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Markovian open quantum systems display complicated relaxation dynamics. The spectral gap
of the Liouvillian characterizes the asymptotic decay rate towards the steady state, but it does
not necessarily give a correct estimate of the relaxation time because the crossover time to the
asymptotic regime may be too long. We here give a rigorous upper bound on the transient decay of
auto-correlation functions in the steady state by introducing the symmetrized Liouvillian gap. The
standard Liouvillian gap and the symmetrized one are identical in an equilibrium situation but differ
from each other in the absence of the detailed balance condition. It is numerically shown that the
symmetrized Liouvillian gap always gives a correct upper bound on the decay of the auto-correlation
function, but the standard Liouvillian gap does not.

Introduction.— It is a fundamental problem in
nonequilibrium physics to elucidate how fast a quantum
system approaches stationarity under dissipative cou-
plings to an external environment [1–8]. This problem is
also of great practical interest in quantum technologies.
Because quantum control and computations unavoidably
suffer from dissipation and decoherence, it is becoming
important to understand general properties of dissipative
quantum dynamics [9–13]. Moreover, the strategy of uti-
lizing engineered dissipation in controlling and manipu-
lating quantum states, which was theoretically proposed
as reservoir engineering [14, 15], is being implemented
in experiments [16–18]. It was demonstrated that quan-
tum phase transitions can be induced by controlling the
strength of dissipation [18]. Those ongoing experimen-
tal developments will require a more precise theoretical
understanding of open-system dynamics.

In the Markovian regime, where the environmental cor-
relation time is much shorter than a typical time of dissi-
pative processes, the dynamics of an open quantum sys-
tem is generated by the Liouvillian superoperator of the
celebrated Lindblad form [19, 20]. One might then ex-
pect that the knowledge of the eigenvalue spectrum of
the Liouvillian is enough to estimate how fast the relax-
ation proceeds. Especially, the Liouvillian gap, which is
defined as the smallest nonzero real part of the Liouvil-
lian eigenvalue, has been investigated for various mod-
els [1, 3, 21–27]. Because the Liouvillian gap gives the
decay rate of the slowest relaxation mode, it is naturally
expected that its inverse bounds from above the relax-
ation time. However, it turns out that the problem is
more elaborate. It has been shown that the relaxation
time is not bounded by the Liouvillian gap [6, 7, 28, 29],
although the latter characterizes the asymptotic decay
rate appearing in the long-time limit [30]. It implies that
the decay rate in a transient regime can be smaller than
the Liouvillian gap. Such an anomalously small decay
rate would be prominent in many-body systems [6], but
not restricted to them.

In this Letter, we provide a rigorous analysis on the de-
cay of auto-correlation functions in the steady state. Our

result tells us that not the standard Liouvillian gap but
the symmetrized one appears as a key quantity to bound
the relaxation time in the transient regime. It turns out
that the standard Liouvillian gap correctly bounds the
relaxation time in an equilibrium situation, but not in
a nonequilibrium situation without the detailed balance
condition. In the latter, the symmetrized Liouvillian gap
rigorously bounds the relaxation time.
Our results complement a series of results based on the

quantum speed limit (QSL), which was originally formu-
lated in isolated quantum systems [31] and later extended
to open quantum systems [32–35]. The QSL gives a lower
bound on the relaxation time, whereas an upper bound
is investigated here.
In the following, we first explain the general setup,

and then present main results. We demonstrate the va-
lidity of our theoretical results by numerical calculations
in an interacting quantum dot coupled to reservoirs and
driven-dissipative Rydberg atoms. An extension to the
relaxation from a fixed initial state is briefly mentioned.
Setup.— Let us consider a Markovian open quantum

system, whose state at time t is represented by the den-
sity matrix ρ(t). Its time evolution is generated by the
Liouvillian superoperator L of the Lindblad form [36]:
dρ(t)/dt = Lρ(t), where

Lρ = −i[Ĥ, ρ] +
∑
k

(
L̂kρL̂

†
k − 1

2

{
L̂†
kL̂k, ρ

})
. (1)

The first term of the right-hand side expresses the intrin-
sic unitary evolution of the system with Hamiltonian Ĥ,
whereas the second term represents the dissipation char-
acterized by a set of Lindblad jump operators {L̂k}. The
Lindblad form ensures physically natural properties such
as the complete positivity [19, 20].
Let us denote by {λα} the eigenvalues of L. It is shown

that any eigenvalue has a non-positive real part, and
hence we sort the eigenvalues in the descending order:

0 = λ0 > Reλ1 ≥ Reλ2 ≥ . . . . (2)

In this work, we assume that the zero eigenvalue is not
degenerate: the steady state is unique. Because of the
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property L(ρ†) = L(ρ)†, it is shown that λ∗
α is also an

eigenvalue. The Liouvillian gap g is defined as

g = −Reλ1, (3)

which determines the asymptotic decay rate [30].
Let us introduce two inner products ⟨Â, B̂⟩ and

⟨Â, B̂⟩ss for two operators Â and B̂. The first inner

product is defined as ⟨Â, B̂⟩ = Tr(Â†B̂). Accordingly,
we define an adjoint superoperator L̃ of L as follows:

⟨Â,LB̂⟩ = ⟨L̃Â, B̂⟩ . (4)

The expectation value of an Hermitian operator Â at
time t is expressed as

⟨Â(t)⟩ = Tr[Âρ(t)] = ⟨Â, eLtρ⟩ = ⟨eL̃tÂ, ρ⟩ . (5)

Here, Â(t) := eL̃tÂ is interpreted as the time-evolved
operator in the Heisenberg picture. It is explicitly given
by

L̃Â = i[Ĥ, Â] +
∑
k

(
L̂†
kÂL̂k − 1

2

{
L̂†
kL̂k, Â

})
. (6)

Since L̃ is an adjoint of L, L̃ has the same eigenvalue
spectrum as L. We denote by χα left eigenvectors of L:
χ†
αL = λαχ

†
α. We then find that χα are right eigenvectors

of L̃: L̃χα = λ∗
αχα.

The second inner product is given by

⟨Â, B̂⟩ss := Tr[Â†B̂ρss], (7)

which we call the steady-state inner product [37]. The
corresponding adjoint superoperator L̃∗ of L̃ associated
with ⟨·, ·⟩ss is defined as

⟨Â, L̃B̂⟩ss = ⟨L̃∗Â, B̂⟩ss . (8)

It should be noted that L̃∗ depends on the steady
state ρss. It is shown that L̃∗ is expressed as L̃∗A =
L(Âρss)ρ−1

ss [37], where we assume that ρss is invertible.
Again, L̃∗ has the same eigenvalue spectrum as L. For
later convenience, we define the steady-state norm ∥ · ∥ss
as

∥Â∥ss :=
√
⟨Â, Â⟩ss ≥ 0. (9)

Main results.— Let us consider an auto-correlation
function CA(t) = Tr[Â(t)Âρss] = ⟨Â(t), Â⟩ss in the

steady state, where Â is an Hermitian operator satis-
fying ⟨Â⟩ss := Tr[Âρss] = 0 (this assumption is made
without loss of generality because we can always shift
Â → Â− ⟨Â⟩ss Î with the identity operator Î).

We investigate how quickly CA(t) decays. It is known
that the Liouvillian gap determines the asymptotic decay
of CA(t):

|CA(t)| ≲ e−gt (t → ∞). (10)

However, in a transient regime, the Liouvillian gap does
not necessarily give the smallest decay rate [6, 7, 28, 29,
38], i.e. the inequality |CA(t)| ≤ e−gtCA(0) does not hold
in general. It is thus desired to give a rigorous bound on
|CA(t)| at finite times.

In this Letter, we give such a bound:

|CA(t)| ≤ e−gstCA(0) for any t ≥ 0, (11)

where gs is the spectral gap (i.e. the difference between
the largest and the second-largest eigenvalues) of sym-
metrized Liouvillian

L̃s :=
L̃+ L̃∗

2
, (12)

which is Hermitian with respect to the second inner prod-
uct ⟨·, ·⟩ss. We call gs the symmetrized Liouvillian gap.

Because gs does not depend on Â, Eq. (11) tells us that
the inverse of the symmetrized Liouvillian gap gives a
general upper bound on the decay time of any auto-
correlation function.
Later, we numerically show that our bound (11) is tight

in two different models. It means that the symmetrized
Liouvillian gap is not a mathematical artifact but a rele-
vant quantity in the relaxation of open quantum systems.
Although we have focused on static Hamiltonians, our

formalism can be naturally extended to open Floquet sys-
tems, i.e. periodically driven systems in contact with
reservoirs, which have been studied from long ago, but
attracted renewed interests in the context of Floquet en-
gineering in open systems [39]. See Supplementary Ma-
terial (SM) for the detail [40].
We point out a recent work [41] in which the sym-

metrized Liouvillian gap is used to derive concentration
bounds for finite-time averages of measurement outcomes
in quantum Markov processes. Such a general result is
applied to derive upper bounds on the size of fluctua-
tions of trajectory observables like time-integrated cur-
rents [42], which complement lower bounds provided by
thermodynamic uncertainty relations [43]. In this way,
the symmetrized Liouvillian gap is a key quantity to
study finite-time properties of Markov processes.
Properties of L̃s and gs.— Before proving Eq. (11), we

summarize basic properties of L̃s and gs below:

(i) L̃s has a zero eigenvalue, and Î is the corresponding
eigenvector.

