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Many elastic structures exhibit rapid shape transitions between two possible equilibrium states:
umbrellas become inverted in strong wind and hopper popper toys jump when turned inside-out.
This snap-through is a general motif for the storage and rapid release of elastic energy, and it is
exploited by many biological and engineered systems from the Venus flytrap to mechanical metama-
terials. Shape transitions are known to be related to the type of bifurcation the system undergoes,
however, to date, there is no general understanding of the mechanisms that select these bifurcations.
Here we analyze numerically and analytically two systems proposed in recent literature in which
an elastic strip, initially in a buckled state, is driven through shape transitions by either rotating
or translating its boundaries. We show that the two systems are mathematically equivalent, and
identify three cases that illustrate the entire range of transitions described by previous authors. Im-
portantly, using reduction order methods, we establish the nature of the underlying bifurcations and
explain how these bifurcations can be predicted from geometric symmetries and symmetry-breaking
mechanisms, thus providing universal design rules for elastic shape transitions.

Bistability and snap-through transitions are key phe-
nomena in many biological [1, 2] and manmade [3, 4] sys-
tems. Bistability refers to a system with two stable equi-
librium states. Snap-through occurs when a system is in
an equilibrium state that becomes unstable or suddenly
disappears, as a control parameter is varied. Familiar
examples range from the Venus flytrap [1] to children’s
toys [3] and ancient catapults [5]. Mechanical metama-
terials, whose behavior is governed by their geometric
structure rather than elastic properties, can be designed
to exploit these instabilities to induce shape transitions
and switch between multiple modes of functionality [6].
Elastic strips of length L, whose ends are first brought

together by a distance ∆L to cause the strip to buckle
into one of two stable shapes (Fig. 1A, Movie S1), then
driven by boundary actuation, provide an intuitive sys-
tem to demonstrate shape transitions (Figs. 1 and 2,
Movies S2 and S3) [4, 7]. Starting from the Euler-buckled
strip with clamped-clamped (CC) boundary conditions
(BCs), when both ends are rotated symmetrically and
held at a non-zero angle α, one equilibrium takes an
‘inverted’ shape while the other maintains its ‘natural’
shape. A larger rotation causes the inverted shape to
snap to the natural shape. Rotating only one end also
creates a violent snap-through, albeit of different char-
acter [4]. A clamped-hinged (CH) strip with the hinged
end free to rotate in place and the clamped end sheared
by a distance d in the direction transverse to the buckled
shape exhibits snap-through [7]. A similar set-up with
CC BCs leads to graceful merging of the two equilibrium
states.
Despite the relative simplicity of realizing these tran-

sitions experimentally [4, 7], an understanding of how
shape transitions are selected remains lacking. In a beau-
tiful analysis, [4] showed that snap-through in asymmet-
ric BCs arises from a saddle-node bifurcation and argued
that in the case of symmetric BCs, it results from a sub-

critical pitchfork bifurcation, without explaining what
leads to this change in the character of the bifurcation as
BCs change. In [7], the authors alluded to similarities be-
tween their system and that of [4]. However, to date, no
general theory exists for designing systems that achieve
or avoid a specific type of transition. Here, we combine
numerical and analytical methods to reveal the mecha-
nisms governing shape transitions in boundary-actuated
elastic strips, and we prove that the two systems in [4, 7]
are equivalent. Importantly, to predict the type of bifur-
cation and establish design rules for creating a desired
shape transition, we show that these transitions are gov-
erned by geometric symmetries.
Symmetry is one of the most fundamental concepts

in physics. Symmetries shape the energy landscape and
govern the equilibrium configurations the system can
adopt. Broken symmetries are often invoked to explain
transitions in a range of physical systems from condensed
matter physics [8] to quantum field theory [9], turbu-
lence theory [10], fluid dynamics [11], biological locomo-
tion [12, 13], and combustion phenomena [14]. Simple
one-dimensional (1D) examples from bifurcation theory
show that a broken symmetry can turn a graceful pitch-
fork bifurcation into a violent saddle-node bifurcation (SI
[15], §S1), [16]. Extending this understanding to infinite-
dimensional systems is challenging to researchers and ed-
ucators alike. The understanding we develop for elastic
strips could thus serve as an educational tool to illus-
trate the role of symmetry-breaking in the bifurcation of
continuum systems.
We investigate the bifurcation behavior of the elas-

