(A)} are invariant under this process and are deter-
mined by the momentum space irreps. Here m(ρ) is the
multiplicity of the irrep ρ. In general, RSIs are invariant
unless the gap is closed (changing the occupied states dis-
continuously) or the symmetries protecting them are bro-
ken. The RSIs of the non-crystalline PGs are computed
in Ref.59 using the Smith Normal form8. We now formal-
ize the Hofstadter SM invariants using RSIs. To do so,
we assume that the φ = 0 ground state is gapped and has
vanishing Chern number C = 0 so that integer-valued lo-
cal RSIs are well-defined8. From the Streda formula73,74

Cφ/2π = n mod 1, C = 0 means we only consider fixed
integer fillings for all φ. Here n is the fractional num-
ber of electrons per unit cell. If n /∈ N, then C 6= 0.
Chern insulators were shown earlier to yield Hofstadter
semimetals4 whose gap closing occurs at φ ≤ 2π/|C|50.

Hofstadter SM. Previously, we exemplified how Cn en-
forces a gap closing due to irrep flow (equivalently, a
change of RSIs) in the occupied states. Generally, with
M and T which relate the spectrum at ±φ, we obtain a
finer classification by comparing the RSIs at φ = 0,Φ/2
denoted δφ=0, δφ=Φ/2. A gap closing can be detected by
an incompatibility of the RSIs δφ=0 and δφ=Φ/2 when re-
duced to the Gφx subgroup. Perturbing away from φ = 0
or φ = Φ/2, the PG is reduced to Gφx as the symmetries
that reverse the flux are broken. The occupied states do
not change under this infinitesimal perturbation (since
C = 0), and the RSIs of Gφx can be determined from
δφ=0 and δφ=Φ/2 by irrep reduction8. We denote the
RSIs determined from the reduction of Gx → Gφx and

G
Φ/2
x → Gφx as δφ→0

i and δ
φ→Φ/2
i respectively (i indexes

the RSIs of Gφx). The Hofstadter SM index is

δSMi = δφ→0
i − δφ→Φ/2

i . (7)
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FIG. 4. Hofstadter spectrum of an obstructed atomic state
whose Peierls paths give Φ = 4π, γ1b = π. The flat band limit
is analytically solvable (see59) and is shown in blue (valence
bands) and black (conduction bands). Small terms can be
added to broaden the bands, and the Hofstadter spectrum in
this case is shown in gray. In the flat band limit where the
valence bands are compact Wannier functions, each is labeled
by its C4 irrep with a crossing at Φ/2. Note that the 1E2E
irrep protected by T is broken by flux.

We prove Eq. (7) from the properties of the RSIs. If
there is no gap closing between 0 and Φ/2 flux, then the
RSIs of Gφx cannot change because the symmetries of Gφx
exist at all flux. Hence if δSMi 6= 0, a gap closing must
occur to change the occupied states. With Cn symmetry
alone, the gap closings from irrep flow are detected for-

mally by Hofstadter SM index δφ=0
i − δφ=Φ

i , which can
be written solely in terms of δφ=0 since the irreps at Φ
are determined by U59. Moreover, we check exhaustively
that Eq. (7) also diagnoses the gap closings protected by
irrep flow (even though they only compare RSIs at 0 and
Φ/2 flux) due to the degeneracies protected at φ = Φ/2.
We list the Hofstadter SM indices in all PGs in59, finding
Z indices with Cn and Z2 indices with MT .

We illustrate Eq. (7) with Hφ
4 . Table IIV in Ref.59

contains the RSIs of Gx = 41′ and G
Φ/2
x = 4π1′ (see59

for examples of the calculation). Their reduction to the
RSIs of Gφx = 4 follows from 1E2E → 1E ⊕ 2E near
φ = 0 and AB → A ⊕ B near φ = Φ/2 (see Table I).
Using Eq. (7), we find a Z3 Hofstadter SM index:

δSMi = {δφ=0
1 , δφ=0

2 + δ
φ= Φ

2
2 , δφ=0

2 − δφ= Φ
2

1 + δ
φ= Φ

2
2 } .

(8)
We see that the SM phase is Peierls-indicated because

δφ=0
1 6= 0 enforces a gap closing, i.e. any zero-flux state

with γ1b = π and δφ=0
1 = m(B) − m(A) 6= 0 at the 1b

Wyckoff position is a Hofstadter SM. This is exactly the
same gap closing diagnosed by irrep flow, since A and B
irreps exchange between φ = 0 and φ = Φ. We generalize
H4 to a full lattice model in an obstructed atomic phase
(see59) and show the protected crossings in Fig. 4.