(ii) L̃s is negative semidefinite, i.e., all the eigenvalues
are non-positive.

(iii) 0 ≤ gs ≤ g.

(iv) gs = g when [L̃, L̃∗] = 0.

The property (i) is easily confirmed by using L̃Î =
L̃∗Î = 0 [recall L̃∗A = L(Âρss)ρ

−1
ss and Lρss = 0].
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The property (ii) is proved by using the following in-
equality for the Liouvillain of the Lindblad form [19]:

L̃(X̂†)X̂ + X̂†L̃(X̂) ≤ L̃(X̂†X̂) (13)

for any bounded operator X̂. From this inequality, we
have

⟨X̂, L̃sX̂⟩ss =
1

2
Tr
{[

L̃(X̂†)X̂ + X̂†L̃(X̂)
]
ρss

}
≤ 1

2
Tr
[
L̃(X̂†X̂)ρss

]
=

1

2
Tr[X̂†X̂Lρss] = 0, (14)

which proves (ii).
Next, we prove (iii). From the definition, gs ≥ 0 is

obvious. Because of (i) and (ii), −gs is nothing but the
second-largest eigenvalue of L̃s, which has the following
variational expression:

−gs = sup
X̂ ̸=0:⟨X̂⟩ss=0

⟨X̂, L̃sX̂⟩ss
⟨X̂, X̂⟩ss

= sup
X̂ ̸=0:⟨X̂⟩ss=0

Re ⟨X̂, L̃X̂⟩ss
⟨X̂, X̂⟩ss

. (15)

The condition ⟨X̂⟩ss = ⟨Î , X̂⟩ss = 0 in Eq. (15) guaran-

tees that X̂ is orthogonal to the identity Î, which is the
eigenvector of L̃s with zero eigenvalue. Since χ1 satisfies
⟨χ1⟩ss = 0 and L̃χ1 = λ∗

1χ1, we obtain

gs ≤ −
Re ⟨χ1, L̃χ1⟩ss

⟨χ1, χ1⟩ss
= −Reλ∗

1 = g, (16)

which proves (iii).
The following observation is key to prove the last prop-

erty (iv): When [L̃, L̃∗] = 0, χα is a simultaneous eigen-
vector of L̃ and L̃∗ with the eigenvalue λ∗

α and λα, re-
spectively, which follows from the fact that any normal
matrix is unitarily diagonalizable [44]. It implies that χα

is an eigenvector of L̃s with the eigenvalue Reλα. Thus,
we conclude gs = minα̸=0[−Reλα] = g.
The property (iv) is of physical importance. The con-

dition [L̃, L̃∗] = 0 holds whenever the Liouvillian obeys
the quantum detailed balance condition [37]. When the
system is coupled to an equilibrium reservoir and its dy-
namics is described by the Lindblad equation with the
quantum detailed balance, the standard Liouvillian gap g
gives a bound on the decay of any auto-correlation func-
tion as |CA(t)| ≤ e−gtCA(0). While, when the system
is put in a nonequilibrium situation (e.g. the system is
in contact with multiple reservoirs at different tempera-
tures), we need gs to obtain a correct upper bound. In
this sense, gs is relevant in nonequilibrium open quantum
systems.

Proof of Eq. (11).— We first express the auto-
correlation function as CA(t) = ⟨Â(t), Â⟩ss. By using
the Cauchy-Schwarz inequality, we obtain

|CA(t)| ≤ ∥Â(t)∥ss · ∥Â∥ss. (17)

β1, μ1 β2, μ2

ε1 ε2v

U

FIG. 1. A schematic of the model. Two interacting quantum
dots are interacting with their own reservoirs.