tic strips introduced in [4, 7] numerically (Figs 1–2),
by leveraging the three-dimensional (3D) Cosserat the-
ory [17], and its discrete counterpart, the Discrete Elastic
Rod [18] (SI [15], §S2). To establish bifurcation diagrams
and carry out asymptotic analysis, we also analyze the
strip’s behavior in the limit of small deflection w(x, t),
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Figure 1. (A,B) Elastic buckled strip with clamped-clamped boundary conditions exhibits two symmetric stable equilibria UA and
UB, and pairs of unstable equilibria of alternating symmetry at increasing energy levels, SA and SB denoting the first unstable pair (SB
not shown). (C-F) Actuation of buckled strip by (quasi-statically) translating its left end by a distance d leads to loss of bistability and
a shape transition that depends on BCs: (C,E) CH strip exhibits a violent snap-through, (D,F) the transition in the CC strip is smooth.
(A-D) 3D computer graphics rendering of the Cosserat numerical simulations. (E,F) midpoint deflection w/

√

L∆L versus bifurcation
parameter d/

√

L∆L. In all figures, (green) square markers represent data obtained based on the Cosserat rod theory. Solid (green) and
dashed (brown) lines represent, respectively, stable and unstable branches obtained from the Euler beam model.

with −L/2 < x < L/2, based on the Euler-Bernoulli
Beam theory ([3, 4], and SI [15], §S2),

ρbh
∂2w

∂t2
+B

∂4w

∂x4
+ F

∂2w

∂x2
= 0. (1)

The material properties of the strip are denoted by ρ
(density), b (width), h (thickness), and B = Ebh3/12
(bending stiffness, with E the Young’s modulus). The
applied compressive load is denoted by F . In this limit,
the inextensibility condition gives rise to the nonlinear
constraint equation

∫ L/2

−L/2

(

∂w

∂x

)2

dx = 2∆L. (2)

The Euler-buckled strip (Fig. 1A,B) admits an infinite
family of static equilibria that come in pairs, ordered
by increasing value of elastic bending energy Eb (SI [15],
§S4). We refer to members of the same pair as twin

solutions. The fundamental buckling mode, i.e., lowest
energy level, corresponds to two stable U-shape equilib-
ria (UA and UB). Higher modes are unstable and alter-
nate between odd and even harmonics. The first unstable
mode gives rise to a twin of S-shape equilibria labeled SA
and SB.
Through systematic numerical experiments, we inves-

tigate how boundary actuation modifies the UA and UB

equilibria. In Fig. 1, we control the transverse distance
d at the clamped end of the CH and CC strip (SI [15],
§S5). In Fig. 2, we control the rotation at one or both
ends of the CC strip by specifying the tangent direction
(angle α) at the boundaries (SI [15], §S6). The control

parameters are varied incrementally starting from the
twin solutions UA,B, allowing the elastic strip to reach
mechanical equilibrium at each increment. In Fig. 1E,F
and Fig. 2D-F, we plot the strip’s midpoint deflection
w, normalized by the length scale

√
L∆L, as a func-

tion of the non-dimensional control parameters d/
√
L∆L

and α
√

L/∆L, respectively. Bistability is lost beyond a
certain threshold in all cases, but the character of this
transition depends on boundary actuation. Asymmet-
ric and symmetric rotations cause snap-through from the
inverted (UA) to the natural (UB) shape, as does trans-
verse shearing of the CH strip. The dynamic evolution
of the strip differs during snapping: the displacement of
the midpoint grows quadratically in time in the asym-
metric case, while it grows exponentially in time in the
symmetric case [19]. Antisymmetric rotations and trans-
verse shearing of the CC strip induce graceful merging
of the equilibrium shapes UA,B. These findings are con-
sistent with experimental observations [4, 7], and agree
quantitatively with [4].

To understand the mechanisms leading to the similar-
ities and differences in these shape transitions, we solved
Eqs. (1-2) to arrive at analytic expressions for the infinite
set of twin equilibria for each type of boundary actuation,
and we assessed their linear stability subject to small per-
turbations (SI [15], §S2-S5). This analysis matches quan-
titatively the numerical solutions in Figs. 1E,F and 2D-F
for small ∆L, and shows that, depending on the type of
boundary actuation, the stable equilibrium UA that is
energetically unfavored by the boundary actuation must
collide with one or both unstable SA,B equilibria at the
shape transition.
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Figure 2. Boundary actuation and bifurcation diagrams from (quasi-statically) rotating one or both clamped ends in (A) asym-

metric, (B) symmetric and (C) antisymmetric fashion. (D-F) Midpoint deflection as a function of bifurcation parameter µ = α
√

L/∆L.
Experimental data from [4] are superimposed. (G-I) Asymptotic analysis near the bifurcation point µ∗ gives access to normal forms
describing the amplitude A(t) of the leading order mode. Bifurcation diagrams of the normal forms (black lines) agree quantitatively with
data obtained from the Euler beam equations (green and brown lines) and Cosserat simulations (green and brown square markers), and
experimental data.