Hofstadter HOTI. We now consider the Hofstadter
HOTI phase defined by nontrivial flow of Wannier states

FIG. 5. Hofstadter HOTI with C2T . (a) Spectrum of a per-
turbed QSH model on 30×30 open boundary conditions with
Φ = 2π, γ1d = π. The degenerate corner states at φ = 0 are
pumped into the bulk according to δHOTI1d = 1 mod 2. (b)
Cartoon of bulk Wannier flow from φ = 0 (red) to φ = π
(blue). The dots represent electron Wannier centers, and the
red hollow circle represents a hole Wannier center reflecting
the fragile topology at φ = 0. Flux breaks C2T , allowing the
Wannier states to flow off the Wyckoff positions. The frag-
ile topology at φ = 0 is trivialized as the electron and hole
Wannier states meet and annihilate, yielding a trivial atomic
state at φ = π enforced by (UC2T )2 = −1 at the 1b position.

through the bulk over φ ∈ (0,Φ/2). On open boundary
conditions, this flow is manifested as a pumping cycle of
edge/corner states into the bulk. For the Wannier states
to evolve continuously, we require that δSMi = 0 at all
Wyckoff positions so that there is no enforced bulk gap
closing (see Eq. (7)). We develop topological invariants
for these phases by detecting charge flow onto/off of a
given Wyckoff position between φ = 0 and Φ/2. Explic-
itly, we compute the number of Wannier states at x by
counting their representations:

Nx =
∑
ρ∈Gx

m(ρ) dim(ρ) . (9)

Of course, Nx is not an adiabatic invariant because Wan-
nier states can move onto and off of x if they form
an induced representation. However Nx is adiabati-
cally conserved modulo the dimension of the induced
representation8. For instance, in PG 41′, Nx mod 4 is
conserved (and can be written in terms of RSIs) because
only multiples of 4 states can be moved while preserving
C4. Generally, we find that there exists nG ∈ N such that

δHOTIx = Nφ=0
x −Nφ=Φ/2

x mod nG (10)

can be written in terms of RSIs. Recall that a nonzero
RSI off an orbital position diagnoses corner states on
open boundary conditions8,68,75,76. Thus Eq. (10) diag-
noses a Hofstadter HOTI phase because corner states are
smoothly pumped onto/off of x if δHOTIx 6= 0. In59, we
compute the compatibility conditions δSMi = 0 and then
Hofstadter HOTI invariants for all PGs.

We now give an example in magnetic PG 2′ with-
out SOC and γx = π, which can be obtained from the
nearest-neighbor square lattice where Φ = 2π, such as
the quantum spin Hall (QSH) model77. PG 2′ has a
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single irrep A where D[C2T ] = K, which squares to +1.
States can only be moved offsite in C2T -symmetric pairs,
so the RSI protected by C2T is δ = m(A) mod 2 and
can be calculated from the nested Wilson loop6,68,78 or
the Stiefel-Whitney invariants79–83. At Φ/2 flux, PG 2′π
has a single 2D irrep AA because UC2T squares to −1.
This PG has no RSI because the two states carrying AA
can always be moved offsite in opposite directions while
respecting UC2T . Correspondingly, the Wilson loop is
always trivial4. In generic flux, Gφ = 1 because C2T
is broken. Hence the gaps at φ = 0 and φ = Φ/2 are
trivially compatible: δSM1 = 0. The total charge Nx is

Nφ=0
x = m(A) = δφ=0

1 mod 2, Nφ=Φ/2
x = 0 mod 2. (11)

The Hofstadter HOTI invariant is simply δHOTIx =
δφ=0
x ∈ Z2, and is Peierls-indicated. The HOTI in-

dex Eq. (11) describes a pumping process where a state
pinned to x (which gives a corner state on open bound-
ary conditions) is released as φ is increased and C2T is
broken. Fig. 5a shows an example of this phase using a
perturbed QSH model (see59) with C2T -protected frag-
ile topology showing corner modes (red) pumped into the
bulk. Choosing straight-line paths on the square lattice,
this model has Φ = 2π, γ1d = π (in p2′, the 1d positon is
(1/2, 1/2)) and hence has a Peierls-indicated Hofstadter
HOTI phase. At φ = 0, mass terms added to the original
QSH model break all symmetries except C2T such that
the two occupied bands have fragile topology indicated by
nonzero RSIs δφ=0

x = 1 mod 2 at the four Wyckoff posi-
tions x =1a,1b,1c,1d59. Since Nφ=0

x = δφ=0
x mod 2, the

nonzero RSIs identify a bound ±1 charge at each x. Ef-
fectively, the RSIs protect a hole-like Wannier state with
charge −1 mod 2 = 1 at one of the Wyckoff positions,
yielding a total charge per unit cell of 1+1+1−1 = 2 as
required by the number of occupied bands. This is the
fragile obstruction to an atomic limit, which is removed
as flux breaks C2T , allowing the hole-like Wannier state
to move off its Wyckoff position, annihilate, and reach
the trivial state at φ = π enforced by (UC2T )2 = −1.

