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Abstract 

We propose superluminal solitons residing in the momentum gap (k-gap) of nonlinear photonic 

time-crystals. These gap solitons are structured as plane-waves in space while being periodically 

self-reconstructing wavepackets in time. The solitons emerge from modes with infinite group 

velocity causing superluminal evolution, which is opposite to the stationary nature of the 

analogous Bragg gap soliton residing at the edge of an energy gap (or a spatial gap) with zero 

group velocity. We explore the faster-than-light pulsed propagation of these k-gap solitons in view 

of Einstein’s causality by introducing a truncated input seed as a precursor of signal velocity 

forerunner, and find that the superluminal propagation of k-gap solitons does not break causality. 
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Photonic time-crystals (PTCs) [1–11] are dielectric media whose permittivity (𝜖) is modulated 

periodically in time, causing time-reflected and time-refracted waves [3] to interfere, giving rise 

to Floquet modes associated with the momentum bands and bandgaps (also called k-gaps). PTCs 

seem similar to one-dimensional spatial photonic crystals (SPCs), whose dispersion is determined 

by periodic variation of the permittivity (Fig. 1a), with gaps where the Bloch modes have complex 

momentum rendering them localized in space. This analogy is misleading, as SPCs and PTCs 

differ in fundamental aspects. First, waves propagating in dielectric SPCs exchange momentum 

with the spatial lattice, conserving energy. In contrast, PTCs do not conserve energy (the 

modulation breaks time-translation symmetry) but conserve momentum. Second, the amplitudes 

of the gap modes of SPCs always decay in space, whereas the Floquet modes in the k-gap of a 

PTC (Fig. 1b) exhibit exponential growth (or decay) with time. The k-gap modes of PTCs 

exchange energy with the modulation, and their presence is related to causality (see intuitive 

explanation in [12]). PTCs are now drawing growing research interest  [10–21], and recent 

experiments in epsilon-near-zero materials with very large permittivity changes within few-

femtoseconds [22–29] suggests that PTCs at optical frequencies will be observed in the near future. 

The momentum gap (k-gap) in PTCs suggests the existence of gap solitons, similar to those in 

SPCs. Gap solitons are self-trapped entities residing in the bandgap of nonlinear periodic systems 

such as fiber gratings  [30–35] and waveguide arrays [36–42] (Fig. 1c). Gap solitons of SPCs 

inherit some of their features from the Bloch modes associated with the band edge in the linear 

system; most profoundly, they are always stationary with zero group-velocity. Is it possible to have 

gap solitons in the momentum gap of a nonlinear time-varying photonic media? If such k-gap 

solitons do exist, will they be stationary as gap solitons in SPCs, or will their group velocity be 
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infinite, inherited from the Floquet modes of the band edge of PTCs? Finally, if their group velocity 

is infinite, how can they be reconciled with causality?  

Here, we find superluminal gap solitons in the momentum gap of nonlinear PTCs. These k-gap 

solitons are structured as finite wavepackets in time but plane waves in space. They travel faster 

than light, challenging special relativity, raising fundamental questions about their physical 

essence. We reconcile our findings with special relativity through Sommerfeld’s forerunners, and 

suggest experiments for launching pulsed beams whose peak intensity propagates faster than light. 

We begin from Maxwell's equations in nonlinear time-varying media with an instantaneous 

nonlinearity. For simplicity, we assume the optical Kerr effect, but the ideas are applicable to any 

local nonlinearity. In one-dimensional media, this yields the relation between the electric 

displacement 𝐷 and the electric field of the light 𝐸, as �⃗⃗� = 𝜖(𝑡, |𝐸|2)�⃗� = 𝜖0(𝜖1(𝑡) + 𝜒3𝜖0|𝐸|2)�⃗� , 

with 𝜒3 being the Kerr coefficient. Here, 𝜖1 is the linear dielectric constant, chosen to be spatially 

homogeneous but periodically modulated in time 𝜖1(𝑡) = 𝜖𝑟(1 + 𝛿1 cosΩ𝑡), where 𝜖𝑟 is the mean 

value of the permittivity,  𝛿1 < 1  a small real dimensionless quantity and Ω = 2π/𝑇  the 

modulation frequency, and 𝑇 the modulation period. We assume that the medium is isotropic, drop 

the vector sign, and expand 𝐸 in terms of 𝐷 as  

𝐸 =
𝐷

𝜖0𝜖1
−

Γ3𝐷3

𝜖0
=

𝐷

𝜖0𝜖1
−

𝜒3𝐷3

𝜖0
2𝜖1

4      (1) 

where we define Γ3 =
𝜒3

𝜖0𝜖1
4. From Maxwell equations, we obtain  

𝜕2𝐷

𝜕𝑡2
=

1

𝜇0

𝜕2

𝜕𝑥2
(

𝐷

𝜖0𝜖1
−

𝜒3𝐷3

𝜖0
2𝜖1

4)                      (2) 