Importantly, the similarity of the bifurcation diagrams
in Figs. 1 and 2 is not a coincidence. We proved, by intro-
ducing a frame of reference attached to the line connect-
ing the strip’s endpoints, that transverse shearing of the
strip is equivalent to rotation of its boundaries (SI [15],
§S8). Hereafter, we use the strip actuated by rotating its
endpoints, with µ = α

√

L/∆L as the bifurcation param-
eter, when discussing geometric symmetries and the role
they play in selecting the type of bifurcation underlying
a shape transition.

So which symmetries matter? Three symmetries are
important and best introduced in the context of the
Euler-buckled strip at µ = 0: top-bottom reflection
(w → −w), left-right reflection (x → −x), and π-rotation
(w → −w and x → −x). Eqs. (1-2) are invariant un-
der all three transformations (SI [15], §S3). Because the
state of the system is infinite dimensional, we calculate

the bending energy Eb = (EI/2)
∫ L/2

−L/2
(∂2w/∂x2)2dx at

UA,B and SA,B and depict the energy landscape semi-
schematically on a reduced 2D space consisting of the
deflection w evaluated at the strip’s mid- and quarter-
length (Fig. 3A; SI [15], §S10). In Fig. 3B, we unfold the
energy landscape along the closed black curve connect-
ing the U- and S-shapes. This representation highlights
two important properties at µ = 0: the minimum energy
barrier – difference in Eb between SA,B and UA,B – that
the strip needs to overcome in order to undergo a shape

transition from UA to UB, and the geometric symmetries
that map UA to UB and SA to SB, and vice-versa. Specif-
ically, the left-right symmetry maps each U-solution to
itself and the top-bottom and π-rotation symmetries map
a U-solution to its twin, whereas the π-rotation symme-
try maps each S-solution to itself and the top-bottom
and left-right symmetries map an S-solution to its twin.
Hereafter, we refer to the π-rotation that maps the U-
twin shapes to one another as the U-twin symmetry and
the left-right reflection that maps the S-twin shapes to
one another as the S-twin symmetry. The type of shape
transition the system undergoes for µ 6= 0 is directly re-
lated to which twin symmetry gets broken by boundary
actuation.

Asymmetric boundary actuation breaks both U- and
S-twin symmetries. It requires UA to bend more than
UB and SA to bend more than SB, thus increasing the
bending energy of UA and SA and decreasing that of UB

and SB (Fig. 3C). This causes UA and SB to monotoni-
cally approach each other until they merge and suddenly
vanish. The system must jump to UB. Symmetric ac-
tuation breaks the U-twin symmetry but conserves the
S-twin symmetry. It requires UA to bend more than UB

but it equally affects SA and SB. Thus, SA and SB re-
main energetically equivalent while the energetic state
of UA increases and approaches that of SA and SB until
they all merge in a single unstable equilibrium (Fig. 3D),
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Figure 3. (A) Energy landscape at µ = 0: two potential wells at the two stable equilibria UA,B separated by lowest energy barriers at
the first pair of unstable equilibria SA,B. The two paths connecting UA to UB via either SA or SB constitutes the energetically cheapest
routes to pass from UA to UB. (B) 1D periodic representation of energy landscape. (C-E) Rotating one or both of the boundaries reshapes
the energy landscape: breaking both U- and S-twin symmetries leads to a saddle-node bifurcation; breaking either U- or S-twin symmetry
leads to a pitchfork bifurcation.

leaving the system no option but to jump to UB. Anti-
symmetric actuation conserves the U-twin symmetry but
not the S-twin symmetry: UA and UB remain energeti-
cally equivalent while SA bends more than SB; UA and
UB monotonically approach SB until they all gracefully
merge in a single stable equilibrium (Fig. 3E).
This intuitive understanding of geometric symmetries

is substantiated by extending the asymptotic analysis of
[4] to derive normal forms near the shape transition at
µ∗. We set µ = µ∗ + ∆µ with ∆µ ≪ 1, and introduce
the dimensionless variables X = x/L, W = w/

√
L∆L,

W ∗

eq = w∗

eq/
√
L∆L, T = t

√

B/ρbhL4 and Λ2 = FL2/B.
To analyze the dynamic of the strip near the bifurcation,
we define a slow time scale τ = ∆µaT , and expand the
dynamic state of the strip in powers of ∆µ [4, 19],