Discussion. The appearance of projective symmetries
in strong flux enables zero-flux RSIs to constrain the
Hofstadter spectrum. This work has completely classi-
fied the resulting 51 non-crystalline 2D PGs and demon-

strated that the symmetries and topology of Hφ=0, en-
coded in the RSIs, dictate universal features of its spec-
trum in flux. Our results give observable bulk sig-
natures of obstructed atomic and fragile phases. Al-
though we have focused on crystalline systems, acous-
tic materials offer alternative platforms where projec-
tive symmetries have already gathered interest84–88. In-
deed, the projective representation of C2T has already
been experimentally achieved84,89 and synthetic gauge
fields in these platforms have been used to experimen-
tally confirm irrep flow due90,91. Additionally, we note
that the Hofstadter topological indices derived here de-
pend only on the local PG symmetries, and thus still
apply to high-symmetry points in quasi-crystalline sys-
tems without translations92–95. Lastly, the ever expand-
ing family of moiré materials has already allowed access
to the strong flux regime where signatures of the reen-
trant symmetries have been proposed96 and reentrant
phases observed53. The single-particle projective sym-
metries unveiled here may also be approximately realized
in continuum models97,98, giving rise to otherwise impos-
sible many-body phenomena in strong flux58,99–101.
Note Added. A manuscript posted on the same day

(Ref.102) also studies the topology of Hofstadter bands in
magnetic flux. Ref.102 employs a momentum space topo-
logical quantum chemistry approach at π flux and obtains
stable invariants in certain wallpaper groups. Instead,
we work in real space and classify Hofstadter responses
in flux for all (projective) point group symmetries.
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Phys. Rev. Lett., 126:056401, Feb 2021. doi:
10.1103/PhysRevLett.126.056401. URL https://

link.aps.org/doi/10.1103/PhysRevLett.126.056401.
30 Kuan-Sen Lin and Barry Bradlyn. Simulating higher-

order topological insulators in density wave insula-
tors. Phys. Rev. B, 103(24):245107, June 2021. doi:
10.1103/PhysRevB.103.245107.

31 Zheng-Wei Zuo, Wladimir A. Benalcazar, Yunzhe Liu,
and Chao-Xing Liu. Topological phases of the dimer-
ized Hofstadter butterfly. Journal of Physics D Applied
Physics, 54(41):414004, October 2021. doi:10.1088/1361-
6463/ac12f7.

32 Qiao-Ru Xu, Emilio Cobanera, and Gerardo Ortiz. Bloch
and Bethe ansatze for the Harper model: A butterfly with
a boundary. arXiv e-prints, art. arXiv:2107.10393, July
2021.

33 Yuria Otaki and Takahiro Fukui. Higher-order
topological insulators in a magnetic field. Phys.
Rev. B, 100(24):245108, December 2019. doi:
10.1103/PhysRevB.100.245108.

34 Faruk Abdulla, Ankur Das, Sumathi Rao, and Ganpa-
thy Murthy. Time-reversal-broken Weyl semimetal in the
Hofstadter regime. arXiv e-prints, art. arXiv:2108.03196,
August 2021.

35 Biao Lian, Fang Xie, and B. Andrei Bernevig.

http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevB.27.6083
https://link.aps.org/doi/10.1103/PhysRevB.27.6083
https://link.aps.org/doi/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevLett.128.246602
http://dx.doi.org/10.1103/PhysRevLett.128.246602
http://dx.doi.org/10.1126/science.aaz7650
http://dx.doi.org/10.1126/science.aaz7650
http://dx.doi.org/10.1103/PhysRevLett.128.087002
http://dx.doi.org/10.1038/s41467-021-26765-z
http://dx.doi.org/10.1016/j.physe.2022.115311
http://dx.doi.org/10.1103/PhysRevB.104.035161
http://dx.doi.org/10.1103/PhysRevB.104.035161
http://dx.doi.org/10.1103/PhysRevB.104.035305
http://dx.doi.org/10.1103/PhysRevB.104.035305
http://dx.doi.org/10.1103/PhysRevLett.126.056401
http://dx.doi.org/10.1103/PhysRevLett.126.056401
https://link.aps.org/doi/10.1103/PhysRevLett.126.056401
https://link.aps.org/doi/10.1103/PhysRevLett.126.056401
http://dx.doi.org/10.1103/PhysRevB.103.245107
http://dx.doi.org/10.1103/PhysRevB.103.245107
http://dx.doi.org/10.1088/1361-6463/ac12f7
http://dx.doi.org/10.1088/1361-6463/ac12f7
http://dx.doi.org/10.1103/PhysRevB.100.245108
http://dx.doi.org/10.1103/PhysRevB.100.245108