Let us evaluate f(t) := ∥Â(t)∥2ss = ⟨Â(t), Â(t)⟩ss. By
differentiating it with respect to t, we have

df

dt
= ⟨L̃Â(t), Â(t)⟩ss + ⟨Â(t), L̃Â(t)⟩ss

= ⟨Â(t), (L̃+ L̃∗)Â(t)⟩ss

= 2
⟨Â(t), L̃sÂ(t)⟩ss
⟨Â(t), Â(t)⟩ss

f(t) ≤ −2gsf(t), (18)

where Eq. (15) was used in the last inequality. By inte-
grating it over t, we obtain

f(t) ≤ e−2gstf(0) = e−2gst∥Â∥2ss. (19)

By substituting it into Eq. (17) and using ∥Â∥2ss = CA(0),
we obtain Eq. (11).
Double quantum dot in contact with two reservoirs.—

We demonstrate the relevance of our main results in a
specific model. The Hamiltonian of the total system is
given by ĤT = ĤS + ĤB + ĤI . The Hamiltonian ĤS of
a double quantum dot is given by

ĤS =

2∑
i=1

εid̂
†
i d̂i + v(d̂†1d̂2 + d̂†2d̂1) + Ud̂†1d̂1d̂

†
2d̂2, (20)

where d̂i is the annihilation operator of ith dot. We de-
note by En and |n⟩ the energy eigenvalue and the cor-
responding energy eigenstate: ĤS =

∑
n En |n⟩ ⟨n|. The

Hamiltonian of the two reservoirs is given by

ĤB =
∑
k

(ĉ†k,1ĉk,1 + ĉ†k,2ĉk,2), (21)

where ĉk,i is the annihilation operator of fermions in the
reservoir coupled to ith dot. The interaction Hamiltonian
reads

ĤI =

2∑
i=1

(
d̂†i
∑
k

λk ĉk,i + h.c.

)
. (22)

We assume that two reservoirs are in thermal equilibrium
at the inverse temperature βi and the chemical potential
µi (i = 1, 2). See Fig. 1 for a schematic of the model.
When the interaction between the system and the

reservoirs is sufficiently weak, the Lindblad equation for
the reduced density matrix ρ(t) for the system of interest
is derived by applying the Born-Markov and secular ap-
proximations [36]. The Liouvillian is block diagonalized
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into sectors each of which is spanned by |n⟩ ⟨m| with a
fixed frequency ω = En−Em. The sector of ω = 0 corre-
sponds to the subspace spanned by the diagonal matrix
elements {|n⟩ ⟨n|} if we assume no energy degeneracy in
ĤS . Let us consider CA(t) with Â being a diagonal ma-
trix in the energy basis. The dynamics of Â(t) is then
restricted to the diagonal subspace. For this reason, we
focus on the diagonal sector and define the spectral gap
within this sector.

The Born-Markov-secular Lindblad equation in the di-
agonal sector is given by the following Pauli master equa-
tion [36]:

dPn

dt
=
∑
m

[WnmPm(t)−WmnPn(t)] , (23)

where Pn(t) = ⟨n|ρ(t)|n⟩ and the transition rate matrix
Wnm is given by

Wnm = 2πJ(En − Em)

2∑
i=1

fi(En − Em)|⟨n|d̂†i |m⟩|2

+2πJ(Em − En)

2∑
i=1

[1− fi(Em − En)]|⟨m|d̂i|n⟩|2.

(24)

Here, J(ω) =
∑

k δ(ω−ωk)|λk|2 is the bath spectral func-
tion and fi(E) = [eβi(E−µi) + 1]−1 is the Fermi distribu-
tion at ith reservoir.
We numerically compute the auto-correlation function

of the energy,

CE(t) = ⟨δĤS(t), δĤS(0)⟩ss , (25)

where δĤS = ĤS − ⟨ĤS⟩ss Î. In Fig. 2, we plot
CE(t)/CE(0), our upper bound e−gst, and e−gt for (a)
an equilibrium case (β1 = β2 and µ1 = µ2) and (b) a
nonequilibrium case. In numerical calculations, we set
v = 1, ε1 = −1.37, ε2 = −2.24, U = 1.76, and assume
2πJ(ω) = γ ≡ 1. In Fig. 2 (a), we set β1 = β2 = 5.5
and µ1 = µ2 = 0.3, whereas in Fig. 2 (b), β1 = 6.94,
β2 = 4.06, µ1 = −1.63, and µ2 = 2.23.