W (X, τ)=W ∗

eq(X) + ∆µbW0(X, τ) + h.o.t.,

Λ(τ)=Λ∗

eq +∆µcΛ0(τ)+ h.o.t.
(3)

Here, the values of a, b, and c depend on the intrin-
sic properties of the system. In [19], we present a sys-
tematic approach to calculate them. We find that, for
the asymmetric BCs, a = 1/4, b = c = 1/2 as postu-
lated in [4], whereas for the symmetric and antisymmet-
ric BCs, a = b = 1/2, and c = 1. We substitute a, b,
and c into (3) and write ∆µbW0 = A(T )Φ0(X), where
Φ0(X) is the shape of the leading order mode and A(T )
its unscaled amplitude. We arrive at a reduced form for
each boundary actuation (see [19]). For the asymmetric
BCs, the normal form obtained in [4] is representative of
a saddle node bifurcation

d2A

dT 2
= a1,asym∆µ+ a2,asymA

2, (4)

where a1,asym and a2,asym are positive constants (explicit
expressions in [4, 19]). For the symmetric and antisym-
metric BCs, we obtain a normal form representative of
a pitchfork bifurcation (explicit expressions of b1,(·) and
b2,(·) in [19],

d2A

dT 2
= b1,(·)∆µA+ b2,(·)A

3. (5)

For the symmetric case, the coefficients b1,sym and b2,sym
are positive, and the cubic term is destabilizing (subcrit-
ical pitchfork), whereas for the antisymmetric case, the
coefficients b1,anti and b2,anti are negative and the cubic
term is stabilizing (supercritical pitchfork).
Bifurcation analysis of (4) and (5) recapitulates the

results in Fig. 3. For ∆µ < 0, (4) admits a stable
equilibrium (representing UA) and an unstable equilib-
rium (representing SB) that collide and annihilate at
∆µ = 0 (Fig. 2G). As UA vanishes, the strip is forced
to snap to UB (not represented in the reduced form).
For ∆µ < 0, (5) admits three equilibria. In the symmet-
ric case, these equilibria represent UA, SA, and SB, that
merge at ∆µ = 0 (Fig. 2H). UA becomes unstable and
the strip is forced to snap to UB. In the antisymmet-
ric case, the three equilibria represent UA, UB, and SB.
They merge at ∆µ = 0 (Fig. 2I). The simultaneous shape
change from UA and UB to SB is graceful.
To quantitatively compare this asymptotic analysis to

the data in Fig. 2D-E, we calculated the amplitude A
directly from data (SI [15], §S9) and plotted the results
in Fig. 2G-I as a function of the distance from the bi-
furcation ∆µ, measured from the respective µ∗ value.
We observe good agreement (near µ∗) with the bifurca-
tion diagrams of the normal forms (black lines). Notably,
the reduced forms capture correctly, not only the static
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Figure 4. (A)Tapered elastic strip under antisymmetric bound-
ary rotation. (B) Midpoint deflection (green symbols) versus bifur-
cation parameter exhibits snap-through as opposed to the grace-
ful merging of a homogeneous strip subject to the same actuation
(black lines). (C) Critical slowing down near the bifurcation scales
as (∆µ)1/4 as in the case of a saddle-node.

shape bifurcations, but also the dynamics of snapping

near these bifurcations [4, 19].
The normal forms in (4) and (5) provide the back-

bone for plotting schematically the energy landscapes in
Fig. 3D-F, which exhibit all the features of the rigorous
bifurcation analysis (SI [15], §S10). Importantly, the well
known symmetry breaking mechanism that turns a pitch-
fork into a saddle node bifurcation [16] (SI [15], §S1), ap-
pears here, in an infinite dimensional system, governing
elastic transitions. This intuitive yet universal under-
standing of elastic instabilities based on symmetries of
the Euler-buckled strip provides powerful tools for diag-
nostics and design. It helps explain the force hysteresis
observed in [7] (SI [15], §S7). It can also help design pro-
grammable meta-materials with tunable bistability and
rapid (algebraic or exponential) actuation capabilities.
For a buckled elastic strip, clamped at both ends and
driven via antisymmetric rotations, to undergo a non-
linear snap-through, we must break the U-twin symme-
try. This can be achieved by using a strip with geomet-
ric or material heterogeneity, such as a geometrically-
tapered strip instead of a homogeneous strip (Fig. 4,
SI [15], §S11). Future work will consider extensions of
this analysis to elastic shells and origami-based struc-
tures [20].
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