Page 4 of 22 

 

Equation (2), given in 1D, can be extended to higher dimensions, where the light is confined in all 

spatial dimensions but one (see Appendix). Equation (2) is different from the conventional form 

𝜕2

𝜕𝑡2
(𝜖0𝜖1(𝑡)𝐸) =

1

𝜇0

𝜕2

𝜕𝑥2
𝐸  in terms of 𝐸  [11]. We prefer 𝐷  over 𝐸  because, for PTC, 𝐷  is 

continuous whereas 𝐸  is not necessarily continuous. Note that 𝛿1  is small, so the periodic 

modulation has a negligible effect on the Kerr term, as long as  𝜒3 is small. We simplify Eq. 2 to  

1

𝑐2

𝜕2𝐷

𝜕𝑡2 = (1 − 𝛿1 cos Ω𝑡)
𝜕2𝐷

𝜕𝑥2 − 𝛽|𝐷|2
𝜕2𝐷

𝜕𝑥2       (3) 

with the speed of light in the medium 𝑐 = 𝑐0/√𝜖𝑟 = 𝑐0/𝑛0 . We approximate 𝜖1
−1 =

(1 − 𝛿1 cosΩ𝑡)/𝜖𝑟  and, in the last term only consider the contribution of the self-phase-

modulation term and redefine the nonlinear coefficient 𝛽 = 3𝜒3/𝜖0𝜖𝑟
3.  

To obtain the k-gap soliton, we find the dispersion from (3), and derive an effective nonlinear 

Schrödinger-like equation (NLSE) within, or close to, the k-gap. There are several alternative 

treatments [32–34,43,44]; we use the nonlinear coupled-mode theory and seek solutions as the 

sum of suitably modulated forward and backward waves  

𝐷(𝑥, 𝑡) = 𝐴𝑓(𝑥, 𝑡)𝑒𝑖𝑘0𝑥−𝑖Ω𝑡/2 + 𝐴𝑏(𝑥, 𝑡)𝑒
𝑖𝑘0𝑥+𝑖Ω𝑡/2 + 𝑐. 𝑐.,          (4) 

with 𝑘0 = Ω/2𝑐. Substituting into (3) and applying the slowly varying envelope approximation, 

we find that 𝐴𝑓,𝑏 obey  

+𝑖 (
1

𝑐

𝜕𝐴𝑓

𝜕𝑡
+

𝜕𝐴𝑓

𝜕𝑥
) + 𝜅𝐴𝑏 + 𝛾 (|𝐴𝑓|

2
+ 2|𝐴𝑏|

2)𝐴𝑓 = 0

−𝑖 (
1

𝑐

𝜕𝐴𝑏

𝜕𝑡
−

𝜕𝐴𝑏

𝜕𝑥
) + 𝜅𝐴𝑓 + 𝛾 (|𝐴𝑏|

2 + 2|𝐴𝑓|
2
)𝐴𝑏 = 0

          (5) 
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With 𝜅 = 𝛿1Ω/8𝑐 being the coupling between modes and 𝛾 = 𝛽Ω/4𝑐 incorporating the Kerr term. 

If the nonlinear term has the same magnitude for the self-phase and cross-phase modulation, this 

equation is fully integrable and yields Manakov solitons [45–50]. 

Locating the k-gap - To find the k-gapped band, we define the two components field 𝜓 as 𝜓 =

(𝐴𝑓 , 𝐴𝑏)
𝑇
. Seeking solutions for the linear part of (5), of the shape 𝜓 = 𝜒𝑒𝑖(𝑃𝑥−𝐸𝑡) with 𝜒 being a 

spinor, we insert this ansatz into (5) for 𝛾 = 0, and obtain the dispersion relation 

𝑃(±) = ±√(𝐸

𝑐
)
2
+ 𝜅2         (6) 

As expected from [11], there is a momentum gap (“k-gap”) for |𝑃| < 𝜅 . The k-gapped band is 

plotted in Fig. 1c, where the sign ± denotes upper and lower branches. To investigate the group 

velocity and the group velocity dispersion (GVD) around the band edge of the k-gap, we choose a 

point (𝐸0 + Ω

2
, 𝑃0 + 𝑘0) on the band, and expand the dispersion (6) around it to the second-order 

𝑣𝑔
(±)