7

Open momentum space method for the Hofstadter
butterfly and the quantized Lorentz susceptibility.
Phys. Rev. B, 103(16):L161405, April 2021. doi:
10.1103/PhysRevB.103.L161405.

36 Daniel Shaffer, Jian Wang, and Luiz H. San-
tos. Theory of Hofstadter superconductors. Phys.
Rev. B, 104(18):184501, November 2021. doi:
10.1103/PhysRevB.104.184501.

37 Koichi Asaga and Takahiro Fukui. Boundary-obstructed
topological phases of a massive Dirac fermion in a mag-
netic field. Phys. Rev. B, 102(15):155102, October 2020.
doi:10.1103/PhysRevB.102.155102.

38 Irakli Titvinidze, Julian Legendre, Maarten Grothus,
Bernhard Irsigler, Karyn Le Hur, and Walter Hofstetter.
Spin-orbit coupling in the kagome lattice with flux and
time-reversal symmetry. Phys. Rev. B, 103(19):195105,
May 2021. doi:10.1103/PhysRevB.103.195105.

39 Sheng Li, Xiao-Xue Yan, Jin-Hua Gao, and Yong Hu.
Circuit QED simulator of two-dimensional Su-Schrieffer-
Hegger model: magnetic field induced topological phase
transition in high-order topological insulators. arXiv e-
prints, art. arXiv:2109.12919, September 2021.

40 Y. Otaki and T. Fukui. Higher order topological insulators
in a magnetic field. arXiv e-prints, art. arXiv:1908.10976,
Aug 2019.

41 Simon Becker, Lingrui Ge, and Jens Wittsten. Hofstadter
butterflies and metal/insulator transitions for moiré het-
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sulators from projective symmetry. arXiv e-prints, art.
arXiv:2107.14579, July 2021.

87 Haoran Xue, Ding Jia, Yong Ge, Yi-jun Guan, Qiang
Wang, Shou-qi Yuan, Hong-xiang Sun, Y. D. Chong, and
Baile Zhang. Observation of dislocation-induced topolog-
ical modes in a three-dimensional acoustic topological in-
sulator. arXiv e-prints, art. arXiv:2104.13161, April 2021.

88 L. B. Shao, Q. Liu, R. Xiao, Shengyuan A. Yang, and
Y. X. Zhao. Gauge-field extended k · p method and
novel topological phases. Phys. Rev. Lett., 127:076401,
Aug 2021. doi:10.1103/PhysRevLett.127.076401. URL
https://link.aps.org/doi/10.1103/PhysRevLett.

127.076401.
89 Xiao Xiang, Feng Gao, Yugui Peng, Qili Sun, Jie Zhu,

and Xuefeng Zhu. Acoustic mirror Chern insulator with
projective parity-time symmetry. arXiv e-prints, art.
arXiv:2209.02349, September 2022.

90 Valerio Peri, Zhi-Da Song, Marc Serra-Garcia, Pascal
Engeler, Raquel Queiroz, Xueqin Huang, Weiyin Deng,
Zhengyou Liu, B. Andrei Bernevig, and Sebastian D. Hu-
ber. Experimental characterization of fragile topology in
an acoustic metamaterial. Science, 367(6479):797–800,
February 2020. doi:10.1126/science.aaz7654.

91 Zhi-Kang Lin, Ying Wu, Bin Jiang, Yang Liu, Shiqiao
Wu, Feng Li, and Jian-Hua Jiang. Experimental realiza-
tion of single-plaquette gauge flux insertion and topologi-
cal Wannier cycles. arXiv e-prints, art. arXiv:2105.02070,
May 2021.

92 Callum W. Duncan, Sourav Manna, and Anne E. B.
Nielsen. Topological models in rotationally symmet-
ric quasicrystals. Phys. Rev. B, 101:115413, Mar 2020.
doi:10.1103/PhysRevB.101.115413. URL https://link.

aps.org/doi/10.1103/PhysRevB.101.115413.
93 Dean Johnstone, Matthew J. Colbrook, Anne E. B.
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