In an equilibrium case, g = gs and therefore the Liou-
villian gap gives an upper bound on the relaxation time
τ as τ ≲ g−1. While, in a nonequilibrium case, the decay
rate in a transient regime is not bounded by the Liouvil-
lian gap. Instead, the symmetrized Liouvillian gap gives
a correct bound even in this case. Moreover, it gives a
tight upper bound at short times [see Fig. 2 (b)]. Thus,
in general, the symmetrized Liouvillian gap is needed to
evaluate the maximum relaxation time of the dissipative
system.

Driven-dissipative Rydberg atoms.— In Eq. (23), dy-
namics of the population (i.e. diagonal elements in the
energy basis) is decoupled from that of the coherence (i.e.

0 1 2 3 4 5
t

10 2

10 1

100

(a)

auto-correlation function
Liouvillian gap
symmetrized Liouvillian gap

0 1 2 3 4 5
t

10 2

10 1

100

(b)

0 1 2 3 4 5
t

10 2

10 1

100

(c)

FIG. 2. Auto-correlation function CE(t) for (a) equilibrium
and (b) nonequiliblium quantum dots, and for (c) driven-
dissipative Rydberg atoms. The solid lines are the numerical
values of CE(t)/CE(0). The orange dotted lines and the green
dashed lines are e−gt and e−gst, respectively.

off-diagonal elements), and thus the population dynam-
ics is essentially classical. Now we consider dissipative
dynamics that is genuinely quantum (i.e. the population
and the coherence are not independent).
Let us consider two Rydberg atoms under laser driving

and dissipation. Each Rydberg atom is considered as a
two-level system, where the spin up (down) corresponds
to the Rydberg (ground) state. Laser-driven dissipative
Rydberg atoms are described by the Lindblad equation
with the Ising Hamiltonian [45]

Ĥ = Jσ̂z
1 σ̂

z
2 +

2∑
i=1

(hzσ̂z
i + hxσ̂x

i ), (26)

where σx,y,z
i denote the Pauli matrices (i = 1, 2), and

jump operators L̂i,+ =
√
γ+σ̂

+
i and L̂i,− =

√
γ−σ̂

−
i ,

where γ± > 0 are positive constants (see SM of Ref. [46]
for the derivation of jump operators).
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We numerically compute CE(t) and the result is plot-
ted in Fig. 2 (c). Parameters are set as J = 0.054,
hz = 0.107, hx = 0.267, γ− = 1, and γ+ = 0.9. We
again see that not g but gs bounds the decay rate in a
transient regime.

Relaxation from an arbitrary initial state.— So far, we
have considered the relaxation of fluctuations at station-
arity. Now we briefly discuss an extension of the analysis
to the relaxation dynamics from an arbitrary initial state
ρini towards the steady state ρss. We can prove the fol-
lowing inequality [40]:

∥ρ(t)− ρss∥1 ≤
(
eS2(ρini∥ρss) − 1

)1/2
e−gst, (27)

where ∥ · ∥1 denotes the trace norm, and S2(ρ∥σ) =
lnTr[ρ2σ−1] is the quantum Rényi 2-divergence. From
this inequality, we find that the relaxation time τrel is
bounded as

τrel ≲
S2(ρini∥ρss)

gs
. (28)

Comparing with the inequality (11) for the auto-
correlation function, we have an additional factor that
grows with S2(ρini∥ρss). In SM [40], it is shown that this
additional factor explains anomalously long relaxation
times in the single-particle asymmetric hopping model,
which was reported by Haga et al. [7]. In contrast, it
turns out that gs = 0 in the boundary-dissipated system
studied in Ref. [6], and hence Eqs. (11) and (27) are not
informative. In general, studies beyond the spectral-gap
analysis are needed to fully understand the relaxation
time.

Summary and Outlook.— We have derived an upper
bound on the decay of auto-correlation functions in the
steady state, and numerically show that the bound is
tight in a transient regime. The decay of correlations
is bounded by the symmetrized Liouvillan gap, which
may differ from the standard Liouvillian gap when the
quantum detailed balance condition is violated. We note
that it is straithtforward to extend our results to classical
Markov jump processes.

We believe that our results unveil a general property
of nonequilibrium quantum dissipative dynamics. While,
we are also convinced that the symmetrized Liouvillian
gap does not capture whole physics of Markovian quan-
tum dynamics at finite times. It is a future problem
to unveil its generic properties beyond the spectral-gap
analysis of the (symmetrized) Liouvillian.

This work was supported by JSPS KAKENHI Grant
Numbers JP18K13466, JP19K14622, JP21H05185, and
by JST, PRESTO Grant No. JPMJPR225.
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