= (
𝜕𝑃(±)

𝜕𝐸
)

−1

= ±(
√(

𝐸0
𝑐

)
2
+𝜅2

𝐸0
𝑐

)𝑐 , GVD(±) = (
𝜕2𝑃(±)

𝜕𝐸2
) = ±

1

𝑐2√(
𝐸0
𝑐

)
2
+𝜅2

 (7) 

Note that the group velocity 𝑣𝑔
(±)

 becomes infinite as 𝐸0 goes to 0 (when the frequency goes to 

half the modulation frequency 𝜔 → Ω/2) indicating that any physical solution around the bandgap 

must be a moving solution. Thus, the energy carried by the soliton should (seemingly) travel faster 

than light (Fig. 1d). This raises the question of whether the k-gap solitons are superluminal and 

how can this be reconciled with special relativity. As we show later, k-gap solitons are indeed 

superluminal (Fig. 1b). Second, the group velocity dispersion (GVD) is nonzero at the band edges: 

GVD(±) = ±1/𝜅𝑐2 = ±8/𝛿1Ω𝑐 . Thus, even though the modes around the band edge are 
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superluminal, they still experience dispersive effects. Namely, even though the first derivative of 

the dispersion relation is infinite, the second derivative plays an important role, and as shown 

below its presence is crucial to the formation of k-gap solitons. The sign of the GVD denotes 

normal / anomalous dispersion. Accordingly, the spinor eigenvectors 𝜒(±) associated with 𝑃± are, 

𝜒(+) = (
√𝐸2

𝑐2
+𝜅2−(

𝐸
𝑐)

2(𝐸
2

𝑐2
+𝜅2)

)

1 2⁄

(

𝜅

√𝐸2

𝑐2
+𝜅2−(𝐸

𝑐)

−1
) ≡ (

𝜒1
(+)

𝜒2
(+)) ; 𝜒(−) = (

√𝐸2

𝑐2
+𝜅2−(

𝐸
𝑐)

2(𝐸
2

𝑐2
+𝜅2)

)

1 2⁄

(
1
𝜅

√𝐸2

𝑐2
+𝜅2−(

𝐸
𝑐)

) ≡ (
𝜒1

(−)

𝜒2
(−)) (8) 

Note the normalization 𝜒(+)𝜒(+) = 𝜒(−)𝜒(−) = 1  and the orthogonality 𝜒(+)𝜒(−) = 0 . The 

solutions at the band edges are of the form 𝜒(+) = (1,−1)𝑇/√2 for the upper branch, and 𝜒(−) =

(1,1)𝑇/√2 for the lower branch. These solutions can be described as a wave that does not move at 

all, and all points in space have the same amplitude at any given time, but the amplitude oscillates 

in time at half the modulation frequency with 𝐷(−) = 𝑒𝑖𝑃(−)𝑥 cos (
𝛺𝑡

2
), and 𝐷(+) = 𝑒𝑖𝑃(+)𝑥 sin (

𝛺𝑡

2
). 

Henceforth we present the lower-branch k-gap solitons, while the upper branch solitons are 

discussed in the Supplementary Material.  

Solitons in the k-gap. Next, we derive the NLSE from the equations (5). For the lower band 

branch (−), we seek solutions of the form 𝜓 = 𝑎(𝑥, 𝑡)𝜒(−)𝑒𝑒𝑖(−𝑃0𝑥−𝐸0𝑡)
 with 𝑃0 = ((𝐸0

𝑐
)
2
+ 𝜅2)

1 2⁄

. 

Substituting (8) into (5), we obtain the NLSE for the slowly varying amplitude 𝑎(𝑥, 𝑡), 

(−𝑖
𝜕

𝜕𝑥
−

𝑖

𝑣𝑔

𝜕

𝜕𝑡
−

GVD

2

𝜕2

𝜕𝑡2
)𝑎 + 𝛼|𝑎|2𝑎 = 0     (9) 

where 𝛼 = 𝛾 (3 −
𝐸0 𝑐⁄

𝐸0
2 𝑐2⁄ +𝜅2) 2⁄ . To solve (9), we substitute 𝑇 = 𝑡 − 𝑥

𝑣𝑔
, 𝑋 = 𝑥 , and obtain the 

standard form (−𝑖
𝜕

𝜕𝑋
−

GVD

2

𝜕2

𝜕𝑇2) 𝑎 + 𝛼|𝑎|2𝑎 = 0 . Notice that in (7), GVD < 0  for the lower 
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branch (− ), hence to construct a bright soliton we need a focusing Kerr nonlinearity 𝛼 >

0  [37,39,41]. Otherwise, we would obtain dark k-gap solitons. The bright soliton solution for (9) 

is 𝑎 = 𝑢0 sech ( 𝑇

𝜏0
) 𝑒𝑖𝑞𝑋 = 𝑢0 sech (

𝑡−𝑥/𝑣𝑔

𝜏0
) 𝑒𝑖𝑞𝑥 , with 𝜏0 = 𝜏0(𝑢0) = 1

𝑢0
(|GVD|

𝛼
)
1 2⁄

,  𝑞 = 𝑞(𝑢0) =

𝛼𝑢0
2

2
. Thus, we obtain the soliton spinor wavefunction  𝜓 = 𝑢0 sech (

𝑡−𝑥/𝑣𝑔

𝜏0
) 𝜒(−)𝑒𝑖(−𝑃0+𝑞)𝑥𝑒−𝑖𝐸0𝑡, 

and the corresponding electric displacement vector (4), at the band edge (𝐸0 → 0), with parameters 

1/𝑣𝑔 = 0, |GVD| =
1

𝜅𝑐2, 𝛼 =
3𝛾

2
, 𝜏0 =

1

𝑐𝑢0
√

2

3𝛾𝜅
, 𝑞 =

3𝛾𝑢0
2

4
 and 𝜒1

(−)
=

1

√2
, 𝜒2

(−)
=

1

√2
. The bright k-

gap soliton of the lower branch is  

𝐷(𝑥, 𝑡) =
2𝑢0

√2
sech (

𝑡

𝜏0
) (cos (𝑘𝑥 −

Ω𝑡

2
) + cos (𝑘𝑥 +

Ω𝑡

2
))                          (10) 

where 𝑢0  is the peak amplitude, 𝑘 = 𝑘0 − 𝜅 + 𝑞 = 𝑘0 − 𝜅 +
3|𝛾|𝑢0

2

4
 is the effective intensity-

induced wavevector, 𝜅 is the strength of the coupling determining the width of the momentum gap, 

and 𝛾 incorporates the Kerr term.  

To observe k-gap solitons in experiments, it is useful to confine the medium in a waveguide.  Thus, 

we extend the analysis to higher dimensions (see Appendix). The soliton (10) offers many 

interesting effects. First, the k-gap soliton has the temporal form sech(𝑡/𝜏0), as shown in Fig. 1d, 

but no spatial dependence. Second, the k-gap soliton differs from the stationary Bragg solitons in 

the 𝜔-gap [30–35] (Fig. 1b), due to the infinite group velocity they inherit from the Floquet modes 

at the band edge of the k-gap. Let us elaborate. Stationary Bragg solitons occur in nonlinear 

periodic systems, such as optical fibers with grating imprinted in them or in photonic lattices. 

These Bragg systems conserve energy. The solitons arise from the modes residing in the gap (of 

the linear system) which are exponentially-decaying with complex wavenumbers, as the 
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exponentially-diverging solution is nonphysical. The group velocity of the Bloch waves in the gap 

is zero. Hence, the Bragg solitons, which arise from the gap modes, inherit the zero group-velocity, 

and maintain the position of their peak amplitudes as they evolve. In contradistinction, our k-gap 

solitons conserve momentum instead of energy, and the gap modes of PTCs (of complex energies) 

support exponentially-growing modes, unlike the energy-conserving Bragg solitons. Fourth, the 

k-gap soliton comprises of two counterpropagating pulses generated simultaneously due to the 

momentum conservation in PTCs  [12,15]. The electromagnetic field of the soliton is oscillating 

at frequency and wavevector: 𝜔 =
Ω

2
, 𝑘 = 𝑘0 − 𝜅 +

3|𝛾|𝑢0
2

4
∈ 𝑘-gap. Thus, the soliton oscillates at 

a frequency locked at Ω/2, but its wavenumber can be anywhere in the gap.  

Finally, the intensity of the soliton decreases monotonically in time after it reaches its peak. This 

is surprising, as in a linear PTC the growing mode usually dominates the dynamics. The 

nonlinearity leads to transfer of power from the growing modes to the decaying modes. As the 

intensity goes down, any slight variation in the state injects energy back to the growing mode, 

resulting in an infinite train of solitons that are equally spaced in time and do not interact. This 

train of k-gap solitons emerges naturally under almost any initial conditions, extracting energy 

from the modulation. The periodically emerging solitons do not interact with one another because 

their creation does not arise from nonlinear instability (as it does for bright Kerr solitons, where 

the nonlinearity drives the instability). Rather, in PTCs, the instability comes from the linear part 

of the system, and the nonlinearity acts as a restraining mechanism instead of a source of instability. 

The emergence of such a train of k-gap solitons is further discussed in the Supplementary Material.   

Proceeding to the upper branch (+), we obtain k-gap solitons for defocusing nonlinearity (𝛾 < 0) 
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𝐷(𝑥, 𝑡) = √2𝑢0 sech (
𝑡

𝜏0
) (cos ((𝑘0 + 𝜅 − 𝑞)𝑥 −

Ω𝑡

2
) − cos ((𝑘0 + 𝜅 − 𝑞)𝑥 +

Ω𝑡

2
))   (11) 

where the frequency and wavevector conform with the ‘linear’ k-gap, 𝜔 =
Ω

2
, 𝑘 = 𝑘0 − 𝜅 + 𝑞 =

𝑘0 − 𝜅 +
3|𝛾|𝑢0

2

4
∈ 𝑘-gap. The detailed derivations are given in the Supplementary Material. 

Generating k-gap solitons from a localized input. The k-gap soliton is self-trapped in time but 

uniform and infinite in space. This raises a natural question on how to generate a k-gap soliton 

from a finite input beam. This issue is highlighted by the superluminality of the k-gap soliton. 

Thus, we simulate the evolution of the k-gap soliton from a finite input "seed" beam with a limited 

bandwidth. We launch a weak Gaussian beam into the nonlinear PTC, with all its k-components 

in the k-gap, and solve the Eq. (3) numerically. Figure 2(a-c) presents the evolution of three input 

beams with spatial width ranging from narrow to wide.  

Initially, the weak input beam associated with the k-gap exhibits exponential growth in time but 

no propagation dynamics. The growing field is dominated by the k-gap-induced amplification with 

a fixed subharmonic frequency (Ω/2). As time progresses, the growing field becomes strong, and 

the nonlinearity comes into play. The intensity growth is arrested because the band structure 

changes (through the nonlinear interaction) such that the wavepacket resides in the band rather 

than in the gap (See SM). Once reaching maximal intensity, the peak splits into two 

counterpropagating wavepackets [3], and travels at superluminal velocity (Fig. 2). The field at 

different positions reaches the intensity apex at different times, and we can track the envelope 

trajectory and define an effective group velocity. This field envelope preserves its temporal 

soliton-like shape with group velocity exceeding the speed of light in the medium (Fig. 2d and 

videos in SM), making it superluminal in the sense that "its center of mass" (i.e. the intensity-
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weighted average position of the soliton, quantity well correlated with the peak of the beam) 

propagates faster than light, that is, faster than the effective speed of light in the PTC (𝑐/𝑛𝑒𝑓𝑓).   

Figure 2d presents the temporal profiles at different positions for the simulation presented in Fig. 

2b. We estimate that the superluminal apex propagation from 𝑥 = 0 to 𝑥 = 200𝑐𝑇 within Δ𝑡 =

13.6𝑇, so that the averaged group velocity over that distance is about �̅�𝑔 = 14.7𝑐. Comparing the 

formation of k-gap solitons for narrow (Fig. 2a), medium (Fig. 2b) and wide (Fig. 2c) input beams, 

we find that �̅�𝑔 of the peak is higher as the excitation beam is wider. The increased velocity of the 

peak comes from the larger interval the peak has to cover before it is halted by the forerunner. The 

simulations indicate that the k-gap soliton has infinite group velocity (�̅�𝑔 → ∞) in the limit of 

plane-wave (beam of infinite width) excitation, evolving into the theoretically predicted profile 

(Eq. 10). In the simulations, the parameters are 𝑐 = 1, 𝛿1 = 0.12, 𝛽 = 0.01, Ω = 4𝜋 , time is 

presented in units of 2T, and space in the units of 2cT. However, Eq. 10 implies that the infinite 

group velocity is a universal phenomenon that does not depend on the magnitude of the parameters, 

as long as they obey the relative smallness of parameters with respect to each other.   

Next, we verify that this faster-than-light propagation of the k-gap soliton does not contradict 

Einstein’s causality, by comparing the group velocity and the information velocity. The group 

velocity of a wavepacket is commonly defined by the motion of its center, while the information 

velocity is defined by the motion of the leading edge [51–53]. Generally, physical superluminality 

is associated with gain media where the apparent movement of the peak is created from increase 

in the local field by the gain, and not by actual transport of energy. This implies that the velocity 

of the wavefront is the relevant information velocity, rather than the velocity of the peak. [10-14, 

53]. Thus, we launch a truncated Gaussian beam into the PTC, to have a clear cut on the 
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propagation of the information contained in the leading edge. Figure 2e shows that the truncation 

position (the forerunner) travels almost exactly at the speed of light in medium, but never faster. 

This result holds even with material dispersion 𝜖(𝜔) by recalling that in the limit 𝜔 → ∞, the 

electromagnetic response is always 𝜖 → 1 . The sharp edge (the forerunner) created by the 

truncation consists of all spatial wavenumbers, hence the forerunner always moves exactly at 𝑐0 

(vacuum speed of light). As seen in Fig. 2e, the momentum constituents of the k-gap soliton never 

go beyond the forerunner, and the peak slows down as it approaches the forerunner. Further 

investigation shows that the velocity of the peak of the k-gap soliton depends on the seed’s spatial 

profile, with wider beams displaying faster propagation before reaching the forerunner. Moreover, 

in principle, the soliton can arise from quantum fluctuations, as can be conjectured from recent 

work in quantum phenomena in PTCs  [12,15]. In that case, the k-gap soliton can arise from 

arbitrary small noise by the amplification from the k-gap. However, even via the quantum process, 

the presence of the slightest signal cannot overrun the forerunner (see Fig. 2e). 

Power dependence of k-gap and threshold of amplification. We find that the presence of the 

Kerr nonlinearity can alter the band structure of the PTC by shifting the k-gap to higher k-vectors, 

and shrinking the k-gap width. Under mean-field approximation, given 𝑛(𝑡) = 𝑛0 + 𝑛1 cosΩ𝑡 +

𝑛2𝐼, with 𝑛0 = √𝜖𝑟, 𝑛1 = 𝜒1/2, 𝑛2 = 𝜒3/2, and 𝐼 =
𝜖𝑟

2
〈|𝐸|2〉 is the field intensity, one can solve 

the nonlinear energy band by linearizing around the k-gap (see derivation in SM), which yields 

𝜔(𝑘, 𝐼) =
Ω

2
± 𝑖Ω√1

4
(

𝑛1

𝑛0+𝑛2𝐼
)
2

(
𝑐0𝑘/Ω

𝑛0+𝑛2𝐼
)
4

− ((
𝑐0𝑘/Ω

𝑛0+𝑛2𝐼
)
2

−
1

4
)
2

                    (12) 

The field intensity (𝐼) shifts the center of the k-gap. The k-gap amplification/gain factor is given 

by the imaginary part of (12): 𝛾(𝑘, 𝐼) = |ℑ(𝜔(𝑘, 𝐼))|, that is, different k-components experience 
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different gain factors. The arrest of the exponential growth occurs because, as the intensity 

increases, the shift in the band structure eventually brings the k-components of the soliton outside 

the momentum gap. A detailed explanation can be found in the Supplementary Material [58].  

Conclusion. To summarize, we presented k-gap solitons in nonlinear PTCs, and found them to be 

superluminal. The faster-than-light behavior is understandable by Sommerfeld’s forerunner, as 

tested numerically by the truncated seed beam. Importantly, the superluminal k-gap soliton does 

not contradict Einstein's Special Relativity. The interplay between the time-modulation and the 

Kerr nonlinearity gives rise to the exponential growth in time until a certain peak is reached, 

followed by a decaying intensity profile leading to the shape of a k-gap soliton that is always finite 

in its temporal width, although instability eventually leads to a train of solitons. Our results of 

superluminal k-gap solitons provide new insights into the study of time-varying media [54] and 

the gapped momentum states [55] in photonics and other time-modulated physical systems. 
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Appendix 

1. Extending 1D PTCs to higher dimension PTCs by confining the transverse direction 

The formulation of solitons in PTCs can be extended to two spatial dimensions, where one of them 

is confined in a waveguide structure in the direction transverse to the propagation direction 

(henceforth the "transverse dimension") and the entire index varies in time in a spatially-uniform 

manner. To reduce the underlying equation to the k-gap solitons described in the main text, the 

refractive index contrast defining the waveguide in the transverse dimension has to be larger than 

the temporal variations in the refractive index. 

Formally, we take the conventional nonlinear wave equation for E in 2+1D PTCs, ∇2𝐸 =

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2)𝐸 = 𝜇0
𝜕2

𝜕𝑡2 (𝜖(𝑦, 𝑡)𝐸) with the variations both in time and in the y-direction, 𝜖(𝑦, 𝑡) =

𝜖0𝜖�̃�(𝑡)𝜖�̃�(𝑦), while keeping the x-direction uniform. Therefore, we simplify the wave equation 

as 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝐸 =

1

𝑐2

𝜕2

𝜕𝑡2
(𝜖�̃�(𝑡)𝜖�̃�(𝑦)𝐸) (𝐴1) 

with 𝜇0𝜖0 = 1/𝑐2 and 𝜖�̃�(𝑡) = 1 + 𝛿1 𝑐𝑜𝑠 𝛺𝑡 , 𝜖�̃�(𝑦) = 1 + 𝛿(𝑦) are both dimensionless. In our 

setting, we assume both the time and spatial variations are small, 𝛿1 ≪ 1, |𝛿(𝑦)| < 0.5(≪ 1).  

It is important to note that, in order to significantly confine the field in the y-direction, we also 

require the spatial variation in epsilon to be stronger than the time modulation, |𝛿(𝑦)| > 𝛿1. In our 

simulations we use 𝛿1 ≈ 0.3, so it is smaller than relevant values of 𝛿(𝑦), and big enough to 

support a substantial gap. In fact, the modulations are written in a convenient product form, which 

can be approximated as  𝜖�̃�(𝑡)𝜖�̃�(𝑦) ≈ 1 + 𝛿1 𝑐𝑜𝑠 𝛺𝑡 + 𝛿(𝑦), where the term 𝛿1𝛿(𝑦) is negligible. 

Next, we seek a solution of a separable form: 𝐸 = 𝑓(𝑦)𝐸(𝑥, 𝑡) = 𝑓(𝑦)𝐸𝑘(𝑡)𝑒
𝑖𝑘𝑥, hence 

𝑐2

𝜖�̃�(𝑦)𝑓(𝑦)
(−𝑘2 +

𝜕2

𝜕𝑦2
)𝑓(𝑦) =

1

𝐸𝑘(𝑡)

𝜕2

𝜕𝑡2
(𝜖�̃�(𝑡)𝐸𝑘(𝑡)) = −𝜈2 (𝐴2) 
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Here, two parameters are introduced: wavenumber 𝑘  and frequency 𝜈 . Then, we obtain two 

separable equations: 

(−𝑘2 +
𝜕2

𝜕𝑦2
)𝑓(𝑦) +

𝜖�̃�(𝑦)𝜈2

𝑐2
𝑓(𝑦) = 0

𝜕2

𝜕𝑡2
(𝜖�̃�(𝑡)𝐸𝑘(𝑡)) + 𝜈2𝐸𝑘(𝑡) = 0

(𝐴3) 

From the first equation, we obtain the relation 𝜈 = 𝜈(𝑘) and the confined transverse profile 𝑓 =

𝑓𝑘,𝜈(𝑦) in the PTC region. The second equation in Eq. (A3) is mathematically equivalent to Eq. 

(2) in the main text, with 𝜈(𝑘) acting as a modified 𝑘-wavenumber, but with some important 

differences. Namely, here the equation is for the electric field 𝐸, instead of the displacement field 

𝐷 in the main text. Also, the equation here deals with a single 𝑘-component, whereas in the main 

text we use the spatial derivative. The a-priori assumption here is that the solution is separable (a 

wavepacket in 𝑦  and multiplied by a spatiotemporal wavepacket in 𝑥  and 𝑡), Physically, this 

means that the solution is a guided mode (bound-state) in the 𝑦-direction, whereas in 𝑥-𝑡 it is a 

spatiotemporal wavepacket, as it is for the 1D case. This is actually standard for experimenting 

with 1+1D soliton in optical Kerr media [56], where all the experiments were carried out in a slab 

waveguide structure. We verified that this a-priori assumption holds in the presence of nonlinearity 

by comparing it to an analytical solution that has only one 𝑘-component.   

2. Steady-state linear stability analysis of nonlinear PTCs. 

Consider the NLSE (Eq. 9 derived in the main text) 

(−𝑖
𝜕

𝜕𝑥
−

GVD

2

𝜕2

𝜕𝑡2) 𝑎 + 𝛼|𝑎|2𝑎 = 0     (A4) 

which takes the limit 𝑣𝑔 → ∞ at the band edge of k-gap. This equation allows plane-wave (often 

called continuous wave (CW)) solutions. In particular, neglecting the time derivative, Eq. A4 is 

readily solved to obtain the steady-state CW solution in the following form: 

𝑎0 = √𝑃0 exp(𝑖𝜙𝑁𝐿)                     (A5) 
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where 𝑃0 is the incident power and 𝜙𝑁𝐿 = −𝛼𝑃0𝑥 is the nonlinear phase shift induced by the Kerr 

nonlinearity. The stability of the steady-state solution against small perturbations is determined by 

linearizing the following solution (G. Agrawal, Nonlinear Fiber optics, Chap 5, p. 127-129, the 6th 

version, Elsevier, 2019) 

𝑎(𝑥, 𝑡) = (√𝑃0 + 𝜖(𝑥, 𝑡)) exp(𝑖𝜙𝑁𝐿).                   (A6) 

Here, we perturb the steady state slightly and substitute A6 into A4, resulting in the linear evolution 

dynamics of 𝜖(𝑥, 𝑡) (where we keep only the leading term): 

(−𝑖
𝜕

𝜕𝑥
−

GVD

2

𝜕2

𝜕𝑡2) 𝜖 + 𝛼𝑃0(𝜖 + 𝜖∗) = 0     (A7) 

This linear equation can be solved easily by the Fourier transform. However, because of the 𝜖∗ 

term, the Fourier components at wavevector �̃� and −�̃� are coupled. Thus, we use an ansatz in the 

form 

𝜖(𝑥, 𝑡) = 𝜀1 exp (𝑖(�̃�𝑥 − Ω̃𝑡)) + 𝜀2 exp (−𝑖(�̃�𝑥 − Ω̃𝑡)) (𝐴8) 

where �̃� and Ω̃ are the wavenumber and the frequency of perturbation, respectively. Substituting 

A8 into A7, we obtain two coupled equations for 𝜀1 and 𝜀2: 

(�̃� +
GVD

2
Ω̃2 + 𝛼𝑃0) 𝜀1 + 𝛼𝑃0𝜀2

∗ = 0 

(−�̃� +
GVD

2
Ω̃2 + 𝛼𝑃0) 𝜀2 + 𝛼𝑃0𝜀1

∗ = 0

(𝐴9) 

This set of two equations has a nontrivial solution only when �̃�  and Ω̃ satisfy the following 

dispersion relation 

�̃� = ±
|GVD|

2
Ω̃√Ω̃2 +

4𝛼𝑃0

GVD
= ±

|GVDΩ̃|

2
√Ω̃2 + 𝑠𝑔𝑛(GVD)𝑠𝑔𝑛(𝛼)Ω̃𝑐

2 (𝐴10) 
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where the critical frequency is defined as Ω̃𝑐
2 = |

4𝛼𝑃0

GVD
|, 𝑠𝑔𝑛(GVD) = ±1, 𝑠𝑔𝑛(𝛼) = ±1 depend 

on the signs of the group velocity dispersion and the nonlinearity, respectively. This dispersion 

relation shows that steady-state stability depends on whether the light seed experiences the 

combination of normal GVD with the focusing nonlinearity, or anomalous GVD with defocusing 

nonlinearity. In cases of 𝑠𝑔𝑛(GVD)𝑠𝑔𝑛(𝛼) = −1, �̃�  becomes imaginary for  Ω̃ < Ω̃𝑐 , which 

leads to instability. Correspondingly, the perturbation 𝜖(𝑥, 𝑡) grows exponentially, which makes 

the steady-state CW solution (A5) unstable. The gain spectrum of this instability is obtained by 

the multiple-scale analysis as discussed in the Supplementary Material, Section 4. 
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Fig. 1: (a) Band structure of a PC created by spatial periodic modulation 𝜖(𝑥) = 𝜖(𝑥 + Λ). (b) 

Band structure of a PTC created by the temporal periodic modulation 𝜖(𝑡) = 𝜖(𝑡 + T). (c) Self-

focusing Kerr nonlinearity gives rise to a Bragg (𝜔-gap) soliton emerging at the band edge where 

the group velocity (𝑣𝑔) is zero. (d) Self-focusing Kerr nonlinearity gives rise to a k-gap soliton 

emerging at the band edge where the group velocity is infinite.    
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Fig. 2: (a-c) Generation of a k-gap soliton from an input of (a) narrow, (b) mid, and (c) wide beams, 

respectively. (d) The temporal profiles of the k-gap solitons at different locations (𝑥 = 0, 50, 100 

[2𝑐𝑇]) found numerically from the seed beam in (b). This soliton exhibits superluminal behavior 

with effective average group velocity of  𝑣𝑔 = 14.7𝑐. (e) Evolution of a truncated beam with a 

central wave vector (𝑘0) at the middle of the k-gap. The truncation mimics the forerunner of signal 

velocity, instead of the center-of-mass light cone. Once formed, the k-gap soliton travels faster 

than light in medium, but still slower than the forerunner of the information in the leading edge. 

The peak (which is also the "center of mass") of the k-gap soliton always slows down before it hits 

the forerunner, as indicated in (d) by the slowing down of the effective group velocity from its 

value in the section 𝑥 = 0 to 𝑥 = 50, to a smaller value in the section 𝑥 = 50 to 𝑥 = 100. 


